Outbreak of Measles — Venezuela and Colombia, 2001-2002

Substantial progress has been made toward interrupting indigenous measles transmission in the Region of the Americas (1-4). In 2001, the number of confirmed measles cases in the region reached a record low of 537 cases, a 99% decrease since 1990 (4). During 2001, the Dominican Republic and Haiti interrupted indigenous measles transmission successfully (4,5), ending known indigenous transmission of the D6 measles virus genotype. This genotype, which had circulated widely in the Region of the Americas since 1995, caused nationwide outbreaks in Argentina, Bolivia, Brazil, the Dominican Republic, and Haiti during 1997-2001 (3-7). In August 2001, a measles outbreak introduced by a traveler returning from Europe occurred in Venezuela and was exported to Colombia in 2002. This report describes the epidemiology of the outbreaks and control measures implemented by the ministries of health of Venezuela and Colombia.

Venezuela

In 2000, measles vaccination coverage in Venezuela was 84\% on the basis of administrative data reported routinely. By September 2001, estimated coverage had decreased to 58% and was lower in Venezuelan states near the border with northern Colombia (e.g., Falcón, 44\%; Zulia, 34\%) (Figure 1).
During 2001-2002, two outbreaks of measles occurred in Venezuela. On August 29, 2001, a man aged 39 years (index case) had rash onset of measles 1 day before returning to Falcón from a trip to Switzerland, Germany, and Spain during August 4-30. Approximately 1 month later, an investigation was initiated by local health authorities to identify additional cases. The first laboratory-confirmed case was reported on September 28 and occurred in the index patient's brother, aged 35 years, who had rash onset on September 23. The majority of persons who were affected by the outbreak were health-care workers, laborers, and students. The outbreak
lasted until December 15, affected 37 persons in three municipalities, and ended after implementation of a statewide vaccination campaign for children aged 1-14 years.

FIGURE 1. Location of Falcón and Zulia states near the Venezuela-Colombia border

INSIDE

760 Immunization Registry Progress — United States, 2002
762 Progress Toward Poliomyelitis Eradication - Angola, January 1998-June 2002
764 West Nile Virus Activity — United States, August 22-28, 2002

The $M M W R$ series of publications is published by the Epidemiology Program Office, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

SUGGESTED CITATION

Centers for Disease Control and Prevention. [Article Title]. MMWR 2002;51:[inclusive page numbers].

Centers for Disease Control and Prevention

Julie L. Gerberding, M.D., M.P.H. Director

David W. Fleming, M.D. Deputy Director for Science and Public Health

Dixie E. Snider, Jr., M.D., M.P.H.
Associate Director for Science
Epidemiology Program Office
Stephen B. Thacker, M.D., M.Sc. Director

Office of Scientific and Health Communications
John W. Ward, M.D.
Director
Editor, MMWR Series
David C. Johnson Acting Managing Editor, MMWR (Weekly)

Jude C. Rutledge
Teresa F. Rutledge
Jeffrey D. Sokolow, M.A.
Writers/Editors, MMWR (Weekly)
Lynda G. Cupell
Malbea A. Heilman
Beverly J. Holland
Visual Information Specialists
Quang M. Doan
Erica R. Shaver
Information Technology Specialists

Division of Public Health Surveillance and Informatics

Notifiable Disease Morbidity and 122 Cities Mortality Data
Robert F. Fagan
Deborah A. Adams
Felicia J. Connor
Lateka Dammond
Patsy A. Hall
Pearl C. Sharp

In January 2002, a second outbreak of measles was introduced into Falcón from Zulia by a girl aged 7 months who had visited a tourist site in Falcón and who had received medical care at a local hospital. She infected a nurse, who then transmitted the disease to other persons. Of 165 persons reported from Falcón during this outbreak, 85 (52\%) had visited the same tourist site.

The first confirmed measles case in Zulia occurred in a woman aged 27 years who was an auxiliary nurse in a physician's office that provided care to residents of Falcón. The nurse had onset of rash on October 25, 2001, and subsequently infected four other persons. During the next 3 months, the outbreak spread to all municipalities in Zulia; 2,074 cases had been confirmed as of July 24, 2002. For several chains of transmission, the index case occurred in a health-care worker. Beginning in February 2002, the outbreak spread to 14 additional states in Venezuela, including four states bordering Colombia.

During October 2001-July 2002, Venezuela reported 6,380 suspected measles cases; of these, 2,416 were laboratory or epidemiologically confirmed.* The outbreak peaked during the week of March 16 (week 11) (Figure 2) and has affected 16 (67\%) of the 24 states in Venezuela. A total of 2,074 (86\%) cases were from Zulia, 202 (8\%) from Falcón, and 140 (4\%) from the other 14 states. The age groups most affected were children aged <1 year (120 cases per 100,000 population), children aged $1-4$ years (26), and persons aged 20-24 years (12) (Figure 3).

During November 2001-January 2002, measles virus samples were collected from patients in Zulia. Genetic sequencing indicated that the virus was not similar to viruses encountered previously in the region or to the reference

[^0]FIGURE 2. Reported number of measles cases*, by week of rash onset - Venezuela, August 2001-July 2002

FIGURE 3. Measles rates,* by age group - Venezuela and Colombia, August 2001-July 2002

*Per 100,000 population.
genotype strains available on the measles sequence database. A close match was identified from virus samples taken from cases imported into Australia from Indonesia as early as 1999, which have been given the proposed designation of genotype d 9^{\dagger} (D. Chibo, Ph.D., World Health Organization, Measles Reference Laboratory [Western Pacific Region], Australia, personal communication, 2002).

During November 2001-January 2002, a follow-up measles vaccination campaign was implemented targeting approximately 2.2 million children aged $1-4$ years; 16 of the 24 states reported coverage of 100%. However, the outbreak continued with cases occurring in all age groups. House-to-house monitoring of vaccination coverage revealed areas with unvaccinated children. In March 2002, a nationwide vaccination campaign was implemented targeting approximately 5.5 million children aged 6 months -14 years and an estimated 5.5 million adults at high risk (e.g., health-care workers, tourists, factory workers, soldiers, university students, and migrants) in urban, periurban (densely populated informal settlements), and rural areas. Vaccination coverage among adults at high risk in that campaign was estimated to be 76% as of July 6 (week 27).

Colombia

Colombia shares a border with Venezuela, with which it has substantial commerce and migration in Zulia. In 1996, measles vaccination coverage for children in Colombia was 94%. In 2000, measles coverage for children aged 1 year declined to 80%. Coverage for children aged 1 year increased to 91% during 2001.

[^1]In January 2002, the first confirmed case occurred in a girl aged 7 years from Colombia. She had rash onset on January 20 and reported previous contact in Zulia with persons with confirmed measles. As of July 6 (week 27), 68 cases have been confirmed (Figure 4). Confirmed cases have occurred in 19 municipalities in $10(30 \%)$ of the 33 departments; 17 affected municipalities were located on the Atlantic coast and/or bordered Venezuela. As of July 18, the most recent confirmed patient had rash onset on July 17 (week 29). Of the 68 confirmed cases, 18 (26\%) were imported from Venezuela, 35 (51\%) were epidemiologically linked to those importations, nine (13%) were from unknown sources, and six (9%) are under investigation. Of 44 patients aged $1-4$ years, 15 (34\%) had received measles vaccine previously. The age groups most affected were children aged <5 years (0.7 per 100,000 population), children aged 5-9 years (0.2), and persons aged 25-29 years (0.1) (Figure 3).
Control activities being implemented include 1) door-to-door measles vaccination campaigns in high-risk municipalities as part of a national vaccination campaign for approximately 3.8 million children aged 6 months- 5 years and other adults at high risk (e.g., health-care workers, migrants, and travelers), 2) house-to-house vaccination coverage monitoring in areas at high risk, 3) strengthening of national measles surveillance, and 4) increased training in case investigation and outbreak control. As of July 10, 2002, a total of 2,587,408 (73%) children in the target group had been vaccinated.
During these outbreaks, measles surveillance has been heightened by using active case searches in both countries, with 2,198 suspected cases detected (5.4 per 100,000 population) in Colombia and 6,380 (26.5) in Venezuela. Technical and financial resources have been provided by international organizations, including Pan American Health Organization, United Nations Children's Fund (UNICEF), and CDC.

FIGURE 4. Reported number of measles cases*, by week of rash onset - Colombia, August 2001-July 2002

Reported by: H Izurieta, M Brana, P Carrasco, V Dietz, G Tambini, CA de Quadros, Div of Vaccines and Immunizations; Pan American Health Organization, Washington, DC. O Barrezueta, Pan American Health Organization; NLópez, D Rivera, L López, M Villegas, E Maita, Ministry of Health; C Garcia, National Institute of Hygiene, Caracas, Venezuela. D Pastor, Pan American Health Organization; C Castro, J Boshell, O Castillo, G Rey, F de la Hoz, D Caceres, M Velandia, National Institute of Health, Ministry of Health, Bogotá, Colombia. W Bellini, J Rota, P Rota, Div ofViral and Rickettsial Diseases, National Center for Infectious Diseases; FLievano, C Lee, Global Immunization Div, National Immunization Program, $C D C$.
Editorial Note: The reintroduction of measles and its subsequent transmission in Venezuela and exportation to Colombia indicates that, until global measles eradication is achieved, countries in the Region of the Americas are vulnerable to importations. However, these importations should not result in sustained measles transmission if vaccination coverage is maintained at high levels ($>95 \%$) in all municipalities and follow-up campaigns are conducted on time (3,4).
Low vaccination coverage in Venezuela and deficiencies in surveillance contributed to the outbreak. The first report of a case was delayed for approximately 1 month, sufficient time for the occurrence of several generations of transmission and spread to other areas.

Colombia initiated aggressive vaccination activities in 2001 when Venezuela began reporting cases. The limited transmission in Colombia suggests that efforts to prevent a large outbreak might have been successful. However, because of civil conflict in several areas, confirming the lack of virus transmission was difficult. In addition, a contributing factor to lower transmission in Colombia might have been the higher measles coverage rates before the outbreak compared with Venezuela.
Measures to control measles outbreaks in the Region of the Americas include 1) partnerships with local governments to secure financial and logistical resources, 2) rapid identification and vaccination of groups at high risk (e.g., health-care workers, migrants, and tourist industry personnel), 3) house-to-house monitoring of vaccination coverage, 4) expansion of the target group to older ages if incidence is high in these age cohorts, and 5) heightened surveillance in all regions of the country.

References

1. de Quadros CA, Olivé JM, Hersh BS, et al. Measles elimination in the Americas—evolving strategies. JAMA 1996;275:224-9.
2. Pan American Health Organization. Elimination of measles in the Americas. Washington, DC: XXIV Meeting of the Pan American Sanitary Conference, 1995.
3. Pan American Health Organization. Progress toward interrupting indigenous measles transmission-Region of the Americas, January 1999 -September 2000. MMWR 2000;49:986-90.
4. CDC. Progress toward interrupting indigenous measles transmissionRegion of the Americas, January-November 2001. MMWR 2001;50:1133.
5. Pan American Health Organization, Division of Vaccines and Immunization. Haiti begins all out effort to halt measles and OPV-derived polio outbreaks. EPI Newsletter 2001;22:2.
6. Oliveira MI, Rota PA, Curti SP, et al. Genetic homogeneity of measles viruses associated with a measles outbreak, São Paulo, Brazil, 1997. Emerg Infect Dis 2002;8:808-13.
7. de Quadros CA, Izurieta HS, Carrasco P, Brana M, Tambini G. Progress towards measles eradication in the Region of the Americas. J Infect Dis 2003(in press).

Immunization Registry Progress United States, 2002

Immunization registries are confidential, population-based, computerized information systems that collect vaccination data about all children within a geographic area (1). By providing complete and accurate information on which to base vaccination decisions, registries are key tools to increase and sustain high vaccination coverage. Registries consolidate vaccination records of children from multiple health-care providers, identify children who are due or late for vaccinations, generate reminder and recall notices to ensure that children are vaccinated appropriately, and identify provider sites and geographic areas with low vaccination coverage. One of the national health objectives for 2010 is to increase to 95% the proportion of children aged <6 years who participate in fully operational, population-based immunization registries (objective 14.26) (2). This report summarizes data from the calendar year 2001 Immunization Registry Annual Report (CY 2001 IRAR), a survey of registry activity among immunization programs in the 50 states and the District of Columbia (DC) that receive grant funding under Public Health Service Act $\$ 317 \mathrm{~b}$. Although these data indicate that approximately half of U.S. children aged <6 years are participating in a registry, achieving the national health objective will require increased immunization provider participation.

The CY 2001 IRAR, a self-administered questionnaire, was distributed to immunization program managers as part of the annual reporting requirement for grantees. Information included the percentage of children participating in a registry that reside in the catchment area and the progress in implementing the 12 functional standards considered essential for immunization registry operation (3). Responses were received from all 50 states and DC. Of the 51 respondents, 44 (86%) reported operating registries that targeted their entire catchment areas. The remaining seven (14\%) respondents (California, Colorado, Georgia, Indiana, Minnesota, New Mexico, and New York) reported operating registries that targeted
regions or counties within their catchment areas (Figure). On the basis of 2001 U.S. census estimates, approximately 44% of U.S. children aged <6 years had two or more vaccinations recorded in a grantee registry.
All 51 respondents reported efforts to meet the key elements of the 12 functional standards established for immunization registries (Table). A total of seven (14\%) registries accept immunization information for children aged <6 years only, $30(59 \%)$ for all ages in their registries, and 14 (27\%) for persons in their registry aged $17-25$ years. A total of 14 (27\%) reported using their registries to identify children eligible for the Vaccines for Children Program (VFC).
Reported by: S Jones, MPH, T Boyd, MS, R Linkins, PhD, Data Management Div, National Immunization Program, CDC.
Editorial Note: The findings in this report indicate the continuation of a trend identified previously in IRAR surveys $(4,5)$. An increasing percentage of children are participating in registries each year, and registries are increasing their usefulness to public health programs nationwide.
Beginning in 2001, diphtheria, tetanus toxoid, and pertussis (DTaP) vaccine; pneumococcal conjugate (PCV7) vaccine; measles, mumps, and rubella (MMR) vaccine; and varicella vaccines were in short supply ($6-8$). During the shortage, registries were used to track children who missed vaccines because of the shortage and to recall them when vaccines became available. During the 2001-2002 school year, immunization program staff and school nurses used the DC registry to ensure that local schools were in compliance with school entry vaccination requirements. Daily, weekly, and monthly reports were generated to track compliance, monitor vaccine inventory needs, and identify pockets of low vaccination

FIGURE. Percentage of children aged <6 years with >2 vaccinations in a Public Health Service Act § 317b immunization registry - United States, 2001

TABLE. Number and percentage of 51 grantee immunization registries that implemented key elements of the 12 functional standards, by standard - United States, December 2001

Functional standard	Registries meeting all key elements		Registries meeting ≥ 2 key elements	
	No.	(\%)	No.	(\%)
Electronically store data regarding all National Vaccine Advisory Committee approved core data elements	21	(41)	48	(94)
Establish a registry record within 6 weeks of birth for each child born in the catchment area	27	(53)	27	(53)
Enable access to vaccine information from the registry at the time of encounter	44	(86)	44	(86)
Receive and process vaccine information within 1 month of vaccine administration	43	(84)	43	(84)
Protect the confidentiality of medical information	22	(43)	36	(71)
Protect the security of medical information	21	(41)	35	(69)
Exchange vaccination records by using Health Level Seven standards	10	(20)	12	(24)
Automatically determine the immunization(s) needed when a person is seen by the health-care provider for a scheduled vaccination	36	(71)	36	(71)
Automatically identify persons due or late for vaccinations to enable the production of reminder and recall notices	40	(78)	41	(80)
Automatically produce vaccine coverage reports by providers, age groups, and geographic areas	35	(69)	40	(78)
Produce authorized immunization records	38	(75)	38	(75)
Promote accuracy and completeness of registry data	41	(80)	41	(80)

within DC for further outreach efforts. The registry was used to identify approximately 20,000 children who were not vaccinated properly according to school vaccination requirements (CDC, unpublished data, 2002).
Although this report indicates a substantial increase in participation rates compared with previous years (4,5), at least part of this improvement can be attributed to differences in how participation was measured. Previous estimates counted only participants from population-based registries. Because CY 2001 IRAR data indicated that some encounter-based
registries are approaching or have reached the 95% participation goal, participants from all 51 grantee registries, both popu-lation-based and encounter-based, were included in participation rate estimates.
The findings in this report are subject to at least three limitations. First, because the CY 2001 IRAR relied on selfreported information, bias in reporting might have occurred. However, onsite verification through record reviews and observation of registry operations during 12 site visits conducted in 2001 indicated that 97% of the CY 2001 IRAR's self-reported answers from these sites were accurate (CDC, unpublished data, 2002). Second, this report includes only information from 51 immunization survey respondents; any registry development performed by other entities (e.g., U.S. commonwealth or territory immunization grantees, hospitals, local health departments, or managed care plans) was not reflected. Finally, the CY 2001 IRAR did not collect information about the completeness or accuracy of immunization data recorded in a registry. CDC is developing tools to assist with registry data quality assessment.

As immunization grantees continue to make progress in achieving the national health objectives for 2010, registry target age groups are expanding to include adolescents and adults. Registries also are becoming part of broader child health information systems (e.g., hearing, lead, newborn metabolic, and nutrition screening). In addition, they are being used to improve the efficacy and accountability of vaccine administration in VFC. Additional information about immunization registries is available from CDC at http://www.cdc.gov/nip/ registry; telephone, 800-799-7062; or e-mail, siisclear@cdc.gov.

References

1. National Vaccine Advisory Committee. Development of community and state-based immunization registries; approved January 12, 1999. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 1999. Available at http://www.cdc.gov/nip/registry/nvac.htm.
2. U.S. Department of Health and Human Services. Healthy people 2010, 2nd ed. With understanding and improving health and objectives for improving health (2 vols). Washington, DC: U.S. Department of Health and Human Services, 2000.
3. CDC. Immunization registry minimum functional standards. Available at http://www.cdc.gov/nip/registry/mfs2001.pdf.
4. CDC. Immunization registry use and progress-United States, 2001. MMWR 2002;51:53-6.
5. CDC. Progress in development of immunization registries-United States, 2000. MMWR 2001;50:3-7.
6. CDC. Update on the supply of tetanus and diphtheria toxoids and of diphtheria and tetanus toxoids and acellular pertussis vaccine. MMWR 2001;50:189-90.
7. CDC. Updated recommendations on the use of pneumococcal conjugate vaccine in a setting of vaccine shortage-Advisory Committee on Immunization Practices. MMWR 2001;50:1140-2.
8. CDC. Shortage of varicella and measles, mumps and rubella vaccines and interim recommendations from the Advisory Committee on Immunization Practices. MMWR 2002;51:190-7.

Progress Toward Poliomyelitis Eradication - Angola, January 1998-June 2002

Since the World Health Assembly resolved in 1988 to eradicate poliomyelitis, the estimated number of polio cases worldwide has declined $>99 \%$ (1). Angola began polio eradication activities in 1996. Although polio eradication efforts have been hampered by the country's 27 -year-long civil war, both the incidence of polio cases and the geographic circulation of poliovirus in Angola have decreased substantially (2). The cessation of hostilities on April 4, 2002, presents a new opportunity to reach populations that had been inaccessible and undervaccinated previously. This report summarizes progress made during January 1998-June 2002 and highlights the remaining challenges to eradicating polio in Angola.

Routine Vaccination

During 1990-2000, the reported national coverage of children aged $0-11$ months with 3 doses of oral polio virus vaccine (OPV3) ranged from 21% to 45%. The 2001 Multiple Indicator Cluster Survey conducted by the Angolan National Institute of Statistics estimated OPV3 coverage at 63% among children aged 12-23 months.

Supplementary Immunization Activities

Since 1996, annual National Immunization Days* (NIDs) have been conducted in Angola targeting approximately 4 million children aged <5 years. Two annual rounds were held during 1996-1998, and three annual round have been held since 1999. Although access to children in conflict areas was limited as a result of the war, Angolan Ministry of Health (MoH) reports indicate that access improved during 19992001; the number of municipalities not accessible during all three NID rounds decreased from 51 (31%) of 164 in 1999 to $24(15 \%)$ in 2000 and to $10(6 \%)$ in 2001. Beginning in June 2000, a national house-to-house vaccination strategy was implemented to locate and vaccinate children. Extra rounds of Sub-National Immunization Days ${ }^{\dagger}$ (SNIDs) were organized in high-risk areas in 2001 and 2002. The May 2002 SNIDs targeted 40 municipalities with an estimated 2.6 million children aged <5 years. The number of children reported vaccinated was 3.1 million, which included children living in 28 camps for internally displaced persons (IDPs) and in five quartering areas for former combatants and their families.

[^2]
Acute Flaccid Paralysis Surveillance

Angola established surveillance for acute flaccid paralysis (AFP) in 1997. The quality of AFP surveillance is evaluated by two key World Health Organization (WHO)-established indicators: sensitivity of reporting (target: nonpolio AFP rate of ≥ 1 case per 100,000 children aged <15 years per year) and completeness of specimen collection (target: two adequate stool specimens from $\geq 80 \%$ of all persons with AFP). Angola achieved a nonpolio AFP rate of 1.2 in 1999 (Table). As of June 30, 2002, the projected annual nonpolio AFP rate was 3.4, with 17 of 18 provinces reporting AFP cases. The proportion of persons with AFP from which two adequate stool specimens were collected was 66% during 2001 and 89% during January-June 2002. The nonpolio enterovirus isolation rate (target: $\geq 10 \%$), a marker for laboratory performance and the integrity of the reverse cold chain for specimen transport, was 14% in 2000 and 22% in 2002.

In 2001, Angola shifted from a clinical to a virological AFP case classification system (i.e., only AFP cases with wild poliovirus isolates are classified as confirmed polio); AFP cases in which paralytic polio cannot be ruled out reliably are classified as polio-compatible. In 2001, a total of 10 AFP cases from five provinces were classified as polio-compatible. As of June 30, 2002, no AFP cases had been classified as poliocompatible.

Incidence of Polio

During 1999, a polio outbreak in Angola affected 1,103 children, with 53 cases confirmed virologically and 113 reported deaths $(3,4)$. The outbreak was caused primarily by wild poliovirus type 3 (P3), although wild poliovirus type 1 (P1) also was isolated. In 2000, Angola reported 55 polio cases, including 52 cases with isolation of P1 and three cases with isolation of P3. In 2001, one polio case with isolation of P1 was reported from Angola (Figure).

During 2000, an outbreak of polio with a high case-fatality rate (56 cases, 17 deaths) occurred on the Cape Verde Islands

FIGURE. Distribution of wild poliovirus isolates and acute flaccid paralysis (AFP) cases - Angola and western Zambia, 2001

* National Immunization Day.
(5). Genetic sequence analysis showed that the isolated P1 was imported from Angola. During December 2001February 2002, five polio cases with isolation of P3 were detected among Angolan refugees in western Zambia. Genetic sequence analysis showed that these isolates were related to wild poliovirus strains last isolated in Angola and the Democratic Republic of Congo (DRC) during 2000.
Reported by: Angolan Ministry of Health, Country Office of the World Health Organization, Luanda, Angola. Regional Office of the World Health Organization for Africa, Harare, Zimbabwe. Vaccines and Biologicals Dept, World Health Organization, Geneva, Switzerland. Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases; Global Immunization Div, National Immunization Program, CDC.
Editorial Note: Although armed conflict in Angola posed many challenges to surveillance and vaccination activities, data

TABLE. Number of reported cases of acute flaccid paralysis (AFP), number of confirmed poliovirus cases, and key surveillance indicators, by year - Angola, 1998-2002*
$\left.\begin{array}{lcccc}\hline & & \begin{array}{c}\text { No. confirmed } \\ \text { poliovirus cases }\end{array} & \begin{array}{c}\text { Polio-compatible } \\ \text { cases }\end{array} & \begin{array}{c}\text { Nonpolio } \\ \text { Norsons with } \\ \text { AFP rate }{ }^{\dagger}\end{array} \\ \text { AFP with adequate } \\ \text { stool specimen }{ }^{\S}\end{array}\right]$

[^3]during January 1999-June 2002 indicate substantial progress toward interruption of wild poliovirus transmission. Following the 1999 outbreak, MoH, WHO, and the United Nations Children's Fund (UNICEF) have increased the number of staff working on polio eradication. As a result, the percentage of adequate stool specimens collected increased during the last quarter of 2001 to $>80 \%$, and Angola has met WHOrecommended standards of surveillance quality through June 2002.

The cessation of hostilities in Angola has improved access to areas never before covered by supplementary immunization activities or AFP surveillance. Emergency assistance is needed for approximately 800,000 persons living in areas that became accessible recently and for approximately 1.9 million persons in areas that had been accessible previously. An estimated 250,000 family members have gathered around 37 quartering areas for former combatants, and 300,000 IDPs are living temporarily in transit centers. Approximately 80,000 of an estimated 470,000 Angolan refugees now living in neighboring countries are expected to return to Angola (United Nations Office for the Coordination of Humanitarian Affairs [OCHA], unpublished data, 2002).
The recent isolation of wild poliovirus from five unvaccinated children of Angolan refugees in western Zambia highlights the potential for circulation of wild poliovirus in areas where children of refugees and IDP groups might congregate. Undervaccinated children in mobile high-risk groups should be targeted for vaccination.
Angola implemented NID rounds in June, July, and August 2002, synchronized with rounds conducted in the DRC, Republic of Congo, Gabon, Zambia, Namibia, and São Tomé and Principe. An AFP surveillance review is scheduled for October 2002, followed by the first meeting of an international technical advisory group for polio eradication in Angola. Future plans include expansion of AFP surveillance and vaccination activities to include newly accessible areas and populations. Interruption of wild poliovirus transmission in Angola will require that the overall security situation remain stable, existing shortfalls in financial and human resources are met, surveillance quality is improved further, and children in high-risk groups are vaccinated successfully. Close collaboration between the local government and its global partners ${ }^{\S}$ has been critical in sustaining eradication "activities in Angola and will continue to be essential.

[^4]
References

1. CDC. Progress toward global eradication of poliomyelitis, 2001. MMWR 2002;51:253-6.
2. CDC. Progress toward poliomyelitis eradication-Angola, Democratic Republic of Congo, Ethiopia, and Nigeria, January 2000-July 2001. MMWR 2001;50:826-9.
3. Valente F, Otten M, Balbina F, et al. Massive outbreak of poliomyelitis caused by type-3 wild poliovirus in Angola in 1999. Bull World Health Organ 2000;78:339-46.
4. CDC. Outbreak of poliomyelitis—Angola, 1999. MMWR 1999; 48:327-9.
5. CDC. Outbreak of poliomyelitis—Cape Verde 2000. MMWR 2000;49:1070.

West Nile Virus Activity - United States, August 21-28, 2002, and Illinois, January 1August 27, 2002

This report summarizes West Nile virus (WNV) surveillance data reported to CDC through ArboNET and by states and other jurisdictions as of 7:30 a.m. Mountain Daylight Time, August 28, 2002, and highlights WNV activity in Illinois.

United States

During the reporting period of August 21-28, a total of 210 laboratory-positive human cases of WNV-associated illness were reported from Illinois ($\mathrm{n}=55$), Mississippi ($\mathrm{n}=36$), Louisiana ($n=24$), Ohio ($n=22$), Missouri ($n=16$), Michigan $(\mathrm{n}=15)$, Texas $(\mathrm{n}=13)$, Georgia ($\mathrm{n}=\mathrm{six}$), New York ($\mathrm{n}=$ four), Alabama ($\mathrm{n}=$ three), South Dakota ($\mathrm{n}=$ =three), Indiana ($\mathrm{n}=\mathrm{two}$), Kentucky ($\mathrm{n}=\mathrm{two}$), Oklahoma ($\mathrm{n}=\mathrm{two}$), Tennessee ($\mathrm{n}=\mathrm{two}$), Wisconsin ($\mathrm{n}=\mathrm{two}$), Maryland ($\mathrm{n}=\mathrm{one}$), Nebraska ($\mathrm{n}=\mathrm{one}$), and Virginia ($\mathrm{n}=0 \mathrm{one}$). During this period, Georgia, Maryland, Michigan, Nebraska, Oklahoma, South Dakota, Virginia, and Wisconsin reported their first human cases for 2002. During the same period, WNV infections were reported in 674 dead crows, 305 other dead birds, 581 horses, and 386 mosquito pools. During this period, WNV activity was reported for the first time ever in Montana and New Mexico.
During 2002, a total of 480 human cases with laboratory evidence of recent WNV infection have been reported from Louisiana ($\mathrm{n}=171$), Mississippi ($\mathrm{n}=91$), Illinois ($\mathrm{n}=71$), Texas ($\mathrm{n}=38$), Missouri ($\mathrm{n}=25$), Ohio ($\mathrm{n}=24$), Michigan ($\mathrm{n}=15$), Alabama ($\mathrm{n}=\mathrm{eight}$), Georgia ($\mathrm{n}=$ six), Indiana ($\mathrm{n}=\mathrm{six}$), New York ($\mathrm{n}=\mathrm{five}$), Tennessee ($\mathrm{n}=$ four), Kentucky ($\mathrm{n}=$ three), South Dakota ($\mathrm{n}=$ =three), Oklahoma ($\mathrm{n}=\mathrm{two}$), Wisconsin ($\mathrm{n}=\mathrm{two}$), the District of Columbia ($\mathrm{n}=\mathrm{one}$), Florida ($\mathrm{n}=\mathrm{one}$), Maryland ($\mathrm{n}=\mathrm{one}$), Massachusetts ($\mathrm{n}=$ one), Nebraska ($\mathrm{n}=\mathrm{one}$), and

Virginia ($\mathrm{n}=\mathrm{one}$) (Figure 1). Among the patients with available data, the median age was 51 years (range: 9 months- 98 years), 237 (54%) were male, and the dates of illness onset ranged from June 10 to August 25. In addition, 2,590 dead crows and 1,872 other dead birds with WNV infection were reported from 41 states, New York City, and the District of Columbia; 837 WNV infections in mammals (all but one in horses) have been reported from 25 states (Alabama, Arkansas, Colorado, Florida, Georgia, Iowa, Illinois, Kansas, Kentucky, Louisiana, Minnesota, Mississippi, Montana, Nebraska, New Mexico, New York, North Dakota, Ohio, Oklahoma, South Dakota, Tennessee, Texas, Vermont, Virginia, and Wyoming). During 2002, WNV seroconversions have been reported in 96 sentinel chicken flocks from Florida, Nebraska, Pennsylvania, and New York City; 1,491 WNV-positive mosquito pools have been reported from 18 states (Alabama, Connecticut, Georgia, Illinois, Indiana, Kentucky, Maryland, Massachusetts, Mississippi, Nebraska, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, South Dakota, Texas, and Virginia), New York City, and the District of Columbia.

Illinois

In 2002, a total of 71 persons with laboratory evidence of WNV were reported through August 27, 2002 (Figure 2); 44 cases were laboratory confirmed and 27 were probable. Four cases were fatal; all four patients presented with encephalitis.
The 71 patients had a median age of 49 years (range: 2-92 years); 47% were male. The median age for 32 patients with either aseptic meningitis or encephalitis and a known age was 51 years (range: 18-92 years). Patients who died ranged in age from 67 to 92 years.

FIGURE 1. Areas reporting West Nile virus (WNV) activity United States, 2002*

* As of 7:30 a.m., Mountain Daylight Time, August 28, 2002.

FIGURE 2. Number of West Nile virus cases in humans*, by county - Illinois, January 1-August 27, 2002

* $\mathrm{n}=71$.

Initial clinical data indicate that 20 patients presented with aseptic meningitis and 17 presented with encephalitis. Nine patients presented with WNV-associated fever. The 25 remaining cases are under investigation. Dates of illness onset ranged from July 14 through August 20.
Of Illinois' 102 counties, 92 (90%) have reported WNV activity (positive animal, mosquito, or human cases). Human cases have occurred among persons in nine counties, with 51 (72 \%) cases reported from Cook County, the most populated area of the state. The attack rate during January 1August 27 was 0.6 per 100,000 for the state population, and 1.0 for Cook County.

Of the 709 crows and blue jays tested, 439 (62\%) have tested positive for WNV by the immunohistochemistry test; the first bird tested positive on May 15. Sixty-two horses have tested laboratory positive. These horses had specimens collected during July 19-August 23 from 18 counties. Mosquito pools began testing positive on July 11, and 236 mosquito pools have been reported to the Illinois Department of Public Health (IDPH) as positive through August 16.

IDPH has provided regular updates on WNV on its Web site (http://www.idph.state.il.us). Information on submission of specimens and clinical information on WNV has been provided to local health departments, infection control practitioners, infectious disease physicians, and hospital laboratories. Special reminders have been sent to schools and campgrounds asking them to inform students, spectators, and campers about mosquito repellents and other protective measures. IDPH has
conducted vector control consultations and trainings on larviciding. Prevention messages emphasize the need for personal protective measures and removing containers of standing water around residences.
Additional information about WNV activity is available at http://www.cdc.gov/ncidod/dvbid/westnile/index.htm and http://www.cindi.usgs.gov/hazard/event/west_nile/ west_nile.html.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals ending August 24, 2002, with historical data

* No rubella cases were reported for the current 4-week period yielding a ratio for week 34 of zero (0).
\dagger Ratio of current 4 -week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary of provisional cases of selected notifiable diseases, United States, cumulative, week ending August 24, 2002 (34th Week)*

		$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \end{aligned}$	Encephalitis: West Nile ${ }^{\dagger}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
Anthrax		2	1		63	10
Botulism:	foodborne	10	20	Hansen disease (leprosy) ${ }^{\dagger}$	53	46
	infant	39	62	Hantavirus pulmonary syndrome ${ }^{\dagger}$	9	5
	other (wound \& unspecified)	13	12	Hemolytic uremic syndrome, postdiarrheal ${ }^{\dagger}$	109	89
Brucellosis ${ }^{\dagger}$		47	84	HIV infection, pediatric ${ }^{\text {¢ }}$	116	115
Chancroid		46	23	Plague	-	2
Cholera		6	3	Poliomyelitis, paralytic	-	-
Cyclosporiasis ${ }^{\dagger}$		137	96	Psittacosis ${ }^{\dagger}$	15	9
Diphtheria		1	1	Q fever ${ }^{+}$	23	16
Ehrlichiosis:	human granulocytic (HGE) ${ }^{\dagger}$	187	139	Rabies, human	1	1
	human monocytic (HME) ${ }^{\dagger}$	81	76	Streptococcal toxic-shock syndrome ${ }^{\dagger}$	58	57
	other and unspecified	5	4	Tetanus	18	26
Encephalitis:	California serogroup viral ${ }^{\dagger}$	29	32	Toxic-shock syndrome	76	81
	eastern equine ${ }^{\dagger}$	2	4	Trichinosis	12	12
	Powassan ${ }^{\dagger}$	-	-	Tularemia ${ }^{\dagger}$	43	91
	St. Louis ${ }^{\dagger}$ western equine ${ }^{\dagger}$	-	40	Yellow fever	1	-

[^5]TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	AIDS		Chlamydia ${ }^{\dagger}$		Cryptosporidiosis		Escherichia coli					
			0157:H7	Shiga Toxin Positive, Serogroup non-0157								
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002^{\mathrm{s}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \end{aligned}$
UNITED STATES	24,713	25,177	479,669	497,826			1,417	2,112	1,680	1,737	79	85
NEW ENGLAND	1,011	910	17,009	15,378	95	89	159	167	22	29		
Maine	23	26	1,000	832	6	10	26	19	2	-		
N.H.	20	23	1,032	896	19	4	18	22	-	3		
Vt.	8	11	567	389	19	25	5	10	-	1		
Mass.	519	532	7,046	6,580	29	38	69	82	8	9		
R.I.	71	61	1,789	1,860	13	3	5	9	-	-		
Conn.	370	257	5,575	4,821	9	9	36	25	12	16		
MID. ATLANTIC	5,619	6,570	52,767	53,414	169	197	126	127	-	-		
Upstate N.Y.	404	977	10,475	8,663	58	59	104	74	-	-		
N.Y. City	3,210	3,484	17,942	19,739	72	82	7	13	-	-		
N.J.	925	1,129	5,696	8,503	8	10	15	40	-	-		
Pa.	1,080	980	18,654	16,509	31	46	N	N	-	-		
E.N. CENTRAL	2,494	1,705	81,760	91,588	350	1,027	382	450	8	6		
Ohio	453	302	20,165	23,627	82	100	78	89	6	4		
Ind.	347	197	10,335	9,976	27	47	34	56	-	-		
III.	1,170	779	20,318	27,880	48	424	100	120	-	-		
Mich.	398	325	20,888	19,591	67	103	75	57	2	2		
Wis.	126	102	10,054	10,514	126	353	95	128	-	-		
W.N. CENTRAL	421	544	26,708	25,157	173	205	261	244	11	17		
Minn.	90	92	6,102	5,139	86	92	95	96	9	15		
lowa	54	54	2,765	2,946	16	49	56	41	-	-		
Mo.	189	263	9,660	9,104	22	29	41	34	N	N		
N. Dak.	1	2	607	668	6	7	3	9	-	-		
S. Dak.	3	18	1,396	1,156	7	6	27	15	1	1		
Nebr.	43	51	1,857	2,172	26	21	16	34	1	1		
Kans.	41	64	4,321	3,972	10	1	23	15	-	-		
S. ATLANTIC	7,537	7,650	92,021	96,368	219	228	157	138	22	17		
Del.	131	142	1,681	1,871	2	2	4	3	-	-		
Md.	1,066	1,067	9,912	9,718	15	28	14	10	-	-		
D.C.	371	512	2,171	2,074	4	9	-		-	-		
Va .	538	639	9,894	12,401	7	15	32	38	2	2		
W. Va.	58	50	1,542	1,538	2	1	3	4	-	-		
N.C.	555	495	15,955	14,386	25	19	25	29	-	-		
S.C.	547	462	7,969	10,189	4	5	2	12	10^{-}	-		
Ga.	1,160	852	17,676	20,457	100	96	46	23	10	8		
Fla.	3,111	3,431	25,221	23,734	60	53	31	19	10	7		
E.S. CENTRAL	1,128	1,179	31,926	32,316	90	30	66	92	-	-		
Ky.	173	220	5,607	5,795	3	3	19	49	-	-		
Tenn.	483	361	10,382	9,807	46	7	26	25	-	-		
Ala.	197	308	9,162	8,751	37	11	14	11	-	-		
Miss.	275	290	6,775	7,963	4	9	7	7	-	-		
W.S. CENTRAL	2,696	2,722	69,756	69,861	24	69	39	137	-	-		
Ark.	163	141	4,277	4,866	7	5	5	7	-	-		
La.	693	548	12,663	11,750	4	7	1	6	-	-		
Okla.	133	153	7,197	6,919	8	7	15	19	-	-		
Tex.	1,707	1,880	45,619	46,326	5	50	18	105	-	-		
MOUNTAIN	790	910	30,297	29,498	106	95	193	164	11	10		
Mont.	8	13	1,387	1,288	4	7	13	10	-	-		
Idaho	18	17	1,599	1,198	19	9	27	25	4	2		
Wyo.	6	2	575	536	7	2	6	5	1	-		
Colo.	157	211	9,048	8,527	40	25	56	65	2	5		
N. Mex.	53	87	3,990	4,032	15	17	4	9	3	3		
Ariz.	327	337	9,664	9,399	12	6	23	19	1	-		
Utah	43	81	1,637	1,242	6	24	46	22	-	-		
Nev.	178	162	2,397	3,276	3	5	18	9	-	-		
PACIFIC	3,017	2,987	77,425	84,246	191	172	297	218	5	6		
Wash.	302	325	9,258	8,826	37	U	89	54	-	-		
Oreg.	216	119	4,400	4,760	26	24	60	31	5	6		
Calif.	2,416	2,491	58,724	66,369	127	144	112	120	-	-		
Alaska	17	14	2,294	1,754	-	1	5	3	-	-		
Hawaii	66	38	2,749	2,537	1	3	31	10	-	-		
Guam	2	9	-	267	-	-	N	N	-	-		
P.R.	668	732	1,635	1,687	-	-	-	1	-	-		
V.I.	66	2	98	115	-	-	-	-	-	-		
Amer. Samoa	U	U	U	U	U	U	U	U	U	U		
C.N.M.I.	2	U	132	U	-	U	-	U	-	U		

N : Not notifiable. U: Unavailable. $-:$ No reported cases. C.N.M.I.: Commonwealth of Northern Mariana Islands.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
${ }^{\dagger}$ Chlamydia refers to genital infections caused by C. trachomatis.
§ Updated monthly from reports to the Division of HIV/AIDS Prevention - Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention. Last update July 28, 2002.

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Escherichia coli		Giardiasis Cum. 2002	Gonorrhea		Haemophilus influenzae, Invasive				
			All Ages, All Serotypes		Age < 5 Years					
	Shiga Toxin Positive, Not Serogrouped									
	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	31	7	9,449	202,942	229,058	1,054	1,019	17	17	
NEW ENGLAND	-	1	1,005	4,741	4,238	74	77	-	1	
Maine	-	-	116	78	93	1	1	-	-	
N.H.	-	-	29	77	107	6	4	-	-	
Vt .	-	1	82	69	47	5	3	-	-	
Mass.	-	-	497	2,124	2,008	37	36	-	1	
R.I.	-	-	92	556	477	10	3	-	-	
Conn.	-	-	189	1,837	1,506	15	30	-	-	
MID. ATLANTIC	-	-	1,966	24,166	26,287	183	144	3	3	
Upstate N.Y.	-	-	680	5,289	5,382	81	47	2	-	
N.Y. City	-	-	758	7,287	8,219	44	38	-	-	
N.J.	-	-	181	3,799	4,494	38	32	-	-	
Pa.	-	-	347	7,791	8,192	20	27	1	3	
E.N. CENTRAL	11	2	1,737	39,091	47,748	167	189	2	2	
Ohio	10	2	541	11,017	12,920	63	51	-	1	
Ind.	-	-	-	4,477	4,240	33	36	1	-	
III.	-	-	397	10,894	15,330	56	66	-	-	
Mich.	1	-	511	9,074	11,441	8	12	1	-	
Wis.	-	-	288	3,629	3,817	7	24	-	1	
W.N.CENTRAL	-	2	1,066	10,532	10,708	43	47	1	1	
Minn.	-	-	381	1,806	1,638	30	25	1	-	
lowa	-	-	160	619	830	1	-	-	-	
Mo.	N	N	298	5,466	5,511	9	16	-	-	
N. Dak.	-	2	11	31	23	-	4	-	-	
S. Dak.	-	-	45	165	183	-	-	-	-	
Nebr.	-	-	74	652	773	-	1	-	1	
Kans.	-	-	97	1,793	1,750	3	1	-	-	
S. ATLANTIC	-	-	1,774	52,875	59,512	273	250	4	1	
Del.	-	-	29	1,018	1,078	-	-	-	-	
Md.	-	-	69	5,474	5,667	63	63	2	-	
D.C.	-	-	29	1,797	1,859	-	-	-	-	
Va .	-	-	142	5,617	7,366	22	19	-	-	
W. Va.	-	-	31	628	409	12	10	-	1	
N.C.	-	-	-	10,606	11,089	24	37	-	-	
S.C.	-	-	56	4,804	7,395	9	4	-	-	
Ga.	-	-	575	9,763	11,167	72	65	-	-	
Fla.	-	-	843	13,168	13,482	71	52	2	-	
E.S. CENTRAL	7	1	219	18,297	20,915	46	59	1	-	
Ky.	7	1	\bigcirc	2,318	2,278	4	2	-	-	
Tenn.		,	97	5,978	6,536	23	29	-	-	
Ala.	-	-	122	5,907	6,884	14	26	1	-	
Miss.	-	-		4,094	5,217	5	2	-	-	
W.S. CENTRAL	-	-	129	30,851	34,449	41	39	2	1	
Ark.	-	-	89	2,439	3,052	1	-		-	
La.	-	-	2	7,795	8,209	3	6	-	-	
Okla.	-	-	38	3,059	3,183	32	32	-	-	
Tex.	-	-	-	17,558	20,005	5	1	2	1	
MOUNTAIN	13	1	937	6,438	6,761	132	108	2	4	
Mont.	-	-	57	60	78	-	,	-	-	
Idaho	-	-	70	58	53	2	1	-	-	
Wyo.	-	-	21	39	43	1	1	-	-	
Colo.	13	1	306	2,201	2,083	26	31	-	-	
N. Mex.	-	-	108	821	635	19	16	1	1	
Ariz.	-	-	124	2,371	2,589	63	43	1	1	
Utah	-	-	172	159	107	15	5	-	-	
Nev.	-	-	79	729	1,173	6	11	1	2	
PACIFIC	-	-	616	15,951	18,440	95	106	2	4	
Wash.	-	-	231	1,801	1,968	2	2	1	-	
Oreg.	-	-	259	549	748	46	31	,	-	
Calif.	-	-	-	12,813	15,056	19	47	1	4	
Alaska	-	-	59	380	255	1	5	-	-	
Hawaii	-	-	67	408	413	27	21	-	-	
Guam	-	-	,	-	31	-	-	-	-	
P.R.	-	-	11	243	390	1	1	-	-	
V.I.	-	-	,	25	19	-	-	-	-	
Amer. Samoa	U	U	U	U	U	U	U	U	U	
C.N.M.I.	-	U	1	13	U	-	U	-	U	

N: Not notifiable. U:Unavailable. - : No reported cases.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Haemophilus influenzae, Invasive				Hepatitis (Viral, Acute), By Type					
	Age <5 Years									
	Non-Serotype B		Unknown Serotype		A		B		C; Non-A, Non-B	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	167	171	15	22	5,430	6,131	4,357	4,613	4,083	2,685
NEW ENGLAND	7	13	-	-	207	372	142	87	20	30
Maine	-	-	-	-	7	6	6	5	-	-
N.H.	-	1	-	-	11	11	12	10	-	-
Vt.	-	-	-	-	1	8	3	5	12	6
Mass.	4	7	-	-	91	163	82	16	8	24
R.I.	-	-	-	-	29	19	21	17	-	-
Conn.	3	5	-	-	68	165	18	34	-	-
MID. ATLANTIC	23	22	-	3	631	806	872	895	1,058	838
Upstate N.Y.	9	6	-	1	126	169	89	79	39	19
N.Y. City	7	6	-	-	256	285	453	418	-	-
N.J.	4	3	-	-	86	198	180	195	997	774
Pa.	3	7	-	2	163	154	150	203	22	45
E.N. CENTRAL	27	32	1	2	724	762	537	614	68	121
Ohio	7	9	1	-	234	155	74	76	6	8
Ind.	7	6	-	1	33	59	31	31	-	1
III.	11	11	-	-	192	273	67	93	9	9
Mich.	1	-	-	1	160	224	365	388	53	103
Wis.	1	6	-	-	105	51	-	26	-	-
W.N. CENTRAL	2	2	3	6	228	250	138	135	606	800
Minn.	2	1	1	2	32	20	13	12	13	7
Iowa	-	-	-	-	58	25	12	15	1	
Mo.	-	-	2	4	65	53	78	77	580	784
N. Dak.	-	1	-	-	1	2	4	-	-	-
S. Dak.	-	-	-	-	3	1	-	1	-	-
Nebr.	-	-	-	-	11	29	18	19	8	4
Kans.	-	-	-	-	58	120	13	11	4	5
S. ATLANTIC	39	36	2	5	1,696	1,212	1,167	872	118	46
Del.	-	-	-	-	9	7	7	20	5	2
Md.	3	5	-	1	197	160	87	93	10	5
D.C.	-	-	-	-	56	33	14	11	-	
Va .	3	5	-	-	72	89	136	101	2	-
W. Va.	-	1	1	-	13	8	18	20	1	9
N.C.	3	2	-	4	151	113	173	131	18	14
S.C.	2	1	-	-	48	56	65	22	4	5
Ga.	16	14	-	-	369	624	325	260	29	
Fla.	12	8	1	-	781	122	342	214	49	11
E.S. CENTRAL	10	12	1	2	173	254	226	311	135	162
Ky.	1	-	-	1	40	73	38	36	3	6
Tenn.	6	6	-	-	66	98	80	153	25	52
Ala.	3	5	1	1	25	63	50	63	4	2
Miss.	-	1	-	-	42	20	58	59	103	102
W.S. CENTRAL	9	5	-	-	246	648	345	547	1,932	547
Ark.	-	-	-	-	29	53	63	64	5	6
La.	1	-	-	-	22	70	31	84	16	116
Okla.	6	5	-	-	34	92	17	74	4	4
Tex.	2	-	-	-	161	433	234	325	1,907	421
MOUNTAIN	29	16	7	1	400	516	412	326	68	41
Mont.	-	-	-	-	10	9	3	2	-	1
Idaho	1	-	-	-	23	48	6	9	-	2
Wyo.	-	-	-	-	2	4	15	1	8	4
Colo.	2	1	-	-	69	52	58	71	28	5
N. Mex.	4	7	1	1	13	28	106	90	1	11
Ariz.	15	6	5	-	212	264	158	101	4	9
Utah	5	2		-	37	57	29	18	4	2
Nev.	2	-	1	-	34	54	37	34	23	7
PACIFIC	21	33	1	3	1,125	1,311	518	826	78	100
Wash.	1	1	-	1	118	88	46	89	16	16
Oreg.	5	5	-	-	50	80	91	111	14	12
Calif.	11	25	1	1	949	1,115	372	604	48	72
Alaska	1	1	-	-	7	14	3	7	-	
Hawaii	3	1	-	1	1	14	6	15	-	-
Guam	-	-	-	-	-	1	-	-	-	-
P.R.	-	1	-	-	70	128	61	176	-	1
V.I.	-	-	-	-	-	-	-	-	-	1
Amer. Samoa	U	U	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	-	U	37	U	-	U

$\mathrm{N}:$ Not notifiable.
U:Unavailable.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Legionellosis		Listeriosis		Lyme Disease		Malaria		Measles Total	
	Cum.	Cum. 2001	Cum. 2002	Cum.	Cum. 2002	Cum. 2001	Cum. 2002	Cum. 2001	Cum. 2002	$\begin{aligned} & \text { Cum. } \\ & 2001 \end{aligned}$
UNITED STATES	587	627	295	371	7,136	9,533	759	958	$17{ }^{\dagger}$	96§
NEW ENGLAND	54	36	38	33	1,294	2,745	43	61	-	5
Maine	2	4	4	-	53	,	3	4	-	-
N.H.	4	6	4	2	151	48	6	2	-	-
Vt.	21	4	2	2	15	7	2	-	-	1
Mass.	18	11	19	17	665	891	15	32	-	3
R.I.	1	2	1	1	158	218	3	3	-	-
Conn.	8	9	8	11	252	1,581	14	20	-	1
MID. ATLANTIC	130	144	53	62	4,721	5,086	167	274	5	18
Upstate N.Y.	43	40	28	19	2,899	1,835	30	40	-	4
N.Y. City	26	23	12	15	81	56	99	159	5	6
N.J.	12	11	3	11	337	1,721	20	43	-	1
Pa .	49	70	10	17	1,404	1,474	18	32	-	7
E.N. CENTRAL	147	168	36	56	52	589	91	121	3	10
Ohio	67	78	14	10	42	17	15	20	1	3
Ind.	12	13	6	5	10	17	7	13	2	4
III.	-	19	1	21	-	29	23	54	-	3
Mich.	50	31	12	16	-	5	36	22	-	-
Wis.	18	27	3	4	U	521	10	12	-	-
W.N. CENTRAL	32	38	8	9	164	233	46	29	2	4
Minn.	6	9	-	-	111	182	16	6	1	2
Iowa	7	6	1	-	23	21	2	5	,	-
Mo.	10	14	5	6	25	24	13	10	1	2
N. Dak.	.	1	1	-	-	-	1	-	-	-
S. Dak.	2	3	-	-	-	-	-	-	-	-
Nebr.	7	4	-	1	1	4	5	2	-	-
Kans.	-	1	1	2	4	2	9	6	-	-
S. ATLANTIC	119	106	51	47	757	697	224	199	1	5
Del.	6	3	-	2	98	107	2	1	-	
Md.	19	25	10	8	443	436	70	83	-	3
D.C.	5	7		-	17	8	14	13	-	-
Va .	13	17	3	9	67	97	17	38	-	1
W. Va.	N	N	-	5	8	9	3	1	-	-
N.C.	7	7	4	2	70	26	12	9	-	-
S.C.	5	5	8	4	10	3	5	5	-	-
Ga.	10	9	10	8	1	-	59	33	-	1
Fla.	54	33	16	9	43	11	42	16	1	-
E.S. CENTRAL	23	45	9	15	34	39	13	23	-	2
Ky.	9	11	2	4	13	17	5	8	-	2
Tenn.	8	21	4	6	14	10	3	8	-	-
Ala.	6	9	3	5	7	6	3	4	-	-
Miss.	-	4	-	-	-	6	2	3	-	-
W.S. CENTRAL	8	17	11	29	16	66	9	67	1	1
Ark.	1	-	-	1	2	,	1	3	-	-
La.	1	6	-	,	1	4	3	5	-	-
Okla.	3	3	6	2	-	,	5	2	1	1
Tex.	4	8	5	26	13	62		57	1	1
MOUNTAIN	27	33	21	29	16	7	34	35	1	1
Mont.	3	-	-	1		,	1	2		-
Idaho	-	2	2	1	3	4	-	3	-	1
Wyo.	1	2		1	-	1	-	-	-	-
Colo.	6	11	4	8	5	-	19	19	-	-
N. Mex.	1	2	2	6	1	-	2	3	-	-
Ariz.	7	8	9	6	2	-	5	3	-	-
Utah	8	5	3	1	4	-	4	2	-	-
Nev.	1	3	1	6	1	2	3	3	1	-
PACIFIC	47	40	68	91	82	71	132	149	4	50
Wash.	5	6	7	5	6	4	12	4	-	15
Oreg.	N	N	8	6	12	7	7	12	-	2
Calif.	42	29	47	76	63	58	105	123	3	26
Alaska	-	1	-	-	1	2	2	1	-	-
Hawaii	-	4	6	4	N	N	6	9	1	7
Guam	-	,	,	-	-	-	-	-	-	-
P.R.	-	2	1	-	N	N	-	3	-	-
V.I.	-	-	-	-	-	-	-	-	-	-
Amer. Samoa	U	U	U	U	U	U	U	U	U	U
C.N.M.I.	U	U	U	U	-	U	U	U	-	U

N: Not notifiable.
Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
${ }^{+}$Of 17 cases reported, seven were indigenous and 10 were imported from another country.
Of 96 cases reported, 45 were indigenous and 51 were imported from another country.

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Meningococcal Disease		Mumps		Pertussis		Rabies, Animal	
	Cum. 2002	Cum. 2001	Cum. 2002	Cum. 2001	Cum. 2002	Cum. 2001	Cum. 2002	Cum. 2001
UNITED STATES	1,175	1,667	180	164	4,550	3,310	3,798	4,634
NEW ENGLAND	71	77	7	1	385	296	559	465
Maine	7	1	-	-	5	-	31	46
N.H.	9	9	4	-	8	14	28	15
Vt.	4	5	-	-	80	25	74	43
Mass.	33	45	2	1	267	235	183	169
R.I.	5	2	-	-	10	5	43	43
Conn.	13	15	1	-	15	17	200	149
MID. ATLANTIC	115	179	17	20	198	236	718	826
Upstate N.Y.	35	50	2	3	144	112	452	519
N.Y. City	17	28	1	11	8	35	10	22
N.J.	22	30	1	2	3	13	105	132
Pa .	41	71	13	4	43	76	151	153
E.N. CENTRAL	160	249	18	20	562	487	82	87
Ohio	61	67	3	1	283	214	19	25
Ind.	25	29	2	1	57	46	21	1
III.	31	61	6	15	91	47	15	14
Mich.	31	55	6	2	37	41	27	35
Wis.	12	37	1	1	94	139	-	12
W.N. CENTRAL	98	104	13	7	422	156	260	241
Minn.	24	15	3	3	176	47	28	25
Iowa	12	21	1	-	121	16	43	51
Mo.	38	39	3	-	80	71	32	31
N. Dak.	-	5	1	-	-	-	11	24
S. Dak.	2	4	-	-	5	3	41	36
Nebr.	16	10	-	1	3	4	-	4
Kans.	6	10	5	3	37	15	105	70
S. ATLANTIC	209	260	21	24	265	159	1,629	1,589
Del.	6	3	-	-	2	-	24	29
Md.	6	34	4	4	41	23	168	316
D.C.	-	-	-	-	1	1	-	-
Va.	29	31	3	6	101	27	321	278
W. Va.	3	11	-	-	23	2	118	95
N.C.	24	57	1	1	27	48	465	390
S.C.	18	29	2	2	28	25	79	81
Ga .	29	36	4	8	17	17	284	273
Fla.	94	59	7	3	25	16	170	127
E.S. CENTRAL	68	108	12	5	146	83	116	164
Ky.	11	19	4	1	57	19	18	16
Tenn.	27	44	2	-	55	35	61	106
Ala.	18	30	3	-	27	25	37	41
Miss.	12	15	3	4	7	4	-	1
W.S. CENTRAL	139	253	16	9	1,194	308	76	808
Ark.	20	16	-	-	389	13	-	-
La.	23	62	1	2	4	5	-	7
Okla.	17	23	-	-	65	12	76	48
Tex.	79	152	15	7	736	278	-	753
MOUNTAIN	73	74	13	12	594	1,019	187	192
Mont.	2	3	-	1	4	20	10	31
Idaho	3	7	1	1	51	166	22	11
Wyo.	-	4	-	1	10	1	14	24
Colo.	23	29	2	3	228	214	35	-
N. Mex.	3	9	1	2	122	83	5	11
Ariz.	23	11	1	1	105	466	95	107
Utah	4	7	5	1	41	58	3	7
Nev.	15	4	3	2	33	11	3	1
PACIFIC	242	363	63	66	784	566	171	262
Wash.	50	52	-	1	311	97	-	-
Oreg.	34	45	N	N	127	38	3	1
Calif.	150	255	51	29	329	399	144	223
Alaska	2	2	-	1	4	3	24	38
Hawaii	6	9	12	35	13	29	-	-
Guam	-	-	-	-	-	-	-	-
P.R.	3	4	-	-	1	-	49	68
V.I.	,	,	-	-	-	,	-	-
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	1	U	-	U

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area			Rubella				Salmonellosis	
	Rocky Mountain Spotted Fever		Rubella		Congenital Rubella			
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	577	349	9	16	2	-	22,304	23,797
NEW ENGLAND	-	3	-	-	-	-	1,289	1,614
Maine	-	-	-	-	-	-	91	135
N.H.	-	1	-	-	-	-	79	126
V t.	-		-	-	-	-	44	47
Mass.	-	2	-	-	-	-	711	940
R.I.	-	-	-	-	-	-	104	80
Conn.	-	-	-	-	-	-	260	286
MID. ATLANTIC	34	15	4	7	-	-	2,621	3,172
Upstate N.Y.	8	-	2	1	-	-	881	736
N.Y. City	7	1	-	5	-	-	761	800
N.J.	8	4	2	1	-	-	343	800
Pa .	11	10	-	-	-	-	636	836
E.N. CENTRAL	14	14	-	2	-	-	3,367	3,319
Ohio	10	1	-	-	-	-	869	888
Ind.	2	1	-	-	-	-	295	330
III.	-	12	-	2	-	-	1,070	968
Mich.	2	-	-	-	-	-	594	578
Wis.	-	-	-	-	-	-	539	555
W.N. CENTRAL	77	53	-	3	-	-	1,506	1,404
Minn.	-		-	-	-	-	359	410
lowa	1	2	-	1	-	-	248	209
Mo.	70	49	-	1	-	-	554	361
N. Dak.	-	-	-	-	-	-	25	37
S. Dak.	-	2	-	-	-	-	59	106
Nebr.	4	-	-	-	-	-	70	103
Kans.	2	-	-	1	-	-	191	178
S. ATLANTIC	297	161	-	3	-	-	5,871	5,357
Del.	2	1	-		-	-	44	57
Md.	38	32	-	-	-	-	595	511
D.C.	-	-	-	-	-	-	50	55
Va .	21	16	-	-	-	-	568	896
W. Va.	1		-	-	-	-	88	79
N.C.	168	85	-	-	-	-	796	744
S.C.	42	16	-	2	-	-	358	539
Ga.	18	8	-		-	-	1,071	997
Fla.	7	3	-	1	-	-	2,301	1,479
E.S. CENTRAL	56	71	-	-	1	-	1,625	1,433
Ky.	3	2	-	-	-	-	216	223
Tenn.	39	48	-	-	1	-	415	351
Ala.	14	11	-	-	-	-	470	392
Miss.	-	10	-	-	-	-	524	467
W.S. CENTRAL	82	23	2	-	-	-	1,635	2,869
Ark.	21	5	2	-	-	-	, 536	2,839
La.	-	2	-	-	-	-	196	500
Okla.	61	16	-	-	-	-	268	260
Tex.			2	-	-	-	635	1,670
MOUNTAIN	12	9	-	-	-	-	1,316	
Mont.	1	1	-	-	-	-	, 64	, 49
Idaho	,	1	-	-	-	-	89	92
Wyo.	3	2	-	-	-	-	39	48
Colo.	2	1	-	-	-	-	309	383
N. Mex.	1	1	-	-	-	-	175	167
Ariz.	-	-	-	-	-	-	385	393
Utah	-	3	-	-	-	-	124	143
Nev.	5		-	-	-	-	131	119
PACIFIC	5	-	3	1	1	-	3,074	3,235
Wash.	-	-	-	-	-	-	307	314
Oreg.	2	-	-	-	-	-	235	189
Calif.	3	-	3	-	-	-	2,305	2,473
Alaska		-	-	1	1	-	42	27
Hawaii	-	-	-	1	1	-	185	232
Guam	-	-	-		-	-	-	19
P.R.	-	-	-	3	-	-	120	627
V.I.			-	-	,	-		-
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	-	U	-	U	-	U	25	U

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Shigellosis		Streptococcal Disease, Invasive, Group A		Streptococcus pneumoniae, Drug Resistant, Invasive		Streptococcus pneumoniae, Invasive (<5 Years)	
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	9,743	11,590	2,995	2,634	1,508	1,963	160	304
NEW ENGLAND	190	198	146	169	12	94	2	32
Maine	3	6	20	10	-	-	-	-
N.H.	8	4	27	N	-	-	N	N
Vt.		6	9	9	4	7	1	-
Mass.	120	136	76	54	N	N	N	N
R.I.	7	15	14	8	8	3	1	3
Conn.	52	31	-	88	-	84	-	29
MID. ATLANTIC	668	1,024	482	484	81	127	49	78
Upstate N.Y.	168	360	227	206	72	123	49	78
N.Y. City	239	279	122	139	U	U	U	U
N.J.	148	204	91	93	N	N	N	N
Pa .	113	181	42	46	9	4	-	-
E.N. CENTRAL	1,031	2,772	538	623	159	133	65	81
Ohio	425	1,818	169	159	29	-	1	-
Ind.	62	153	40	49	125	133	39	39
III.	340	385	105	204	2	-	-	42
Mich.	107	201	224	160	3	-	N	N
Wis.	97	215	-	51	N	N	25	-
W.N.CENTRAL	710	1,047	180	263	154	105	36	48
Minn.	149	310	95	112	48	49	36	40
lowa	75	309	-	-	N	N	N	N
Mo.	117	183	37	56	6	9	-	-
N. Dak.	15	16	-	11	1	5	-	8
S. Dak.	150	117	10	8	1	3	-	
Nebr.	141	54	14	31	25	11	N	N
Kans.	63	58	24	45	73	28	N	N
S. ATLANTIC	3,774	1,547	594	445	933	1,057	3	4
Del.	37	7	2	2	3	3	N	N
Md.	725	93	95	N	N	N	N	N
D.C.	40	38	6	15	48	5	1	3
Va.	586	186	57	62	N	N	N	N
W. Va.	7	7	16	18	34	37	2	1
N.C.	216	244	102	118	N	N	U	U
S.C.	65	199	27	8	139	216	N	N
Ga.	1,016	200	134	144	256	301	N	N
Fla.	1,082	573	155	78	453	495	N	N
E.S. CENTRAL	842	997	73	80	103	193	-	-
Ky.	88	381	13	29	12	23	N	N
Tenn.	41	63	60	51	91	169	N	N
Ala.	450	171	-	,	-	1	N	N
Miss.	263	382	-	-	-	-	-	-
W.S. CENTRAL	740	1,867	101	237	37	220	3	61
Ark.	141	426	5		6	14		-
La.	100	169	-	1	31	206	1	61
Okla.	302	31	35	34	N	N	2	,
Tex.	197	1,241	61	202	N	N	-	-
MOUNTAIN	435	609	485	282	29	32	2	-
Mont.	3	2	-	-	-	-	-	-
Idaho	5	25	6	7	N	N	N	N
Wyo.	6	3	7	7	9	5	-	-
Colo.	85	151	160	120	-	-	-	-
N. Mex.	80	74	75	60	19	25	-	-
Ariz.	208	262	209	85	-	-	N	N
Utah	25	43	28	3	1	-	2	-
Nev.	23	49	-	-	-	2	-	-
PACIFIC	1,353	1,529	396	51	-	2	-	-
Wash.	101	131	65	-	-	-	N	N
Oreg.	66	76	N	N	N	N	N	N
Calif.	1,147	1,274	279	-	N	N	N	N
Alaska	3	4	-	-	-	-	N	N
Hawaii	36	44	52	51	-	2	-	-
Guam	5	33	-	1	-	-	-	N
P.R.	5	14	N	N	-	-	N	N
V.I.			-	-	-	-	-	
Amer. Samoa	U	U	U	U	-	-	U	U
C.N.M.I.	17	U	-	U	-	-	-	U

N : Not notifiable. U: Unavailable. $\quad-:$ No reported cases.

* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 24, 2002, and August 25, 2001 (34th Week)*

Reporting Area	Syphilis				Tuberculosis		Typhoid Fever	
	Primary \& Secondary		Congenital					
	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2002 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 2001 \\ & \hline \end{aligned}$
UNITED STATES	3,936	3,809	203	335	7,407	8,793	158	220
NEW ENGLAND	87	34	-	3	244	308	11	11
Maine	2	-	-	-	10	12	-	1
N.H.	4	1	-	-	8	11	-	1
V t.	1	2	-	-	-	4	-	-
Mass.	60	17	-	2	136	159	8	8
R.I.	5	6	-	-	24	41	-	-
Conn.	15	8	-	1	66	81	3	1
MID. ATLANTIC	415	322	37	52	1,393	1,476	40	73
Upstate N.Y.	23	15	4	3	213	228	5	14
N.Y. City	259	178	15	27	706	740	20	28
N.J.	81	69	17	22	319	329	12	27
Pa .	52	60	1	-	155	179	3	4
E.N. CENTRAL	656	666	27	48	754	900	15	28
Ohio	94	58	-	2	120	173	5	3
Ind.	46	110	-	7	66	66	2	2
III.	169	211	20	31	377	431	1	15
Mich.	333	269	7	5	150	183	3	5
Wis.	14	18	-	3	41	47	4	3
W.N. CENTRAL	64	58	-	8	342	340	6	8
Minn.	28	25	-	2	146	143	3	4
lowa	2	4	-	-	17	18	-	-
Mo.	16	11	-	5	98	89	1	4
N. Dak.	-	-	-	-	1	3	-	-
S. Dak.	-	-	-	-	9	8	-	-
Nebr.	4	2	-	-	9	25	2	-
Kans.	14	16	-	1	62	54	-	-
S. ATLANTIC	1,057	1,332	48	80	1,503	1,655	27	27
Del.	9	10		-	13	9	-	
Md.	130	171	8	3	175	141	5	8
D.C.	58	18	1	2	-	48	-	-
Va .	45	72	1	4	116	161	1	8
W. Va.	2	-	-	-	20	20	-	-
N.C.	195	304	16	8	211	212	1	2
S.C.	78	178	5	18	116	130	-	
Ga.	211	238	5	18	269	276	8	6
Fla.	329	341	12	27	583	658	12	3
E.S. CENTRAL	339	408	13	24	465	531	4	1
Ky.	65	29	2	-	89	80	4	-
Tenn.	124	220	3	14	179	198	-	1
Ala.	116	82	6	4	132	168	-	-
Miss.	34	77	2	6	65	85	-	-
W.S. CENTRAL	569	463	45	58	1,009	1,365	4	13
Ark.	16	26	1	6	80	99	-	-
La.	98	95	-	-	-	85	-	-
Okla.	43	44	2	5	84	97	-	-
Tex.	412	298	42	47	845	1,084	4	13
MOUNTAIN	183	142	11	20	218	345	10	7
Mont.	-	-	-	-	6	6	-	1
Idaho	1	-	1	-	8	7	-	-
Wyo.	,	-	,	-	2	3	-	-
Colo.	27	17	1	1	31	82	5	-
N. Mex.	21	11		2	21	43	-	,
Ariz.	124	104	9	17	119	127		1
Utah	5	7			18	21	3	1
Nev .	5	3	-	-	13	56	2	4
PACIFIC		384	22	42	1,479	1,873	41	52
Wash.	36	36	1	-	155	167	4	3
Oreg.	11	10	1	-	68	71	2	3
Calif.	512	328	19	42	1,128	1,511	34	43
Alaska		-		-	33	31	-	1
Hawaii	7	10	1	-	95	93	1	2
Guam	-	2	${ }^{-}$	1	-	46	-	2
P.R.	139	175	10	7	33	95	-	-
V.I.	1	-	-	-	-	-	-	-
Amer. Samoa	U	U	U	U	U	U	U	U
C.N.M.I.	15	U	-	U	29	U	-	U

N : Not notifiable.
U: Unavailable.

- : No reported cases.
* Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).

TABLE III. Deaths in 122 U.S. cities,* week ending August 24, 2002 (34th Week)

	All Causes, By Age (Years)								All Causes, By Age (Years)						P\& ${ }^{\dagger}$ Total
Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	P\& ${ }^{\dagger}$ Total	Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	
NEW ENGLAND	487	327	107	39	6	7	53	S. ATLANTIC	874	537	192	88	26	31	58
Boston, Mass.	138	86	34	11	2	4	16	Atlanta, Ga.	U	U	U	U	U	U	U
Bridgeport, Conn.	23	15	5	3	-	-	-	Baltimore, Md.	146	85	40	17	2	2	14
Cambridge, Mass.	18	12	5	1	-	-	3	Charlotte, N.C.	106	61	20	14	8	3	11
Fall River, Mass.	17	12	3	1	1	-	2	Jacksonville, Fla.	U	U	U	U	U	U	U
Hartford, Conn.	U	U	U	U	U	U	U	Miami, Fla.	136	88	30	12	5	1	10
Lowell, Mass.	22	18	4	-	-	-	2	Norfolk, Va.	55	30	15	3	4	3	1
Lynn, Mass.	11	7	3	1	-	-	-	Richmond, Va.	63	40	17	3	-	3	2
New Bedford, Mass.	29	20	8	1	-	-	3	Savannah, Ga.	47	31	11	3	1	1	3
New Haven, Conn.	35	24	6	3	2	-	7	St. Petersburg, Fla.	54	34	17	2	1	-	1
Providence, R.I.	67	46	15	4	-	2	5	Tampa, Fla.	156	111	22	17	-	6	11
Somerville, Mass.	2	2	-	-	-	-	-	Washington, D.C.	111	57	20	17	5	12	5
Springfield, Mass.	47	33	9	4	1	-	8	Wilmington, Del.	U	U	U	U	U	U	U
Waterbury, Conn.	20	14	4	2	-	-	7	E.S. CENTRAL	707	451	169	51	21	15	41
Worcester, Mass.	58	38	11	8	-	1	7	Birmingham, Ala.	192	129	37	12	10	4	18
MID. ATLANTIC	1,937	1,310	405	159	31	32	115	Chattanooga, Tenn.	66	42	19	2	-	3	2
Albany, N.Y.	54	27	15	8	2	2	3	Knoxville, Tenn.	97	59	26	8	2	2	7
Allentown, Pa.	19	16	1	2	-	-	1	Lexington, Ky.	61	33	15	11	1	1	5
Buffalo, N.Y.	113	77	21	9	-	6	11	Memphis, Tenn.	U	U	U	U	U	U	U
Camden, N.J.	U	U	U	U	U	U	U	Mobile, Ala.	112	76	22	8	5	1	2
Elizabeth, N.J.	20	14	6	-	-	-	-	Montgomery, Ala.	48	33	12	3	-	-	2
Erie, Pa.	44	37	3	3	1	-	1	Nashville, Tenn.	131	79	38	7	3	4	5
Jersey City, N.J.	31	21	7	2	1	9	49	W.S. CENTRAL	1,426	864	322	125	59	43	94
New York City, N.Y.	1,048	703	218	100	18	9	49	Austin, Tex.	+ 80	47	19	10	2	2	7
Newark, N.J.	51	21	20	7	1	2	7	Baton Rouge, La.	73	42	25	2	4	-	-
Paterson, N.J.	19	16	1	1	1	-	2	Corpus Christi, Tex.	59	42	13	-	2	2	3
Philadelphia, Pa.	137	77	39	13	4	4	6	Dallas, Tex.	213	121	52	22	6	12	16
Pittsburgh, Pa. ${ }^{\text {® }}$	33	21	8	2	-	2	1	El Paso, Tex.	$\begin{array}{r}83 \\ \hline\end{array}$	61	5	1	1	1	16 5
Reading, Pa.	23	20	3	-	-	-	5	Ft. Worth, Tex.	103	62	25	3	3	10	7
Rochester, N.Y.	147	114	25	5	1	2	12	Houston, Tex.	316	170	81	41	13	11	21
Schenectady, N.Y.	U	U	U	U	U	U	U	Little Rock, Ark.	54	31	13	8	2	1	4
Scranton, Pa.	36	28	6	2	-	-	2	New Orleans, La.	51	22	7	11	11	-	-
Syracuse, N.Y.	83	62	12	4	2	3	7	San Antonio, Tex.	226	147	51	15	9	4	11
Trenton, N.J.	39	26	10	1	-	2	1	Shreveport, La.	39	29	7	2	1	-	4
Utica, N.Y.	12	7	5	-	-	-	1	Tulsa, Okla.	129	90	23	10	5	1	16
Yonkers, N.Y.	28	23	5	-	-	-	6	Tulsa, Okla.	129	90	23	10	5	1	16
E.N. CENTRAL	1,659	1,104	348	130	44	30	104	MOUNTAIN	815	553	162	61	26	13	39
Akron, Ohio	43	25	5	6	2	2	5	Albuquerque, N.M.	127	73	26	19	6	3	5
Canton, Ohio	32	22	8	2	-	-	6	Boise, Idaho	30	25	4	1	-	-	1
Chicago, III.	U	U	U	U	U	U	U	Colo. Springs, Colo.	50 97	37	8	3	1	1	4
Cincinnati, Ohio	58	41	9	4	1	3	8	Denver, Colo.	97	62 144	18	9 11	4	4	6
Cleveland, Ohio	109	55	34	7	7	6	5	Las Vegas, Nev.	221 30	144 22	58	11	7	1	10
Columbus, Ohio	175	119	36	17	2	1	14	Ogden, Utah Phoenix, Ariz.	30 \cup	22 U	U	U	U	U	1
Dayton, Ohio	167	110	35	18	1	3	12	Phoenix, Ariz.	27	22	4	1	U	U	3
Detroit, Mich.	190	108	51	19	10	2	10					8	3	3	5
Evansville, Ind.	41	32	6	2	-	1	4	Salt Lake City, Utah Tucson, Ariz	94 139	65 103	15 24	8	3 5	3	4
Fort Wayne, Ind.	62	47	8	5	2	-	3	Tucson, Ariz.	139	103	24	7	5	-	4
Gary, Ind.	23	9	9	4	-	1	1	PACIFIC	1,614	1,107	337	101	30	39	110
Grand Rapids, Mich.	59	41	9	5	2	2	3	Berkeley, Calif.	18	15	2	-	-	1	3
Indianapolis, Ind.	211	130	48	19	8	6	8	Fresno, Calif.	109	75	23	6	3	2	6
Lansing, Mich.	53	40	7	5	-	1	4	Glendale, Calif.	15	13	1	-	1	-	-
Milwaukee, Wis.	119	84	26	5	3	1	5	Honolulu, Hawaii	68	53	9	3	2	1	5
Peoria, III.	59	42	12	5	-	-	3	Long Beach, Calif.	66	42	10	9	4	1	9
Rockford, III.	63	49	11	2	1	-	6	Los Angeles, Calif.	362	251	79	16	7	9	-
South Bend, Ind.	43	34	7	1	1	-	1	Pasadena, Calif.	19	12	2	2	1	2	3
Toledo, Ohio	96	70	21	3	2	-	6	Portland, Oreg.	148	92	31	19	1	5	9
Youngstown, Ohio	56	46	6	1	2	1	-	Sacramento, Calif.	190	137	35	13	3	2	15
W.N. CENTRAL	504	332	115	27	14	16	38	San Diego, Calif.	155	102	38	7	5	3	9
Des Moines, Iowa	31	21	9	1	1	,	6	San Francisco, Calif.	U	U	U	U	U	U	U
Duluth, Minn.	38	28	10	-	-	-	4	San Jose, Calif.	181	121	43	11	1	6	28
Kansas City, Kans.	28	20	4	2	1	1	1	Santa Cruz, Calif. Seattle, Wash.	25	18	4 29	2 7	1	1	3
Kansas City, Mo.	105	73	19	4	2	7	4	Seattle, Wash. Spokane, Wash.	101 64	62 52	29 9	1	2	1 2	8
Lincoln, Nebr.	43	34	9	1		1	2	Spokane, Wash.	64 93	52 62	22	5	-	4	8
Minneapolis, Minn.	41	27	10	1	2	1	3	Tacoma, Wash.	93	62	22	5	-	4	8
Omaha, Nebr.	82	46	23	6	5	2	7	TOTAL	10,023"	6,585	2,157	781	257	226	652
St. Louis, Mo.	U	U	U	U	U	U	U								
St. Paul, Minn.	54	41	6	4	2	1	2								
Wichita, Kans.	82	42	25	9	2	4	9								

[^6]All $M M W R$ references are available on the Internet at http://www.cdc.gov/mmwr. Use the search function to find specific articles.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.

References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/publications/ mmwr. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the $M M W R$ Series, including material to be considered for publication, to Editor, $M M W R$ Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone 888-232-3228.

All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
\star U.S. Government Printing Office: 2002-733-100/69054 Region IV

[^0]: *Epidemiologically linked to another laboratory-confirmed measles case.

[^1]: ${ }^{\dagger}$ The lowercase letter is used for newly identified measles genotypes, pending an update of measles genotypes in the World Health Organization Weekly Epidemiological Record.

[^2]: * Nationwide mass campaigns over a short period (days to weeks) in which 2 doses of OPV are administered to all children (usually aged <5 years), regardless of vaccination history, with an interval of 4-6 weeks between doses.
 ${ }^{\dagger}$ Same procedure as NIDs but in a smaller area.

[^3]: *As of June 30, 2002.
 ${ }_{\† Number of persons with AFP per 100,000 population aged < 15 years; minimum expected rate is one case of nonpolio AFP per 100,000 per year.
 ${ }^{\S}$ Two stool specimens collected at an interval of ≥ 24 hours within 14 days of paralysis onset and shipped properly to the laboratory.

[^4]: ${ }^{\text {§ }}$ Polio eradication efforts in Angola are supported by the governments of Angola, the United Kingdom, and the Netherlands; the Bill and Melinda Gates Foundation, the United Nations Foundation; Aventis Pasteur, DeBeers; the United Nations Children's Fund (UNICEF); Rotary International; the U.S. Agency for International Development, the Canadian International Development Agency; WHO; and CDC.

[^5]: -:No reported cases.

 * Incidence data for reporting year 2001 and 2002 are provisional and cumulative (year-to-date).
 ${ }^{\dagger}$ Not notifiable in all states.
 § Updated monthly from reports to the Division of HIV/AIDS Prevention - Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention (NCHSTP). Last update July 28, 2002.

[^6]: U: Unavailable. $\quad-:$ No reported cases
 occurrence and by the week that the death certificate was filed. Fetal deaths are not included.

 + Pneumonia and influenza.

 ๆ Total includes unknown ages.

