MMWR

Morbidity and Mortality Weekly Report

Weekly

September 22, 2006 / Vol. 55 / No. 37

Malaria - Great Exuma, Bahamas, May-June 2006

Malaria in humans is caused by four distinct protozoan species of the genus Plasmodium (P. falciparum, P. vivax, P. ovale, and P. malariae). These parasites are transmitted by the bite of an infective female Anopheles mosquito (1). In the Caribbean region, malaria has been eliminated from all islands except Hispaniola, the island consisting of Haiti and the Dominican Republic. Elimination of malaria elsewhere resulted from a combination of integrated control measures, socioeconomic development, and close public health surveillance. However, even Caribbean islands where malaria is no longer endemic remain at constant risk for reintroduction of the disease because of their tropical climate, presence of competent malaria vectors, and proximity to other countries where malaria is endemic. This susceptibility was underscored by the recent outbreak of malaria on the island of Great Exuma in the Bahamas; during May-June 2006, a total of 19 malaria cases were identified. Four of the cases, in travelers from North America and Europe, are described in this report; such cases of imported malaria can signal the presence of a malaria problem in the country visited and thus assist local health authorities in their investigations. On September 19, after 3 months with no report of new cases, CDC rescinded its previous recommendation that U.S.-based travelers take preventive doses of the antimalarial drug chloroquine before, during, and after travel to Great Exuma.*
Case 1. On May 24, 2006, a man aged 33 years from the United States received a diagnosis of malaria in a hospital emergency department in Virginia. The patient had intermittent fever, sweats, abdominal discomfort, nausea, and vomiting, which had begun during a May 4-7 visit to Great Exuma, where the patient had stayed in a resort hotel. The patient had no history of exposure to malaria. Blood smears on May 24 indicated P. falciparum. After outpatient treatment with chlo-

[^0]roquine, changed later to quinine and doxycycline, the patient recovered uneventfully.
Case 2. On June 6, a woman aged 29 years from Germany received a diagnosis of P. falciparum malaria in a hospital in Germany. She had experienced fever, headache, nausea, and vomiting since May 30, near the end of a May 18-31 visit to Great Exuma. After her return to Germany, the woman was treated initially with antibiotics for suspected sinusitis. However, her illness persisted, and she was hospitalized on June 6 with high fever and neck stiffness. Diagnostic tests included magnetic resonance imaging of her head, a lumbar puncture to exclude meningitis, and a blood smear that revealed P. falciparum. She was treated with artemether-lumefantrine and recovered.
Case 3. On June 16, a man aged 20 years from Canada had P. falciparum malaria diagnosed. The man had been born in the Bahamas and had visited friends and relatives there during April 19-June 11, spending most of his time in Georgetown, the most populous city on Great Exuma. On June 14, the man experienced fever and chills and went to an emergency department for evaluation after learning that his cousin had been treated recently for malaria on Great Exuma. The diagnosis of P. falciparum malaria was confirmed by blood smear on June 16. He was treated on an outpatient basis with chloroquine followed by atovaquone-proguanil and recovered uneventfully.

[^1]The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2006;55:[inclusive page numbers].

Centers for Disease Control and Prevention

Julie L. Gerberding, MD, MPH Director
Tanja Popovic, MD, PhD
(Acting) Chief Science Officer
James W. Stephens, PhD
(Acting) Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Judith R. Aguilar
(Acting) Director, Division of Health Information Dissemination (Proposed)

Editorial and Production Staff

Eric E. Mast, MD, MPH
(Acting) Editor, MMWR Series
Suzanne M. Hewitt, MPA
Managing Editor, MMWR Series
Douglas W. Weatherwax
(Acting) Lead Technical Writer-Editor
Catherine H. Bricker, MS
Jude C. Rutledge
Writers-Editors Beverly J. Holland
Lead Visual Information Specialist Lynda G. Cupell Malbea A. LaPete Visual Information Specialists
Quang M. Doan, MBA Erica R. Shaver Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA

Case 4. A man aged 66 years from the United States, who lived on a boat, received a diagnosis of P. falciparum malaria on June 19. The man, who had not recently visited any area that was endemic for malaria, stayed in Great Exuma from late April to late May. In early May, he began experiencing fever, chills, sweats, headaches, and fatigue but did not seek medical care; he left Great Exuma to sail to other Bahamian islands. On June 18, on his return to Great Exuma, the patient learned of the outbreak and went the next day to the district medical clinic, where he received a diagnosis of P. falciparum malaria. He was treated with chloroquine and primaquine and recovered uneventfully.
After report of the first case in Virginia, the Bahamian Ministry of Health (MOH) initiated epidemiologic and entomologic investigations with the technical assistance of the Pan American Health Organization. MOH also heightened mosquito-control activities that were already being conducted on Great Exuma in conjunction with the Bahamian Department of Environmental Health Services.
Active case detection was conducted on Great Exuma during June 6-30; however, no case of malaria was diagnosed later than the June 19 diagnosis in case 4. Persons examined at primary-care clinics who had a history of fever and a temperature of $\geq 99.0^{\circ} \mathrm{F}\left(\geq 37.2^{\circ} \mathrm{C}\right)$ and contacts of persons who received diagnoses of malaria were screened using thick and thin blood smears stained with Wright's stain. On Great Exuma, 15 persons were determined infected with P. falciparum. Ages ranged from 16 to 66 years (median: 36 years); 84% were males. Most of these patients were residents of the Bahamas, clustered around the areas of Georgetown and Bahama Sound, and living in close proximity to a community of immigrants from Haiti; most said they had not recently traveled to Haiti or any other area endemic for malaria. All patients were initially treated with chloroquine and doxycyline; the latter was subsequently replaced by primaquine to eliminate gametocytes and thus prevent further transmission. All 15 patients recovered.
A parasite prevalence survey was conducted on Great Exuma in a community of immigrants from Haiti, from which anecdotal reports of illness had been received. Of 159 persons who consented to testing, 29 adults were determined infected with P. falciparum. This finding prompted mass treatment with chloroquine and primaquine of 203 persons within that community.
Entomologic surveys were conducted in multiple sites near bodies of fresh water identified by ground and air surveys in Great Exuma. Human bait and CDC light-trap collections yielded large populations of mosquitoes, of which only five were adult Anopheles albimanus. Surveys of potential breeding sites indicated few areas favorable for breeding of An. albimanus larvae, with five confirmed An. albimanus larvae collected from
three breeding sites. Mosquito-control interventions were intensified beginning May 30 . These measures included spraying 1) at all potential breeding sites, 2) within a quarter-mile radius of patients with confirmed cases, and 3) within a halfmile radius of patients detected through contact tracing, initially with a water-based pyrethroid insecticide, and later with malathion 96.5%. In addition, all bodies of fresh water on Great Exuma, neighboring Little Exuma, and surrounding cays (reefs) were treated with temephos to eliminate larvae.
As of September 19, no additional cases of malaria had been identified on Great Exuma or any other island in the Bahamas, despite intense epidemiologic surveillance. Mosquitocontrol measures were being continued throughout the Bahamas.
Reported by: M Dabl-Regis, MD, Ministry of Health, Bahamas. C Frederickson, PhD, Caribbean Epidemiology Centre; K Carter, MD, Y Gebre, MD, Pan American Health Organization, World Health Organization. B Cunanan, Arlington County Dept of Human Svcs, Arlington, Virginia. C Mueller-Thomas, MD, Klinikum rechst der Isar, Munich, Germany. AE McCarthy, MD, Ottawa Hospital-General Campus, Ottawa; M Bodie-Collins, Public Health Agency of Canada. P Nguyen-Dinh, MD, Div of Parasitic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (proposed), CDC.
Editorial Note: The Bahamas is an archipelagic nation in the northern Caribbean Sea, consisting of approximately 700 islands and 2,400 cays stretching between Florida and Haiti (Figure). Persons from Hispaniola and other countries have emigrated to the Bahamas, where malaria is not endemic and

FIGURE. Nineteen cases of malaria, including four among travelers, were reported as acquired on the island of Great Exuma in the Bahamas during May-June 2006

only one imported case was reported in 2005. However, because of frequent travel and relocation among countries, health-care providers in the Bahamas and other countries where malaria is not endemic should remain alert to the risk for this disease, especially in travelers and immigrants. Introduced malaria is much less common than imported malaria but of greater epidemiologic significance. Imported malaria usually occurs when travelers acquire the infection while visiting areas where malaria is endemic. Introduced malaria typically occurs when infected travelers return home and transmit the infection to local Anopheles mosquitoes, which subsequently transmit it to local residents. Left unchecked, this process can result in reestablishment of endemic malaria in countries that have previously eliminated the disease because these areas have climatic conditions favorable to transmission and Anopheles species that are receptive to malaria parasites. In the United States, 1,320 cases of imported malaria were reported in 2004 (1), and 63 episodes of introduced malaria were detected from 1957 to 2003, the year when the latest episode occurred in Florida (2-4).
Available evidence indicates that during May-June 2006, Great Exuma experienced an outbreak of introduced malaria that was successfully contained and terminated. The observations that all cases were caused by P? falciparum and a substantial proportion of patients were immigrants from Haiti suggest that malaria was introduced by those immigrants. All patients treated with chloroquine responded to the treatment, which is a further suggestion that the parasites originated from Haiti, where P. falciparum has remained sensitive to chloroquine. P. falciparum causes 99% of malaria cases in Haiti and the Dominican Republic (MD Milord, Ministry of Public Health and Population, Haiti, and JM Puello, National Center for Control of Tropical Diseases, Dominican Republic, personal communication, 2006), which share the only Caribbean island still endemic for malaria. Conversely, P. vivax causes 94% of cases in Mexico and Central America (5).
The successful containment of this malaria outbreak is attributable to several factors. The first identified case, detected in a foreign tourist returning from the Bahamas, was promptly reported to the Bahamian MOH , which responded with several complementary interventions, including identification and treatment of patients and asymptomatic parasite carriers and institution of mosquito-control measures. Fewer than 30 days elapsed between diagnosis of the first identified case in Virginia and diagnosis of the last case on Great Exuma. Since June 19, no additional cases have been noted, despite intensive ongoing surveillance among febrile patients.
In view of these findings, CDC has rescinded recommendations made on June 16, 2006, that travelers take preventive doses of chloroquine before, during, and after travel to Great

Exuma. As of September 19, CDC no longer recommends that travelers to Great Exuma take antimalarial prophylaxis.
This malaria outbreak illustrates the importance of vigilance by health-care providers and rapid response by public health authorities for successful containment (2) and also might provide incentive for measures to eliminate malaria from all Caribbean islands, including Hispaniola. Recently, the International Task Force for Disease Eradication recommended that Haiti and the Dominican Republic work jointly to eliminate from Hispaniola both malaria and lymphatic filariasis, two vectorborne parasitic diseases that have been eliminated from all other Caribbean islands (G). Agreements reached in July 2006 between the ministries of health of Haiti and the Dominican Republic represent a first step toward achieving this goal.

References

1. CDC. Malaria surveillance-United States, 2004. MMWR 2006;55 (No. SS-04):23-37.
2. CDC. Locally acquired mosquito-transmitted malaria: a guide for investigations in the United States. MMWR 2006;55(No. RR-13):1-9.
3. CDC. Preventing reintroduction of malaria in the United States. Atlanta, GA: US Department of Health and Human Services, CDC; 2005. Available at http://www.cdc.gov/malaria/features/prevent_reintroduction.htm.
4. CDC. Multifocal autochthonous transmission of malaria-Florida, 2003. MMWR 2004;53:412-3.
5. Pan American Health Organization. Regional strategic plan for malaria 2006-2010. Washington, DC: World Health Organization, Pan American Health Organization; 2006. Available at http://www.paho.org/ English/ad/dpc/cd/mal-reg-strat-plan-06.pdf.
6. International Task Force for Disease Eradication. Summary of the ninth meeting of the ITFDE (II), May 12, 2006. Atlanta, GA. International Task Force for Disease Eradication; 2006. Available at http://www.carter center.org/documents/2435.pdf\#search=\"itfde\ haiti\".

Inadvertent Misadministration of Meningococcal Conjugate Vaccine - United States, June-August 2005

During June-August 2005, CDC and the Food and Drug Administration (FDA) were notified of seven clusters of inadvertent subcutaneous (SC) misadministration of the new meningococcal conjugate vaccine (MCV4, Menactra) (Sanofi Pasteur, Inc., Swiftwater, Pennsylvania), which is licensed for intramuscular (IM) administration only. A total of 101 persons in seven states were reported to have received MCV4 by the SC route. Of these, 100 were contacted by their healthcare providers and advised of the administration error. CDC conducted an investigation to determine whether SC administration of MCV4 resulted in a protective immunologic response. This report describes the results of that investigation, which indicated that, despite the misadministration, per-
sons vaccinated by the SC route were sufficiently protected and that revaccination was not necessary.
In 1978, the meningococcal polysaccharide vaccine (MPSV4, Menomune) (Sanofi Pasteur) was licensed in the United States for administration by the SC route. The newer MCV4 is a tetravalent meningococcal conjugate vaccine that was licensed in January 2005 on the basis of immunogenic noninferiority to MPSV4 and demonstrated safety (1). Both vaccines protect against Neisseria meningitidis serogroups A, C, Y, and W-135. Because immunogenicity and safety of MCV4 were assessed for IM administration only, the vaccine is licensed for IM use only. The immunogenicity and safety of MCV4 after SC administration were not evaluated.

CDC contacted the providers who inadvertently misadministered the vaccine to inform them of the investigation. Providers contacted the vaccinees to advise them of the error and invite them to participate in the investigation. Twelve nonserious adverse events* were reported among 54 persons from whom providers solicited such information. Eleven events were local reactions, including injection-site rash, tenderness, swelling, induration, or pain, and one was a fever of 1 day's duration. The frequency and nature of adverse events among these persons are similar to those reported after IM vaccination in MCV4 licensure trials (1).
Providers collected single serum samples from 21 to 105 days after vaccination from 38 SC vaccinees who agreed to participate (response rate: 38%). Serology results from a group of 372 subjects available from the manufacturer's prelicensure MCV4 clinical trial database, with serum samples collected 21 to 42 days after IM vaccination, were used as age-matched controls for comparison with the SC vaccinees. Age-matched comparison of rSBA response was conducted because of the effect of age on serologic response to MCV4. Immune responses for each vaccine serogroup ($\mathrm{A}, \mathrm{C}, \mathrm{Y}$, and $\mathrm{W}-135$) were measured by serum bactericidal assay using baby rabbit complement (rSBA). Serologic testing of the SC vaccinees was performed by the same laboratory using the same methods used to test the IM vaccinees from the MCV4 clinical trial. Geometric mean titers (GMTs) of SC vaccinees were compared with those of age-matched IM vaccinees from the MCV4 clinical trials. Titers of individual vaccinees were evaluated for each vaccine serogroup to determine whether the vaccinees developed a protective response as a result of the SC vaccination; rSBA titers ≥ 8 were considered protective $(2,3)$.
For each of the four vaccine serogroups, the proportion of SC vaccinees with rSBA titers ≥ 8 was $\geq 97 \%$ and did not dif-

[^2]fer significantly (by Fisher exact test) from the proportion of IM vaccinees with rSBA titers ≥ 8 (Table). Two patients vaccinated by the SC route had rSBA titers <8 (one participant for serogroup C only and one for serogroup W-135 only). GMTs were significantly lower for SC vaccinees compared with agematched IM vaccinees for serogroups A, C, and Y (odds ratios $=1.78[95 \%$ confidence interval $(\mathrm{CI})=1.21-2.62]$; $2.27[\mathrm{CI}=1.33-3.89]$; and $1.66[\mathrm{CI}=1.03-2.67]$, respectively); however, no significant difference was observed between GMTs for serogroup W-135 (odds ratio $=0.71[\mathrm{CI}=$ $0.45-1.14]$). On the basis of the protective rSBA titer results for nearly all of SC vaccinees participating in this investigation, revaccination was not recommended.
Reported by: S Shadomy, DVM, B Plikaytis, PhD, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (proposed); T Clark, MD, G Carlone, PhD, N Messonnier, MD, National Center for Immunization and Respiratory Diseases (proposed); K Uhde, PhD, KWinger, DVM, EIS officers, CDC.
Editorial Note: The most likely reason for the inadvertent misadministration of MCV4 described in this report was that the older meningococcal vaccine, MPSV4, in use for nearly 30 years, is licensed for SC administration, whereas MCV4 is licensed only for IM administration. This reason was cited by health-care providers participating in the investigation.
Although the overall serologic response for SC vaccinees was lower than that of IM vaccinees as determined by GMTs, nearly all persons vaccinated by the SC route developed rSBA titers ≥ 8, which was considered protective on the basis of recent population-based studies of meningococcal C conjugate vaccine efficacy in the United Kingdom (2,3). Therefore, CDC determined that this particular group of persons vaccinated by the SC route was sufficiently protected and that revaccination was not necessary.

CDC cautions health-care providers to be aware that the licensed route of vaccine administration can vary among similar

TABLE. Number and percentage of patients with rSBA* titers ≥ 8 who were vaccinated with meningococcal conjugate vaccine via intramuscular (IM) and subcutaneous (SC) routes, by serogroup - United States, 2005

| | $\begin{array}{c}\text { IM group } \\ (\mathbf{n}=372)^{\dagger}\end{array}$ | | | $\begin{array}{c}\text { SC group } \\ (\mathbf{n}=38)\end{array}$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Fisher exact

2-tailed\end{array}\right]\)

[^3]vaccines and recommends that providers carefully review and follow the route of administration indicated on the vaccine label and package insert before administering vaccines. This is especially important after introduction of a new vaccine product.

Acknowledgments

The findings in this report are based, in part, on contributions by the California Dept of Health Svcs; Illinois Dept of Health; Michigan Dept of Health; Pennsylvania Dept of Health; Kentucky Dept of Health; Vermont Dept of Health; MD Decker, MD, P Hosbach, PhD, G Gilmet, PhD, E Bassily, PhD, D Gordon, PhD, Sanofi Pasteur, Swiftwater, Pennsylvania; and W Atkinson, MD, National Center for Immunization and Respiratory Diseases (proposed), CDC.

References

1. CDC. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2005;54(No. RR-7):1-21.
2. Borrow R, Andrews N, Goldblatt D, Miller E. Serological basis for use of meningococcal serogroup C conjugate vaccines in the United Kingdom: reevaluation of correlates of protection. Infect Immun 2001; 69:1568-73.
3. Andrews N, Borrow R, Miller E. Validation of serological correlate of protection for meningococcal C conjugate vaccine by using efficacy estimates from postlicensure surveillance in England. Clin Diagn Lab Immunol 2003;10:780-6.

Effects of Measles-Control Activities - African Region, 1999-2005

In 1999, of approximately 871,000 deaths from measles worldwide, 61% occurred in sub-Saharan Africa (1). In 2001, countries in the World Health Organization (WHO) African Region began an accelerated measles-control program to reduce by half by 2005 the number of deaths that were caused by measles in 1999 (2). The African Region accelerated measles-control program was based on four strategies: improving routine vaccinations; providing a second opportunity for measles vaccination through a routine, 2 -dose vaccination schedule or through supplementary immunization activities (SIAs) ${ }^{*}$; improving measles case management; and establishing case-based surveillance with laboratory confirmation for

[^4]all suspected measles cases. Seven countries in the region had already completed catch-up SIAs by 2000, before the regional program began; in 2001, additional countries in the region began implementing catch-up, and later, follow-up SIAs, ${ }^{\dagger}$ and steps were taken to improve routine vaccination coverage with measles vaccine and other vaccines in the Expanded Programme on Immunization schedule. This report summarizes the nationwide SIAs and other measles-control activities conducted in the WHO African Region during 1999-2004, analyzes the trends in reported measles cases since 1990, and compares the annual number of measles cases reported in 2005 with those reported in 1999. $\$$

Immunization Activities

WHO and UNICEF publish annual country-specific estimates of routine measles vaccination coverage; these estimates are based on reviews of vaccination coverage surveys, national reports, administrative coverage data, and consultation with regional and local experts (3). According to these estimates, coverage with 1 dose of measles vaccine in the African Region among children aged 12-23 months increased from 52% in 1999 to 67% in 2004. In 2004, 37 of the region's 46 countries were estimated to have coverage rates $>60 \%$, and 17 countries were estimated to have coverage rates $\geq 80 \%$ (4).

By 2000, seven countries in the African Region had completed national catch-up SIAs, and during December 2001December 2004, 25 additional countries completed national catch-up SIAs. Ten of these 32 completed national follow-up SIAs. Measles vaccination coverage rates during these SIAs were $>90 \%$, except for the catch-up SIAs in Republic of the Congo (78%), Eritrea (82%), Ethiopia (87%), and Gabon (80%) and the follow-up SIAs in Lesotho (75\%), Swaziland (81\%), and Zimbabwe (85\%). By December 2004, a total of 207.9 million children in 32 countries had been targeted by catch-up SIAs, which is 69% of the population of children aged <15 years in the African Region. During the same period, 16.1 million children aged $9-59$ months in 10 countries were targeted by follow-up SIAs, which represents 14% of the population of children aged <5 years in the African Region.

[^5]
Measles Surveillance

Since the 1980s, the annual number of country-specific measles cases has been reported by the country's ministry of health each year to WHO's Regional Office for Africa. Before implementing catch-up SIAs, all countries reported measles cases to WHO through routine infectious disease information systems that provided aggregated data. The cases reported through this surveillance system were not laboratory confirmed; they were reported on the basis of clinical suspicion.
After conducting their catch-up SIAs, countries began implementing a case-based surveillance system with laboratory confirmation of suspected measles cases. In this system, each case is reported using an individual case-report form, and a blood specimen is obtained for measles immunoglobulin M (IgM) testing at a national laboratory. When a cluster of three or more cases from a health-facility catchment area has been confirmed, subsequent cases from that area are considered confirmed by epidemiologic linkage, and blood samples are not collected. The quality indicators used for the case-based surveillance system include the proportion of reported cases with a blood specimen (goal: 80% of cases not confirmed by epidemiologic linkage) and the proportion of districts reporting at least one suspected case with a blood specimen per year (goal: 80%). For Niger and Tanzania, the total number of cases with a blood specimen was $<80 \%$ of the aggregate case total, so aggregate case totals were used for analysis. For all other countries, blood specimens were obtained for $>90 \%$ of reported cases.

Analysis of Surveillance Data

Countries were grouped according to the year in which they conducted their catch-up SIAs; number of reported cases by country group and year during 1990-2005 were calculated (Figure). Of the Group A^{9} countries, six completed catch-up SIAs by December 1999, and the seventh completed its catchup activities by the end of 2000; these countries had a measleselimination goal rather than a mortality-reduction goal (5). Group $\mathrm{B}^{* *}$ consisted of 25 countries that completed nationwide catch-up SIAs during December 2001-December 2004. Group $\mathrm{C}^{\dagger \dagger}$ consisted of eight countries that did not begin catch-up SIAs before March 2005 (except for SIAs in the

[^6]FIGURE. Number of reported measles cases, by country group and year - World Health Organization African Region, 1990-2005

SOURCE: World Health Organization, Regional Office for Africa.
*Includes Botswana, Lesotho, Malawi, Namibia, South Africa, Swaziland, and Zimbabwe; initial supplementary immunization activities (SIAs) were \dagger conducted during 1996-2000.
${ }^{\dagger}$ Includes Angola, Benin, Burkina Faso, Burundi, Cameroon, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Liberia, Madagascar, Mali, Mauritania, Niger, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Togo, Uganda, United Republic of Tanzania, and Zambia; initial SIAs were conducted during 2001-2004.
§ Includes Central African Republic, Chad, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Guinea-Bissau, Mozambique, and Nigeria; countries did not begin catch-up SIAs before March 2005 (except for SIAs in the Democratic Republic of the Congo conducted in 2002 and 2004, which collectively targeted approximately half of the country's population aged <15 years).

Democratic Republic of the Congo conducted in 2002 and 2004, which collectively targeted approximately half of the country's population aged <15 years).
The number of reported measles cases in Group A and Group B countries, which have all completed their SIAs, began decreasing steadily as SIAs were conducted (Figure). No decline was evident in the Group C countries; not all areas have been covered by SIAs, and yearly fluctuations in the number of measles cases have been observed.
In countries that completed SIAs, the total number of suspected measles cases decreased 93\%, from 202,972 in 1999 to 14,284 (Table); 1999 was chosen as the year for comparison because it is the baseline year for the measles mortalityreduction goal, and the initial catch-up SIAs in all countries other than the Group A countries were conducted after 1999. The number of cases in 1999 was obtained from aggregated reports of cases that were diagnosed on the basis of clinical signs and symptoms; few of these cases have laboratory confirmation, and they include other diseases consistent with the clinical case definition of measles (e.g., rubella). In 2005, after establishment of case-based surveillance, cases were con-
firmed by a laboratory or through epidemiologic linkage; confirmed case totals were available for all countries except Gabon, Liberia, Mauritania, and Sierra Leone. In 2005, aggregate data also were used for Niger because case-based surveillance was not fully operational in the country. Tanzania reported 713 possible cases through the case-based system, but because blood samples were obtained from $<80 \%$ of cases, aggregate data were used in the calculations. Countries with no report for 1999 (Gabon) or 2005 (Madagascar) were excluded from the calculations.
To maintain consistency in the case definition, clinically suspected measles cases reported in 2005 (i.e., which include cases not counted later after they had negative IgM serology results) were used in the calculations. The 93% decrease during 1999-2005 in suspected cases demonstrated substantial progress in countries that have implemented accelerated measles-control activities.
To minimize the effect of using a single year as a baseline for a disease with cyclic epidemics, reports of suspected cases in 2005 also were compared with the average number of cases that occurred during 3 years (1998-2000). When the 3 -year average was used as a baseline ($\mathrm{N}=200,683$ cases), reported cases also decreased 93\%.
Reported by: D Nshimirimana, MD, BG Masresha, MD, TMaumbe, A Dosseh, PharmD, Measles Program, Regional Office for Africa, World Health Organization, Harare, Zimbabwe. Deptof Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland. Global Immunization Div, National Center for Immunization and Respiratory Diseases (proposed), $C D C$.
Editorial Note: The results of this report indicate a consistent and marked decrease in the number of measles cases reported from the WHO African Region country groups that completed nationwide measles catch-up SIAs during 19962004. These countries have experienced a $>90 \%$ reduction in clinical measles cases in 2005 compared with 1999. In contrast, the number of reported cases continued to vary widely by year in the group of countries that had not completed nationwide catch-up SIAs. Although countries do not report measles deaths to WHO, an analysis of country-level data from 13 countries in the African Region that completed nationwide catch-up SIAs during late 2001 to early 2002 documented that the percentage reduction in reported deaths from measles was similar to that for reported cases of measles (6). The use and analysis of surveillance data in this report suggest that case-based measles surveillance with laboratory confirmation in the African Region is providing useful information for monitoring program effects.
The increase from 2,988 cases in 1999 to 3,626 cases in 2005 from countries in Group A (Table) is largely a result of the increase in cases reported from South Africa. For example,

TABLE. Number of reported measles cases, by country group and year of nationwide catch-up supplementary immunization activities (SIAs) - World Health Organization African Region, 1999 and 2005

Country	Year of catch-up SIAs	Population aged <15 yrs (in millions)	No. of reported measles cases		
			1999*	Clinical ${ }^{\dagger}$	Confirmed ${ }^{\text {§ }}$
Group A ${ }^{\text {a }}$					
Botswana	1997, 1998	0.7	439	565	21
Lesotho	1999, 2000	0.7	944	218	1
Malawi	1998	6.1	152	182	24
Namibia	1997	0.8	296	235	2
South Africa	1996, 1997	15.5	385	1,944	609
Swaziland	1997, 1998	0.4	0	79	0
Zimbabwe	1998	5.2	772	403	11
Group A subtotal	-	29.4	2,988	3,626	667
Group B**					
Angola	2003	7.4	350	397	200
Benin	2001, 2002	3.7	2,573	207	165
Burkina Faso	2003	6.2	5,516	429	231
Burundi	2003	3.4	2,928	79	0
Cameroon	2003	6.7	10,894	1,299	581
Eritrea	2003	2.0	320	1,359	32
Ethiopia	2003, 2004	34.5	5,329	159	321
Gabon	2004	0.6	NA ${ }^{\dagger+}$	0§§	0 ¢§
Gambia	2003	0.6	856	18	0
Ghana	2001, 2002	8.6	15,987	350	27
Guinea	2003	4.1	18,004	95	1
Kenya	2002	14.7	8,601	1,061	97
Liberia	2003	1.5	1,679	8 8§	8§§
Madagascar	2004	8.2	35,196	NA	NA
Mali	2001	6.5	2,506	90	24
Mauritania	2004	1.3	5,263	127 §§	127§§
Niger	2004	6.8	36,156	2,183 19	2,1837\%
Republic of the Congo	2004	1.9	313	125	0
Rwanda	2003	3.9	4,359	259	96
Senegal	2003	5.0	3,668	129	0
Sierra Leone	2003	2.4	NA	29§\$	29§\$
Tanzania	2001, 2002	16.3	5,887	713	$23^{* * *}$
Togo	2001	2.7	2,540	122	28
Uganda	2003	14.5	42,737	926	6
Zambia	2003	5.3	23,518	494	28
Group B subtotal	-	168.8	199,984	10,658	4,178
Total			202,972	14,284	4,845

SOURCES: United Nations. World population prospects: the 2004 revision, New York, NY: United Nations; 2005; and World Health Organization, Regional Office for Africa.

* Data are from aggregate reporting.
\dagger Numbers of clinically suspected cases reported through the case-based system.
§ Numbers of cases confirmed by epidemiologic linkage or laboratory testing.
II Countries that adopted the goal of eliminating measles and conducted SIAs during 1996-2000.
** Countries that conducted SIAs during 2001-2004.
$\dagger \dagger$ Not available.
§§ Case numbers from aggregate reports (no data reported through the case-based system).
ๆाl. Case-based surveillance was not operational in Niger in 2005.
${ }^{* * *}$ Case numbers from aggregate reports were used because blood samples were taken from only 73% of suspected cases.
in 2000, South Africa reported 117 confirmed measles cases (5), compared with 609 in 2005. During 2003-2005, South Africa experienced a large, nationwide measles outbreak involving 1,676 confirmed cases, the result of measles importation from Mozambique and failure to vaccinate enough of the population to prevent endemic measles transmission.

The data in this report are subject to at least two limitations. First, data from a single year were used to estimate changes in a disease that has cyclic epidemics. However, when the average number of reported cases that occurred during 1998-2000 (compared with 2005) was used instead of data from 1999 only (compared with 2005), the percentage
reduction was similar. Second, the system used for reporting cases changed in most countries; in 1999, the countries used aggregated reporting of clinically diagnosed cases, but in 2005, most reported laboratory-confirmed cases. Therefore, numbers of suspected cases reported in 2005 were used to estimate the decrease in cases during 1999-2005, which might have led to an even greater decrease. In addition, although the case definition for suspected measles remained the same, the change from the aggregate (in 1999) to the case-based system (in 2005) of reporting might have resulted in underreporting (because of the additional tasks of individual case reports and blood samples) or overreporting (because of increased awareness of measles surveillance after SIAs).

By December 2005, approximately 87% of the population aged <15 years (267.2 million children) in the countries in the African Region had been targeted by catch-up SIAs. In 2006, nationwide catch-up SIAs are focusing on the areas that have not yet been covered, including 29 million children in southern Nigeria and 7 million children in the Democratic Republic of the Congo. Successful control of measles in the African Region will depend on conducting high-quality campaigns (i.e., campaigns that achieve $\geq 95 \%$ coverage) in these areas. At the same time, countries should continue to improve their routine immunization services, maintain high coverage with follow-up SIAs every 3-5 years, improve measles case management, and monitor their success by using case-based surveillance with laboratory confirmation to control measles and reach the global goal of reducing measles mortality.

References

1. CDC. Progress in reducing global measles deaths, 1999-2004. MMWR 2006;55:247-9.
2. World Health Organization, United Nations Children's Fund. Measles mortality reduction and regional elimination: strategic plan 2001-2005. World Health Organization, Geneva, Switzerland; 2001. Available at http://www.who.int/vaccines-documents/docspdf01/www573.pdf.
3. World Health Organization. WHO vaccine-preventable diseases: monitoring system. 2005 global summary. World Health Organization, Geneva, Switzerland; 2005. Available at http://www.who.int/vaccinesdocuments/globalsummary/globalsummary.pdf.
4. World Health Organization. Measles-containing vaccine: reported estimates of MCV coverage, 2006. Available at http://www.who.int/ immunization_monitoring/en/globalsummary/timeseries/tscover agemcr.htm.
5. Biellik R, Madema S, Taole A, et al. First 5 years of measles elimination in southern Africa: 1996-2000. Lancet 2002;359:1564-68.
6. Otten M, Kelzaala R, Masresha B, et al. Public-health impact of accelerated measles control in the WHO African Region 2000-2003. Lancet 2005;366:832-9.

Update: Influenza Activity United States and Worldwide, May 21-September 9, 2006

During May 21-September 9, 2006, influenza A(H3), influenza A(H1), and influenza B viruses cocirculated worldwide and were identified sporadically in North America. This report summarizes influenza activity in the United States and worldwide since the last $M M W R$ update (1).

United States

In the United States, CDC uses seven systems for national influenza surveillance (2), four of which operate year-round: 1) the World Health Organization (WHO) and the National Respiratory and Enteric Virus Surveillance System (NREVSS) collaborating laboratory systems; 2) the U.S. Influenza Sentinel Provider Surveillance System; 3) the 122 Cities Mortality Reporting System; and 4) a national surveillance system that records pediatric deaths associated with laboratory-confirmed influenza. Data from these four systems are included in this report.
During May 21-September 9,* WHO and NREVSS collaborating laboratories in the United States tested 14,751 respiratory specimens; 318 (2\%) were positive for influenza (Figure). Of the positive results, 208 (65%) were influenza B viruses, 58 (18%) were influenza A (H1) viruses, five (2%) were influenza A (H3) viruses, and 47 (15\%) were influenza

[^7]FIGURE. Number* and percentage of respiratory specimens testing positive for influenza reported by World Health Organization and National Respiratory and Enteric Virus Surveillance System collaborating laboratories, by type and week - United States, May 21-September 9, $2006{ }^{\dagger}$

A viruses that were not subtyped. The majority (92\%) of these isolates were tested from mid-May through late June, when 3.6% of specimens tested were positive for influenza. Since July 1, of specimens tested, 0.6% were positive for influenza.
During May 21-September 9, the weekly percentage of patient visits to sentinel providers for influenza-like illness $(\mathrm{ILI})^{\dagger}$ remained below the national baseline ${ }^{\S}$ of 2.5% and ranged from 0.6% to 0.9%. The percentage of deaths attributable to pneumonia and influenza as reported by the 122 Cities Mortality Reporting System remained below the epidemic threshold. ${ }^{9}$ One influenza-related pediatric death occurred and was reported to CDC during this period.

Worldwide

During May 21-September 9, influenza A (H3), influenza A (H1), and influenza B viruses cocirculated worldwide. Influenza A (H1) viruses predominated overall in Asia; however, in early summer, influenza B viruses predominated in Japan. In Africa, South Africa reported predominantly A (H3) viruses, and Madagascar reported a limited number of A (H3) and A (H1) viruses. In Europe and North America, small numbers of influenza A and influenza B viruses were reported. In Oceania, influenza A viruses predominated, with both influenza A (H1) and influenza A (H3) viruses circulating; influenza B viruses circulated at lower levels. In South America, influenza A (H1) viruses were most commonly reported, but influenza A (H3) and influenza B viruses also were identified.

Characterization of Influenza Virus Isolates

The WHO Collaborating Center for Surveillance, Epidemiology, and Control of Influenza located at CDC analyzes influenza virus isolates received from laboratories worldwide. Of 23 influenza A (H1) viruses that were collected during May 21-September 9 (three from Asia, 18 from Latin America, and two from the United States) and analyzed at CDC, 17 (74\%) were antigenically similar to A/New Caledonia/20/99, the H1N1 component of the 2006-07 influenza vaccine. Six

[^8](26\%) of the influenza A (H1) viruses had reduced titers to antisera produced against $\mathrm{A} / \mathrm{New}$ Caledonia. Of the 19 influenza A (H3) viruses (one from Europe, 12 from Latin America, three from Asia, two from Oceania, and one from the United States) that were characterized, $18(95 \%)$ were antigenically similar to A/Wisconsin/67/2005, the H3N2 component of the 2006-07 influenza vaccine, whereas one (5\%) had reduced titers to A/Wisconsin/67/2005.
Influenza B viruses currently circulating worldwide can be divided into two antigenically distinct lineages represented by B/Yamagata/16/88 and B/Victoria/2/87. The B component of the 2006-07 influenza vaccine belongs to the B/Victoria lineage. Of the 26 influenza B isolates collected during May 21-September 9 and characterized at CDC, 23 belonged to the B/Victoria lineage (one from Europe, five from Latin America, six from Asia, and 11 from the United States). Ten (43%) of the B/Victoria-lineage viruses were similar to B/Ohio/01/2005, the B component of the 2006-07 influenza vaccine, whereas $13(57 \%)$ had reduced titers to B/Ohio.

Human Infections with Avian Influenza A (H5N1) Viruses

During December 1, 2003-September 8, 2006, a total of 244 human cases of avian influenza A (H5N1) infection were reported to WHO from 10 countries (3); 23 of these cases were reported since May 21, 2006. A total of 143 (59\%) of the 244 cases were fatal. All human cases were reported from Asia (Azerbaijan, Cambodia, China, Indonesia, Iraq, Thailand, Turkey, and Vietnam) and Africa (Djibouti and Egypt), with the most recent cases reported from China, Indonesia, and Thailand. To date, no human case of avian influenza A (H5N1) virus infection has been identified in the United States.
Reported by: WHO Collaborating Center for Surveillance, Epidemiology, and Control of Influenza. A Postema, MPH, L Brammer, MPH, S Wang, MPH, L Blanton, MPH, R Dhara, MPH, A Balish, T Wallis, D Shay, MD, J Bresee, MD, A Klimov, PhD, N Cox, PhD, Influenza Div (proposed), National Center for Immunization and Respiratory Diseases (proposed), CDC.
Editorial Note: During May 21-September 9, 2006, influenza A (H1), influenza A (H3), and influenza B viruses cocirculated worldwide. The influenza virus type and subtype that will predominate and the severity of influenza-related disease activity for the 2006-07 influenza season are difficult to predict.
Vaccination is the best method for preventing influenza. Influenza vaccine is recommended for persons at increased risk for influenza-related complications and severe disease (e.g., persons aged ≥ 50 years, children aged 6-59 months, pregnant women, and persons aged 6 months- 49 years with cer-
tain medical conditions) and for health-care workers and household contacts of persons at increased risk (4). In addition to the groups for whom influenza vaccination is recommended, influenza vaccine can be administered to anyone who wants to reduce the likelihood of becoming ill with influenza.

For the 2006-07 influenza season, the four manufacturers licensed to produce influenza vaccine for the United States (Sanofi Pasteur, Inc.; Novartis; GlaxoSmithKline, Inc.; and MedImmune Vaccines, Inc.) expect to produce more than 100 million doses of influenza vaccine. Because vaccine supplies for 2006 are projected to be plentiful and no delays are expected, influenza vaccination can proceed for all persons, whether healthy or at high risk, either individually or through mass campaigns, as soon as vaccine is available. The optimal time for influenza vaccination is during October-November; however, vaccine should be offered throughout the influenza season, even after influenza activity has been documented in the community.

As a supplement to influenza vaccination, antiviral drugs aid in the control and prevention of influenza. However, high levels of resistance to the antiviral adamantanes (i.e., amantadine and rimantadine) have been identified among circulating influenza $\mathrm{A}(\mathrm{H} 3)$ viruses; therefore, CDC continues to recommend against use of the adamantane class of antivirals for the treatment and prophylaxis of influenza in the United States until susceptibility to adamantanes has been reestablished among circulating influenza A isolates $(5,0)$.

The ongoing widespread epizootic of highly pathogenic avian influenza A (H5N1) in Asia, Africa, and Europe remains a major public health concern. As of September 9, 2006, influenza A (H5N1) had been reported in migratory birds or poultry flocks in Africa, Asia, and Europe, with human cases reported from 10 countries in Africa and Asia. No evidence of sustained person-to-person transmission has been identified, although limited person-to-person transmission has occurred (7). No cases of infection with highly pathogenic influenza A (H5N1) have been identified in humans, poultry, or migratory birds in the United States. In collaboration with local and state health departments, CDC continues to recommend enhanced surveillance for possible influenza A (H5N1) infection among travelers with severe unexplained respiratory illness returning from countries affected by influenza A (H5N1) (8).

Influenza surveillance reports for the United States are posted online weekly during October-May at http://www.cdc.gov/ flu/weekly/fluactivity.htm. Additional information about influenza viruses, influenza surveillance, the influenza vaccine, and avian influenza is available at http://www.cdc.gov/flu.

Acknowledgments

This report is based, in part, on data contributed by state and territorial health departments and state public health laboratories; WHO collaborating laboratories; National Respiratory and Enteric Virus Surveillance System laboratories; the U.S. Influenza Sentinel Provider Surveillance System; the 122 Cities Mortality Reporting System; WHO National Influenza Centers, Communicable Diseases, Surveillance and Response, WHO, Geneva, Switzerland; A Hay, PhD, WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Medical Research, London, England; I Gust, MD, I Barr, PhD, WHO Collaborating Center for Reference and Research on Influenza, Parkville, Australia; and M Tashiro, MD, WHO Collaborating Center for Reference and Research on Influenza, National Institute of Infectious Diseases, Tokyo, Japan.

References

1. CDC. Update: influenza activity-United States and worldwide, 200506 season, and composition of the 2006-07 influenza vaccine. MMWR 2006;55:648-53.
2. CDC. Overview of influenza surveillance in the United States. Atlanta, GA: US Department of Health and Human Services, CDC; 2006. Available at http://www.cdc.gov/flu/weekly/pdf/flu-surveillance-overview.pdf.
3. World Health Organization. Confirmed human cases of avian influenza A (H5N1). Geneva, Switzerland: World Health Organization; 2006. Available at http://www.who.int/csr/disease/avian_influenza.
4. CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2006; 55(No. RR-10).
5. Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA 2006;295:891-4.
6. CDC. High levels of adamantane resistance among influenza A (H3N2) viruses and interim guidelines for use of antiviral agents-United States, 2005-06 influenza season. MMWR 2006;55:44-6.
7. Ungchusak K, Auewarakul P, Dowell SF, et al. Probable person-toperson transmission of avian influenza A (H5N1). N Engl J Med 2005; 352:333-40.
8. CDC. CDC health update: updated interim guidance for laboratory testing of persons with suspected avian influenza A (H5N1) virus in the United States. Atlanta, GA: US Department of Health and Human Services, CDC; 2006. Available at http://www2a.cdc.gov/han/ArchiveSys/ ViewMsgV.asp?AlertNum=00246.

TABLE I. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending September 16, 2006 (37th Week)*

Disease	Current week	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	5-year weekly average †	Total cases reported for previous years					States reporting cases during current week (No.)
				2005	2004	2003	2002	2001	
Anthrax	-	1	0	-	-	-	2	23	
Botulism:									
foodborne	-	3	1	19	16	20	28	39	
infant	-	82	2	90	87	76	69	97	
other (wound \& unspecified)	-	40	1	33	30	33	21	19	
Brucellosis	2	72	2	122	114	104	125	136	NE (1), TX (1)
Chancroid	1	21	1	17	30	54	67	38	TX (1)
Cholera	-	5	0	8	5	2	2	3	
Cyclosporiasis§	1	88	2	734	171	75	156	147	FL (1)
Diphtheria	-	-	0	-	-	1	1	2	
Domestic arboviral diseases ${ }^{\text {s, }}$ T:									
California serogroup	-	23	8	78	112	108	164	128	
eastern equine	-	4	0	21	6	14	10	9	
Powassan	-	1	-	1	1	-	1	N	
St. Louis	-	2	2	10	12	41	28	79	
western equine	-	-	-	-	-	-	-	-	
Ehrlichiosis§:									
human granulocytic	5	245	12	790	537	362	511	261	NY (5)
human monocytic	3	247	9	522	338	321	216	142	MO (1), VA (1), NC (1)
human (other \& unspecified)	3	111	1	122	59	44	23	6	NY (1), MD (1), TN (1)
Haemophilus influenzae,**									
invasive disease (age <5 yrs):									
serotype b	-	5	0	9	19	32	34	-	
nonserotype b	1	63	2	135	135	117	144	-	CA (1)
unknown serotype	5	150	2	217	177	227	153	-	NY (1), AL (1), CO (1), UT (1), AK (1)
Hansen disease ${ }^{\text {§ }}$	3	47	1	88	105	95	96	79	CA (3)
Hantavirus pulmonary syndrome ${ }^{\S}$	-	21	0	29	24	26	19	8	
Hemolytic uremic syndrome, postdiarrheal ${ }^{\text {§ }}$	7	141	6	221	200	178	216	202	TN (1), ID (1), UT (4), CA (1)
Hepatitis C viral, acute	7	542	34	771	713	1,102	1,835	3,976	NY (1), MI (1), NC (2), TN (2), CO (1)
HIV infection, pediatric (age <13 yrs) ${ }^{\text {s,t† }}$	-	52	5	380	436	504	420	543	
Influenza-associated pediatric mortality ${ }^{\S, \$ 8,9 \pi}$	-	41	0	49	-	N	N	N	
Listeriosis	12	429	19	892	753	696	665	613	ME (1), NY (3), OH (1), NE (1), GA (1), FL (1), UT (1), CA (3)
Measles	$1^{* * *}$	43	1	66	37	56	44	116	WA (1)
Meningococcal disease, ${ }^{\text {t+t }}$ invasive:									
A, C, Y, \& W-135	2	161	3	297	-	-	-	-	$\mathrm{OH}(1), \mathrm{NC}(1)$
serogroup B	1	105	1	157	-	-	-	-	WA (1)
other serogroup	-	14	0	27	-	-	-	-	
Mumps	27	5,666	4	314	258	231	270	266	$\begin{aligned} & \mathrm{MI}(1), \mathrm{MO}(1), \mathrm{KS}(13), \mathrm{MD}(1), \mathrm{FL}(1), \mathrm{TN}(1), \\ & \mathrm{CO}(1), \mathrm{AZ}(1), \mathrm{CA}(7) \end{aligned}$
Plague	-	8	0	8	3	1	2	2	
Poliomyelitis, paralytic	-	-	0	1	-	-	-	-	
Psittacosis ${ }^{\text {8 }}$	-	17	0	19	12	12	18	25	
Q fever ${ }^{\text {§ }}$	2	103	2	139	70	71	61	26	TN (1), OR (1)
Rabies, human	-	1	0	2	7	2	3	1	
Rubella	-	6	0	11	10	7	18	23	
Rubella, congenital syndrome	-	1	-	1	-	1	1	3	
SARS-CoV§s.ss	-	-	-	-	-	8	N	N	
Smallpox ${ }^{\text {8 }}$	-	-	-	-	-	-	-	-	
Streptococcal toxic-shock syndrome ${ }^{\text {§ }}$	2	76	1	129	132	161	118	77	VT (1), CO (1)
Streptococcus pneumoniae, ${ }^{\text {s }}$									
invasive disease (age <5 yrs)	3	747	7	1,257	1,162	845	513	498	OK (2), AZ (1)
Syphilis, congenital (age <1 yr)	2	180	8	361	353	413	412	441	Ml (1), LA (1)
Tetanus	-	16	0	27	34	20	25	37	
Toxic-shock syndrome (other than streptococcal)s) $)^{5}$	67	2	96	95	133	109	127	NC (2)
Trichinellosis	-	11	0	19	5	6	14	22	
Tularemia ${ }^{\text {§ }}$	-	58	3	154	134	129	90	129	
Typhoid fever	4	193	10	324	322	356	321	368	MD (1), FL (1), CA (2)
Vancomycin-intermediate Staphylococcus aureus ${ }^{\text {s }}$	S ${ }^{\text {® }}$	2	0	2	-	N	N	N	
Vancomycin-resistant Staphylococcus aureus ${ }^{\text {® }}$	-	-	-	3	1	N	N	N	
Yellow fever	-	-	-	-	-	-	1	-	

[^9]* Incidence data for reporting years 2005 and 2006 are provisional, whereas data for 2001, 2002, 2003, and 2004 are finalized.
\dagger Calculated by summing the incidence counts for the current week, the two weeks preceding the current week, and the two weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
§ Not notifiable in all states.
II Includes both neuroinvasive and non-neuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (proposed) (ArboNET Surveillance).
** Data for H. influenzae (all ages, all serotypes) are available in Table II.
†† Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (proposed)). Implementation of HIV reporting influences the number of cases reported. Data for HIV/AIDS are available in Table IV quarterly.
§§ Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases (proposed).
ๆाI A total of 46 cases were reported since the beginning of the 2005-06 flu season (October 2, 2005 [week 40]).
*** The one measles case reported for the current week was indigenous.
$\dagger \dagger \dagger$ Data for meningococcal disease (all serogroups and unknown serogroups) are available in Table II.

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Chlamydia ${ }^{\text { }}$					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Currentweek	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2005 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12,409	18,896	35,170	665,246	680,488	91	149	1,643	5,962	2,925	130	69	594	2,816	4,551
New England	551	631	1,550	22,544	22,979	-	0	0	-	-	6	4	35	202	223
Connecticut	200	165	1,214	6,361	6,930	N	0	0	N	N	-	0	21	21	42
Maine ${ }^{\text {® }}$	42	43	74	1,570	1,547	N	0	0	N	N	1	0	3	25	21
Massachusetts	276	299	447	10,371	10,109	-	0	0	-	-	-	2	15	88	105
New Hampshire	18	36	53	1,333	1,316	-	0	0	-	-	2	1	4	27	23
Rhode Island	-	62	95	2,131	2,386	-	0	0	-	-		0	6	7	5
Vermont ${ }^{\text {§ }}$	15	19	43	778	691	N	0	0	N	N	3	0	5	34	27
Mid. Atlantic	1,435	2,372	3,696	83,476	82,803	-	0	0	-	-	14	10	444	352	1,803
New Jersey		363	500	12,280	13,713	N	0	0	N	N	-	0	4	9	45
New York (Upstate)	556	499	1,727	16,702	16,455	N	0	0	N	N	10	3	441	115	1,486
New York City	432	767	1,570	26,899	26,357	N	0	0	N	N	-	2	10	48	100
Pennsylvania	447	740	1,075	27,595	26,278	N	0	0	N	N	4	5	21	180	172
E.N. Central	1,671	3,123	12,578	110,916	114,223	1	1	3	35	8	17	16	158	668	1,016
Illinois	541	968	1,687	36,079	35,402	-	0	0	-	-	-	2	13	72	122
Indiana	325	399	552	13,936	14,241	N	0	0	N	N	-	1	13	42	51
Michigan	694	631	9,888	23,624	18,875	1	0	3	31	8	1	2	7	83	77
Ohio	6	716	1,446	23,517	31,411	-	0	1	4	-	16	5	92	243	396
Wisconsin	105	399	531	13,760	14,294	N	0	0	N	N	-	5	37	228	370
W.N. Central	669	1,151	1,457	41,073	41,931	-	0	12	-	4	19	11	55	495	455
lowa	140	155	225	5,730	5,058	N	0	0	N	N	8	1	23	127	99
Kansas	-	157	269	5,324	5,208	N	0	0	N	N	3	1	7	54	31
Minnesota	-	230	344	7,352	8,790	-	0	12	-	3	-	2	22	126	87
Missouri	321	439	567	15,924	16,091	-	0	0	-	1	8	2	9	84	200
Nebraska ${ }^{\text {§ }}$	134	94	176	3,765	3,690	N	0	1	N	N	-	1	16	56	15
North Dakota	22	32	58	1,100	1,134	N	0	0	N	N	-	0	4	7	-
South Dakota	52	51	117	1,878	1,960	N	0	0	N	N	-	1	6	41	23
S. Atlantic	2,444	3,452	4,925	126,192	126,851	-	0	1	3	1	46	14	54	586	430
Delaware	92	70	92	2,525	2,351	N	0	0	N	N	-	0	3	7	3
District of Columbia	32	53	103	1,725	2,712	-	0	0	-	-	1	0	3	12	9
Florida	780	927	1,113	34,148	30,907	N	0	0	N	N	32	6	28	280	185
Georgia	17	635	2,142	20,512	22,502	-	0	0	-	-	5	3	9	127	96
Maryland ${ }^{\text {s }}$	221	341	486	12,355	13,129	-	0	1	3	1	-	0	4	12	23
North Carolina	543	562	1,772	23,503	23,518	N	0	0	N	N	5	1	10	60	47
South Carolina ${ }^{\text {§ }}$	338	286	1,306	12,574	12,983	N	0	0	N	N	2	1	13	52	15
Virginia ${ }^{\text {® }}$	401	425	840	16,605	16,881	N	0	0	N	N	1	1	8	32	41
West Virginia	20	58	226	2,245	1,868	N	0	0	N	N	-	0	3	4	11
E.S. Central	844	1,418	1,943	51,940	49,542	-	0	0	-	-	4	3	20	108	132
Alabama ${ }^{\text {s }}$	59	385	756	14,430	10,963	N	0	0	N	N	-	1	6	42	18
Kentucky	237	155	402	6,374	6,514	N	0	0	N	N	2	1	19	29	84
Mississippi	-	384	801	13,230	15,373	-	0	0	-	-	-	0	1	8	
Tennessee ${ }^{\text {® }}$	548	494	602	17,906	16,692	N	0	0	N	N	2	1	5	29	30
W.S. Central	2,025	2,138	3,605	75,925	79,718	-	0	1	-	-	3	4	24	117	142
Arkansas	333	158	240	5,682	6,127	-	0	0	-	-	1	0	2	15	4
Louisiana	50	254	761	9,692	12,926	-	0	1	-	N	-	0	14	9	51
Oklahoma	275	221	2,159	8,250	7,975	N	0	0	N	N	-	1	2	25	33
Texas ${ }^{\text {® }}$	1,367	1,396	1,774	52,301	52,690	N	0	0	N	N	2	2	19	68	54
Mountain	324	1,031	1,839	34,494	44,824	71	116	452	4,219	1,891	21	2	37	236	104
Arizona	157	369	642	12,534	15,397	71	113	448	4,151	1,817	-	0	2	17	9
Colorado	62	168	482	4,282	10,776	N	0	0	N	N	4	1	7	49	33
Idahos	-	51	159	1,960	1,793	N	0	0	N	N	2	0	5	19	13
Montana	5	44	195	1,726	1,615	N	0	0	N	N	7	0	26	89	15
Nevadas	-	77	432	2,955	5,119	-	0	4	21	46	-	0	1	3	11
New Mexicos	-	166	339	6,629	6,189	-	0	3	10	14	-	0	3	12	10
Utah	100	93	136	3,467	3,153	-	1	3	35	11	3	0	3	13	11
Wyoming	-	27	55	941	782	-	0	2	2	3	5	0	11	34	2
Pacific	2,446	3,298	5,079	118,686	117,617	19	41	1,179	1,705	1,021	-	2	52	52	246
Alaska	84	85	152	2,993	2,978	-	0	0	-		-	0	2	4	1
California	1,841	2,568	4,231	93,408	91,500	19	41	1,179	1,705	1,021	-	0	14	-	140
Hawaii	-	103	135	3,558	3,903	N	0	0	N	N	-	0	1	3	1
Oregon§	141	177	315	6,224	6,147	N	0	0	N	N	-	1	6	45	59
Washington	380	350	604	12,503	13,089	N	0	0	N	N	-	0	38	-	45
American Samoa	U	0	46	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	17	37	-	581	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	77	161	2,945	2,941	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	5	16	178	191	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N : Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2005 and 2006 are provisional.

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cum } \\ 2005 \\ \hline \end{gathered}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	291	311	1,029	10,948	13,023	4,745	6,493	14,136	228,930	232,702	24	38	142	1,455	1,656
New England	34	24	75	884	1,164	106	104	288	3,839	4,233	-	3	19	123	126
Connecticut	24	0	37	208	242	53	40	241	1,497	1,842	-	0	9	37	38
Maine ${ }^{\dagger}$	5	2	13	111	155	1	2	6	87	95	-	0	4	16	8
Massachusetts	-	10	29	357	530	50	46	86	1,736	1,824	-	1	7	52	62
New Hampshire	-	0	9	22	45	2	4	9	142	117	-	0	2	6	6
Rhode Island	-	0	25	72	70	-	8	19	331	316	-	0	7	4	7
Vermont ${ }^{\dagger}$	5	3	9	114	122	-	1	3	46	39	-	0	2	8	5
Mid. Atlantic	48	53	254	1,866	2,331	417	611	1,014	21,133	23,688	2	7	30	282	312
New Jersey	-	7	17	206	318	-	103	150	3,204	4,061	-	2	4	45	60
New York (Upstate)	31	24	227	800	790	169	123	455	4,366	4,643	1	2	27	97	92
New York City	3	9	32	344	626	91	161	357	5,789	7,113	-	1	4	30	57
Pennsylvania	14	15	29	516	597	157	214	393	7,774	7,871	1	3	8	110	103
E.N. Central	38	48	110	1,602	2,327	815	1,278	7,047	45,016	46,029	3	5	14	200	295
Illinois	N	9	25	271	552	246	376	709	13,827	13,878	-	1	6	47	100
Indiana	N	0	0	N	N	160	165	237	6,236	5,707	-	1	7	52	53
Michigan	6	13	24	444	569	349	252	5,880	9,476	7,573	-	0	3	17	17
Ohio	32	16	32	560	528	4	351	661	10,850	14,811	3	1	6	61	92
Wisconsin	-	10	40	327	678	56	129	172	4,627	4,060	-	0	4	23	33
W.N. Central	13	29	260	1,270	1,441	214	362	436	12,987	13,302	4	2	15	97	82
lowa	3	5	14	197	194	35	33	46	1,199	1,128	-	0	1	1	-
Kansas	-	4	11	143	136	-	47	124	1,480	1,860	1	0	3	14	9
Minnesota	-	2	238	477	610	-	62	105	1,886	2,438	-	0	9	49	36
Missouri	9	9	32	320	315	128	190	251	7,100	6,710	2	0	6	23	25
Nebraska ${ }^{\dagger}$	1	2	8	74	90	36	23	56	978	841	1	0	2	6	11
North Dakota	-	0	7	11	11	-	2	7	69	68	-	0	3	4	1
South Dakota	-	1	7	48	85	15	6	13	275	257	-	0	0	-	-
S. Atlantic	40	49	95	1,680	1,916	1,231	1,491	2,334	55,797	54,914	6	10	26	390	396
Delaware		1	4	26	41	39	26	44	1,041	602	-	0	1	1	
District of Columbia	3	1	5	50	37	20	35	66	1,138	1,477	-	0	1	3	7
Florida	26	18	39	731	670	402	433	552	16,257	14,098	2	3	9	128	97
Georgia	1	11	43	350	513	12	305	1,014	9,687	10,347	-	2	12	76	84
Maryland ${ }^{\dagger}$	3	4	11	141	143	120	128	186	4,673	4,897	2	1	5	50	53
North Carolina	N	0	0	N	N	282	284	766	12,070	11,146	-	0	9	44	64
South Carolina ${ }^{\dagger}$	2	1	7	65	85	158	125	748	5,686	5,805	-	1	3	25	25
Virginia ${ }^{\dagger}$	5	8	50	300	397	191	130	288	4,604	6,058	2	1	8	48	43
West Virginia	-	0	5	17	30	7	17	42	641	484	-	0	4	15	23
E.S. Central	7	8	40	314	294	345	575	856	21,028	19,526	2	2	7	77	89
Alabama ${ }^{+}$	1	4	29	161	130	25	183	310	6,721	6,312	1	0	5	20	17
Kentucky	N	0	0	N	N	92	55	132	2,283	2,193	-	0	1	3	10
Mississippi	-	0	0	-	-	-	145	435	5,143	4,954	-	0	1	3	
Tennessee ${ }^{\dagger}$	6	4	12	153	164	228	187	279	6,881	6,067	1	1	4	51	62
W.S. Central	8	6	31	180	211	961	855	1,430	32,787	32,531	-	1	15	46	93
Arkansas	2	2	6	79	61	139	78	142	2,876	3,220	-	0	2	7	7
Louisiana	-	0	4	12	41	34	158	354	5,941	7,151	-	0	2	3	32
Oklahoma	6	2	24	89	109	97	77	764	3,115	3,230	-	1	14	34	49
Texas ${ }^{\dagger}$	N	0	0	N	N	691	548	757	20,855	18,930	-	0	2	2	5
Mountain	40	30	55	1,076	1,016	165	216	552	7,676	9,655	3	4	8	153	167
Arizona	7	3	36	107	97	92	86	201	3,105	3,480	1	1	7	72	86
Colorado	11	9	33	371	360	52	46	90	1,462	2,275	1	1	4	41	35
Idaho ${ }^{+}$	2	3	11	116	98	-	2	10	112	75	-	0	1	3	4
Montana	5	2	11	70	50	-	3	20	138	107	-	0	0	-	-
Nevada ${ }^{\dagger}$	-	1	6	38	76	-	24	194	985	2,042	-	0	1	-	13
New Mexico ${ }^{\dagger}$	-	1	6	42	57	-	29	64	1,199	1,138	-	0	4	19	18
Utah	11	7	19	304	260	21	17	24	591	487	1	0	4	15	7
Wyoming	4	1	3	28	18	-	2	6	84	51	-	0	2	3	4
Pacific	63	59	202	2,076	2,323	491	809	962	28,667	28,824	4	2	20	87	96
Alaska	1	1	6	44	77	17	11	23	412	416	1	0	19	9	6
California	46	43	105	1,503	1,653	384	664	829	23,657	24,027	1	0	9	21	46
Hawaii	-	1	3	36	49	-	19	29	647	734	-	0	1	13	8
Oregon ${ }^{\dagger}$	6	7	15	276	305	13	28	58	942	1,074	2	1	6	42	36
Washington	10	6	90	217	239	77	74	142	3,009	2,573	-	0	4	2	-
American Samoa	U	0	0	U	U	U	0	2	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	11	-	1	15	-	71	-	0	2	-	6
Puerto Rico	4	2	20	49	179	-	5	16	188	269	-	0	1	-	3
U.S. Virgin Islands	-	0	0	-	-	-	0	5	30	45	-	0	0	-	

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }_{\dagger}^{*}$ Incidence data for reporting years 2005 and 2006 are provisional.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Hepatitis (viral, acute), by type										Legionellosis				
	Current week	A				B									
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	30	72	245	2,269	2,906	42	83	597	2,729	3,681	51	41	127	1,426	1,387
New England	2	4	20	138	337	-	1	9	46	105	2	2	12	70	88
Connecticut	1	1	3	31	38	-	0	3	-	35	-	0	8	19	22
Maine ${ }^{\dagger}$	-	0	2	6	2	-	0	2	13	10	1	0	2	7	4
Massachusetts	-	2	13	51	211	-	0	5	14	35	-	1	6	27	40
New Hampshire	1	0	16	35	71	-	0	2	11	20	-	0	1	1	6
Rhode Island	-	0	4	8	10	-	0	4	8	1	-	0	10	12	12
Vermont ${ }^{\text {a }}$	-	0	2	7	5	-	0	1	-	4	1	0	3	4	4
Mid. Atlantic	1	7	24	217	476	2	8	55	275	476	16	13	43	472	474
New Jersey	-	2	7	54	99	-	2	10	73	181	-	1	10	60	82
New York (Upstate)	-	1	14	60	72	1	1	43	47	37	14	5	29	194	117
New York City	-	2	10	60	226	-	1	5	46	99	-	1	9	27	76
Pennsylvania	1	1	5	43	79	1	3	9	109	159	2	5	17	191	199
E.N. Central	6	6	12	195	259	5	7	24	256	410	10	8	25	297	279
Illinois	-	1	6	40	96	-	1	6	20	117	-	1	4	21	42
Indiana	-	0	5	20	13	-	0	17	39	28	-	0	6	20	14
Michigan	3	2	8	68	82	1	3	7	98	133	,	2	7	79	79
Ohio	3	1	4	44	36	4	2	10	93	99	9	4	19	158	119
Wisconsin	-	1	5	23	32	-	0	4	6	33	-	0	5	19	25
W.N. Central	1	2	30	90	68	-	4	22	113	196	-	1	15	47	59
lowa	-	0	2	8	18	-	0	3	12	20	-	0	3	9	4
Kansas	1	0	5	24	13	-	0	2	8	23	-	0	2	3	2
Minnesota	-	0	29	9	3	-	0	13	16	25	-	0	11	11	16
Missouri	-	1	3	30	26	-	2	7	67	102	-	0	3	15	23
Nebraska ${ }^{\dagger}$	-	0	3	12	8	-	0	1	10	21	-	0	2	5	2
North Dakota	-	0	2	-	-	-	0	0	-	-	-	0	1	-	2
South Dakota	-	0	3	7	-	-	0	1	-	5	-	0	6	4	10
S. Atlantic	9	11	34	377	506	22	23	66	825	1,010	16	8	19	295	282
Delaware	-	0	2	10	5	-	1	4	32	22	-	0	2	8	13
District of Columbia	-	0	2	5	2	-	0	2	5	10	2	0	5	16	8
Florida	5	4	17	146	200	7	8	19	294	347	8	3	9	123	77
Georgia	-	1	7	50	100	3	3	7	122	157	-	0	4	12	22
Maryland ${ }^{\dagger}$	1	1	6	45	49	2	3	10	120	111	2	1	5	53	84
North Carolina	1	0	20	62	61	10	0	23	116	112	2	0	5	28	23
South Carolina ${ }^{\dagger}$	1	0	2	15	28	-	2	7	55	116	-	0	1	2	11
Virginia ${ }^{\dagger}$	1	1	11	40	58	-	1	18	38	108	2	1	7	46	32
West Virginia	-	0	3	4	3	-	0	18	43	27	-	0	3	7	12
E.S. Central	-	2	13	91	203	5	6	14	232	261	1	1	9	56	58
Alabama ${ }^{+}$	-	0	9	12	35	1	2	8	75	60	-	0	2	7	10
Kentucky	-	0	5	29	21	1	1	5	50	50	-	0	4	17	19
Mississippi	-	0	1	5	16	-	0	3	10	41	-	0	1	1	3
Tennessee ${ }^{\dagger}$	-	1	5	45	131	3	2	8	97	110	1	1	7	31	26
W.S. Central	-	4	77	126	321	3	14	315	479	405	1	1	32	43	27
Arkansas	-	0	9	33	14	-	1	4	33	49	-	0	3	3	5
Louisiana	-	0	2	7	51	-	0	3	15	59	-	0	2	4	1
Oklahoma	-	0	2	4	4	3	0	17	29	31	-	0	3	1	3
Texas ${ }^{\dagger}$	-	4	73	82	252	-	12	295	402	266	1	0	26	35	18
Mountain	2	5	18	188	220	-	4	39	124	375	4	2	7	81	71
Arizona	-	2	16	105	112	-	1	23	33	236	2	1	3	27	16
Colorado	2	1	4	32	29	-	1	5	28	41	-	0	2	16	17
Idaho ${ }^{\dagger}$	-	0	2	9	18	-	0	2	10	9	2	0	2	9	3
Montana	-	0	3	9	7	-	0	7	-	3	-	0	1	5	5
Nevada ${ }^{+}$	-	0	2	7	17	-	0	4	14	40	-	0	2	3	14
New Mexico ${ }^{\dagger}$	-	0	3	12	18	-	0	3	15	14	-	0	1	4	2
Utah	-	0	2	11	18	-	0	5	24	30	-	0	1	17	10
Wyoming	-	0	1	3	1	-	0	1	-	2	-	0	0	-	4
Pacific	9	21	163	847	516	5	9	61	379	443	1	2	9	65	49
Alaska	-	0	1	-	3	-	0	1	3	7	-	0	1	-	-
California	6	18	162	767	428	3	7	41	293	296	1	2	9	65	47
Hawaii	-	0	2	8	20	-	0	1	4	6	-	0	1	-	2
Oregon ${ }^{\dagger}$	1	1	5	37	32	1	1	5	47	80	N	0	0	N	N
Washington	2	1	13	35	33	1	0	18	32	54	-	0	0	-	-
American Samoa	U	0	0	U	1	U	0	0	U	-	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	2	-	0	0	-	18	-	0	0	-	-
Puerto Rico	-	0	3	19	56	-	1	8	24	35	-	0	1	1	-
U.S. Virgin Islands	-	0	0			-	0	0		-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

Ј: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }_{\dagger}^{*}$ Incidence data for reporting years 2005 and 2006 are provisional.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Lyme disease					Malaria				
	Current week	Previous 52 weeks		$\begin{array}{r} \text { Cum } \\ 2006 \\ \hline \end{array}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	249	240	2,153	11,340	16,457	11	24	125	844	1,016
New England	47	37	780	1,974	2,903	1	1	11	43	53
Connecticut	46	10	753	1,403	429	-	0	5	11	11
Maine ${ }^{\dagger}$	-	2	34	108	202	-	0	1	3	4
Massachusetts	-	2	41	33	2,038	-	0	3	19	30
New Hampshire	1	5	50	369	173	1	0	3	9	5
Rhode Island	-	0	5	-	25	-	0	8	-	2
Vermont ${ }^{\dagger}$	-	1	9	61	36	-	0	1	1	1
Mid. Atlantic	176	151	1,176	6,564	9,565	1	5	13	150	278
New Jersey	-	22	141	1,295	3,001	-	1	3	28	68
New York (Upstate)	160	74	1,150	2,872	2,708	1	1	11	26	34
New York City	-	1	15	13	322	-	2	7	67	148
Pennsylvania	16	40	217	2,384	3,534	-	1	3	29	28
E.N. Central	1	10	111	963	1,532	1	2	7	84	112
Illinois	-	0	2	-	117	-	1	4	32	63
Indiana	-	0	3	15	24	-	0	3	8	3
Michigan	1	1	6	36	41	-	0	2	15	19
Ohio	-	1	6	34	43	1	0	3	22	17
Wisconsin	-	10	106	878	1,307	-	0	3	7	10
W.N. Central	-	7	91	322	556	1	0	32	32	39
lowa	-	1	8	71	81	-	0	1	1	7
Kansas	-	0	2	3	3	1	0	2	6	4
Minnesota	-	6	88	231	456	-	0	30	14	11
Missouri	-	0	3	8	11	-	0	2	5	16
Nebraska ${ }^{\dagger}$	-	0	2	8	3	-	0	2	4	1
North Dakota	-	0	3	-	-	-	0	1	1	-
South Dakota	-	0	1	1	2	-	0	1	1	-
S. Atlantic	17	29	103	1,261	1,720	1	6	15	238	221
Delaware	-	8	27	360	544	-	0	1	5	3
District of Columbia	4	0	7	37	8	-	0	2	3	8
Florida	2	1	5	26	26	-	1	6	43	37
Georgia	-	0	1	2	5	-	1	6	65	41
Maryland ${ }^{\dagger}$	2	15	60	609	907	-	1	5	51	81
North Carolina	2	0	4	23	40	1	0	8	20	22
South Carolina ${ }^{\dagger}$	1	0	3	8	15	-	0	2	8	7
Virginia ${ }^{+}$	6	3	25	189	165	-	1	9	41	21
West Virginia	-	0	44	7	10	-	0	2	2	1
E.S. Central	-	0	4	17	26	-	0	3	19	22
Alabama ${ }^{+}$	-	0	1	5	1	-	0	2	8	4
Kentucky	-	0	2	4	3	-	0	2	3	7
Mississippi	-	0	0	-	-	-	0	1	3	-
Tennessee ${ }^{\dagger}$	-	0	2	8	22	-	0	2	5	11
W.S. Central	-	0	3	10	65	-	2	31	51	89
Arkansas	-	0	1	-	4	-	0	1	1	5
Louisiana	-	0	0	-	3	-	0	1	1	2
Oklahoma	-	0	0	-	-	-	0	6	7	3
Texas ${ }^{\dagger}$	-	0	3	10	58	-	1	29	42	79
Mountain	-	0	4	19	15	1		9	51	42
Arizona	-	0	4	4	3	-	0	9	17	10
Colorado	-	0	1	4	-	-	0	2	11	20
Idaho ${ }^{\dagger}$	-	0	1	2	2	-	0	1	1	-
Montana	-	0	0	-	-	-	0	1	2	-
Nevada ${ }^{\dagger}$	-	0	1	1	3	-	0	1	1	2
New Mexico ${ }^{\dagger}$	-	0	1	1	2	-	0	1	3	3
Utah	-	0	1	6	2	1	0	2	16	5
Wyoming	-	0	1	1	3	-	0	1		2
Pacific	8	4	23	210	75	5	4	13	176	160
Alaska	-	0	1	2	4	-	0	4	21	4
California	8	4	21	197	47	1	4	10	120	119
Hawaii	N	0	0	N	N	-	0	2	4	14
Oregon ${ }^{+}$	-	0	2	8	17	1	0	1	9	9
Washington	-	0	3	3	7	3	0	5	22	14
American Samoa	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	-	3
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-

[^10]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Meningococcal disease, invasive										Pertussis				
	All serogroups					Serogroup unknown									
	Previous 52 weeks 			$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	$\begin{gathered} \text { Cum } \\ 2005 \\ \hline \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
	week	Med	Max				Med	Max				Med	Max		
United States	10	20	85	803	919	7	13	58	523	563	98	270	2,877	9,062	15,818
New England	-	1	3	35	58	-	0	2	25	20	3	28	83	884	947
Connecticut	-	0	2	9	12	-	0	2	2	1	-	1	5	35	49
Maine ${ }^{\text {¢ }}$	-	0	1	4	2	-	0	1	3	2	1	1	7	42	33
Massachusetts	-	0	2	15	27	-	0	2	15	5	-	21	43	594	725
New Hampshire	-	0	2	5	10	-	0	2	5	10	-	2	36	122	48
Rhode Island	-	0	1	-	2	-	0	0	-	-	-	0	17	-	21
Vermont ${ }^{\dagger}$	-	0	1	2	5	-	0	0	-	2	2	1	14	91	71
Mid. Atlantic	-	3	14	118	111	-	2	11	88	85	27	33	137	1,248	968
New Jersey	-	0	2	11	26	-	0	2	11	26	-	4	13	142	132
New York (Upstate)	-	1	7	31	31	-	0	5	5	11	22	14	123	553	364
New York City	-	0	6	39	17	-	0	6	39	17	-	2	8	60	78
Pennsylvania	-	1	5	37	37	-	1	5	33	31	5	11	26	493	394
E.N. Central	2	3	11	93	117	1	1	6	66	97	4	41	133	1,259	2,693
Illinois	-	0	4	18	27	-	0	4	18	27	-	9	35	228	628
Indiana	-	0	5	20	16	-	0	2	9	7	-	4	75	157	225
Michigan	-	0	3	17	24	-	0	3	8	15	4	7	23	332	209
Ohio	2	1	5	35	31	1	1	4	28	29	-	14	30	410	831
Wisconsin	-	0	2	3	19	-	0	2	3	19	-	5	41	132	800
W.N. Central	-	1	4	43	62	-	0	3	14	27	16	29	552	869	2,524
Iowa	-	0	2	12	15	-	0	1	4	1	-	6	63	201	583
Kansas	-	0	1	1	9	-	0	1	1	9	12	8	28	221	268
Minnesota	-	0	2	10	11	-	0	1	3	4	-	0	485	137	887
Missouri	-	0	2	13	20	-	0	1	2	10	3	7	42	195	325
Nebraska ${ }^{\dagger}$	-	0	2	5	4	-	0	1	3	3	1	3	9	72	220
North Dakota	-	0	1	1	-	-	0	1	1	-	-	0	26	26	80
South Dakota	-	0	1	1	3	-	0	0	-	-	-	0	7	17	161
S. Atlantic	5	3	14	142	175	4	2	7	56	73	8	21	46	695	1,039
Delaware	-	0	1	4	4	-	0	1	4	4	-	0	1	3	14
District of Columbia	-	0	1	1	5	-	0	1	1	4	-	0	3	3	7
Florida	2	1	6	56	66	2	0	5	19	24	3	4	9	153	151
Georgia	1	0	2	11	14	1	0	2	11	14	1	0	3	14	39
Maryland ${ }^{\dagger}$	1	0	2	11	18	1	0	1	3	3	2	3	9	91	153
North Carolina	1	0	11	24	28	-	0	3	7	6	-	0	22	141	64
South Carolina ${ }^{\dagger}$	-	0	2	15	13	-	0	1	5	8	-	4	22	109	302
Virginia ${ }^{\dagger}$	-	0	4	15	21	-	0	3	6	8	2	3	27	155	271
West Virginia	-	0	2	5	6	-	0	0	-	2	-	0	9	26	38
E.S. Central	-	1	4	30	45	-	1	4	24	34	6	7	16	254	406
Alabama ${ }^{+}$	-	0	1	5	5	-	0	1	4	3	-	1	7	54	63
Kentucky	-	0	2	7	15	-	0	2	7	15	-	2	5	52	118
Mississippi	-	0	1	3	5	-	0	1	3	5	3	1	4	35	47
Tennessee ${ }^{\dagger}$	-	0	2	15	20	-	0	2	10	11	3	2	10	113	178
W.S. Central	-	1	23	48	89	-	0	6	20	23	-	18	360	472	1,687
Arkansas	-	0	3	9	11	-	0	2	6	3	-	2	21	44	233
Louisiana	-	0	1	3	28	-	0	1	1	5	-	0	3	6	43
Oklahoma	-	0	4	8	13	-	0	0	-	2	-	0	124	18	1
Texas ${ }^{\dagger}$	-	1	16	28	37	-	0	4	13	13	-	15	215	404	1,410
Mountain	1	1	5	53	73	1	0	4	25	21	28	62	230	2,016	3,029
Arizona	1	0	3	16	30	1	0	3	16	10	8	10	177	396	758
Colorado	-	0	2	18	15	-	0	1	2	-	5	20	40	621	966
Idaho ${ }^{\dagger}$	-	0	2	3	4	-	0	2	2	3	2	2	11	63	160
Montana	-	0	1	3	-	-	0	1	1	-	6	2	9	96	533
Nevada ${ }^{+}$	-	0	2	2	9	-	0	0	-	2	-	0	9	39	41
New Mexico ${ }^{\dagger}$	-	0	1	2	5	-	0	0	-	4	-	2	6	59	148
Utah	-	0	1	5	10	-	0	0	-	2	6	15	39	679	387
Wyoming	-	0	2	4	-	-	0	2	4	-	1	1	8	63	36
Pacific	2	5	29	241	189	1	5	25	205	183	6	45	1,334	1,365	2,525
Alaska	-	0	1	2	1	-	0	1	2	1	1	2	15	56	87
California	1	3	14	148	124	1	3	14	148	124	1	26	1,136	920	1,090
Hawaii	-	0	1	6	10	-	0	1	6	5	-	2	5	62	135
Oregon ${ }^{\dagger}$	-	1	7	57	35	-	1	4	38	35	-	2	8	89	588
Washington	1	0	25	28	19	-	0	11	11	18	4	7	195	238	625
American Samoa	U	0	0	-	-	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	-	-	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	1	-	0	0	-	1	U	0	0	U	2
Puerto Rico	-	0	1	4	6	-	0	1	4	6	-	0	1	1	5
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }^{*}$ Incidence data for reporting years 2005 and 2006 are provisional.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Rabies, animal					Rocky Mountain spotted fever					Salmonellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2005 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	93	109	166	4,127	4,422	40	35	246	1,354	1,180	609	809	2,291	26,735	29,856
New England	7	12	25	473	533	-	0	2	2	7	13	33	331	1,433	1,633
Connecticut	4	3	14	139	140	-	0	0	-	-	-	0	323	323	338
Maine ${ }^{\dagger}$	2	1	6	72	48	N	0	0	N	N	-	2	10	81	130
Massachusetts	-	4	17	178	274	-	0	2	1	5	-	18	53	782	876
New Hampshire	1	0	5	37	11	-	0	1	1	1	3	2	24	139	140
Rhode Island	-	0	4	1	16	-	0	2	-	1	9	0	17	66	73
Vermont ${ }^{\dagger}$	-	1	4	46	44	-	0	0	-	-	1	1	5	42	76
Mid. Atlantic	20	20	50	815	713	1	1	6	40	70	44	83	272	2,989	3,701
New Jersey	N	0	0	N	N	-	0	2	7	21		14	39	576	741
New York (Upstate)	20	11	20	400	394	-	0	1	2	1	30	22	233	809	845
New York City	-	0	3	-	20	-	0	1	6	6	2	16	44	507	866
Pennsylvania	-	9	35	415	299	1	1	3	25	42	12	29	67	1,097	1,249
E.N. Central	3	2	17	132	155	-	0	5	26	37	23	101	189	3,526	4,264
Illinois	1	0	7	41	42	-	0	1	1	11	-	26	45	854	1,428
Indiana	-	0	2	10	10	-	0	1	5	-	-	12	67	568	446
Michigan	-	1	5	39	33	-	0	1	2	5	4	17	32	672	696
Ohio	2	0	9	42	70	-	0	4	17	19	19	23	56	872	966
Wisconsin	N	0	0	N	N	-	0	1	1	2	-	15	28	560	728
W.N. Central	5	4	20	222	261	3	2	13	136	128	16	43	107	1,725	1,830
lowa	1	0	7	48	-	-	0	1	4	5	1	7	21	305	294
Kansas	-	1	5	58	64	-	0	1	1	5	1	7	16	251	268
Minnesota	-	1	6	35	57	-	0	1	2	2	-	10	60	467	408
Missouri	4	1	4	44	59	2	2	10	108	104	11	13	35	469	570
Nebraska ${ }^{\dagger}$	-	0	0	-	-	1	0	5	21	7	3	4	12	134	143
North Dakota	-	0	7	16	25	-	0	1	-	-	-	0	46	19	24
South Dakota	-	0	4	21	56	-	0	0	-	5	-	2	6	80	123
S. Atlantic	46	36	118	1,484	1,598	29	16	94	799	603	278	206	514	7,044	8,058
Delaware	-	0	0	-	-	-	0	3	17	5	-	2	9	91	91
District of Columbia	-	0	0	-	-	-	0	1	1	2	4	1	7	43	41
Florida	-	0	99	126	201	-	0	3	14	12	134	95	230	3,043	3,022
Georgia	1	3	9	100	201	1	0	3	19	81	58	26	87	1,040	1,280
Maryland ${ }^{\dagger}$	-	8	13	254	277	2	1	4	46	55	20	12	30	480	585
North Carolina	16	8	22	369	362	24	10	87	602	329	38	32	130	1,019	1,071
South Carolina ${ }^{\dagger}$	-	3	10	112	165	-	1	6	22	48	15	18	51	572	1,028
Virginia ${ }^{+}$	23	10	27	443	352	2	2	13	75	66	9	20	62	678	824
West Virginia	6	1	13	80	40	-	0	2	3	5	-	2	19	78	116
E.S. Central	3	4	16	178	114	2	5	24	216	224	25	54	148	1,872	2,042
Alabama ${ }^{+}$	1	1	7	58	64	-	1	6	62	62	6	14	70	638	477
Kentucky	2	0	5	20	8	-	0	1	1	3	3	8	21	296	350
Mississippi	-	0	2	4	5	-	0	1	2	12	-	12	47	435	626
Tennessee ${ }^{\dagger}$	-	2	9	96	37	2	3	18	151	147	16	14	31	503	589
W.S. Central	-	14	34	546	681	2	1	161	91	84	78	85	922	2,541	2,816
Arkansas	-	0	4	24	26	2	0	32	44	53	45	14	43	590	516
Louisiana	-	0	0	-	-	-	0	1	1	6	-	7	38	222	643
Oklahoma	-	1	9	51	63	-	0	154	35	7	22	7	48	326	278
Texas ${ }^{\dagger}$	-	13	29	471	592	-	0	3	11	18	11	50	839	1,403	1,379
Mountain	3	3	16	127	207	3	0	6	37	25	40	50	84	1,748	1,695
Arizona	-	2	11	95	130	1	0	6	7	12	18	15	67	552	453
Colorado	-	0	1	-	16	-	0	1	2	4	12	12	30	492	429
Idaho ${ }^{\dagger}$	-	0	12	-	-	2	0	3	10	3	1	3	9	125	111
Montana	2	0	2	13	13	-	0	2	2	1	3	3	16	100	69
Nevada ${ }^{\dagger}$	-	0	1	1	13	-	0	0	-	-	-	2	17	71	132
New Mexico ${ }^{\dagger}$	-	0	2	7	8	-	0	2	5	3	-	4	12	160	199
Utah	1	0	1	7	13	-	0	2	6	-	4	5	15	211	235
Wyoming	-	0	2	4	14	-	0	1	5	2	2	1	5	37	67
Pacific	6	4	10	150	160	-	0	1	7	2	92	110	426	3,857	3,817
Alaska	-	0	4	14	1	-	0	0	-	-	1	1	7	55	41
California	6	3	10	122	154	-	0	1	5	-	76	88	292	3,043	2,870
Hawaii	-	0	0	-	-	-	0	0	-	-	-	4	10	153	218
Oregon ${ }^{\dagger}$	-	0	4	14	5	-	0	1	2	2	2	7	16	292	306
Washington	U	0	0	U	U	N	0	0	N	N	13	7	124	314	382
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	2	U	4
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	U	0	0	-	-	-	0	0	-	-	-	0	3	-	30
Puerto Rico	-	1	6	65	52	N	0	0	N	N	12	6	35	152	465
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2005 and 2006 are provisional.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis					Streptococcal disease, invasive, group A				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2006 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	72	56	297	1,922	2,081	192	232	1,013	7,552	10,012	42	87	283	3,673	3,447
New England	3	3	51	197	163	1	4	51	195	236	1	5	15	173	219
Connecticut	-	0	50	50	41	-	0	45	45	41	U	0	3	U	80
Maine ${ }^{\text {§ }}$	2	0	8	27	27	-	0	2	3	12	-	0	2	15	12
Massachusetts	-	2	9	82	63	-	3	11	128	145	-	3	6	101	95
New Hampshire	-	0	3	19	14	-	0	4	7	10	1	0	9	41	15
Rhode Island	1	0	2	6	3	1	0	6	9	12	-	0	3	5	8
Vermont ${ }^{\text {§ }}$	-	0	2	2	15	-	0	1	3	16	-	0	2	11	9
Mid. Atlantic	4	5	107	139	245	3	15	72	517	934	4	15	43	678	702
New Jersey	-	0	7	3	54	-	4	24	189	248	-	3	8	122	147
New York (Upstate)	-	0	103	12	89	3	5	60	171	194	2	4	32	240	198
New York City	-	0	4	21	11	-	4	12	98	320	-	1	10	76	140
Pennsylvania	-	0	5	5	91	-	2	24	59	172	2	6	13	240	217
E.N. Central	16	11	44	426	425	4	20	38	651	816	-	14	43	651	731
Illinois	-	1	7	59	112	-	7	16	229	267	-	4	11	144	242
Indiana	-	1	6	48	41	-	2	18	88	115	-	2	11	90	82
Michigan	1	1	6	59	71	1	3	10	113	176	-	3	12	177	172
Ohio	11	3	19	123	97	3	3	11	114	78	-	4	19	198	158
Wisconsin	4	2	34	137	104	-	3	9	107	180	-	1	4	42	77
W.N. Central	3	8	35	270	330	27	33	77	1,057	1,079	2	5	57	252	214
lowa	1	2	8	92	70	3	2	10	69	63	N	0	0	N	N
Kansas	-	0	3	-	33	1	3	20	94	143	-	1	5	46	35
Minnesota	-	3	19	144	82	-	2	9	86	63	-	0	52	121	79
Missouri	1	2	13	112	75	22	12	69	506	702	1	1	5	48	54
Nebraska§	4	1	5	42	41	1	2	14	81	75	-	0	4	22	18
North Dakota	-	0	15	-	5	-	0	18	61	2	1	0	5	9	9
South Dakota	2	0	5	29	24	-	4	17	160	31	-	0	3	6	19
S. Atlantic	20	7	39	301	280	57	54	122	1,833	1,447	19	22	43	883	684
Delaware	-	0	2	7	7	-	0	2	7	10	-	0	2	8	5
District of Columbia	-	0	1	1	-	2	0	2	12	9	1	0	2	10	7
Florida	4	2	29	66	68	40	27	66	903	703	4	6	16	217	177
Georgia	4	1	6	64	34	4	17	38	589	357	1	5	11	169	144
Maryland ${ }^{\text {§ }}$	6	1	5	52	55	4	2	10	90	60	2	4	12	163	132
North Carolina	4	1	10	72	42	6	1	21	115	133	9	0	26	135	99
South Carolina ${ }^{\text {s }}$	-	0	2	6	7	-	1	9	67	77	-	1	6	51	29
Virginia ${ }^{\text {® }}$	-	0	8	-	65	1	1	8	48	97	2	2	11	107	69
West Virginia	-	0	2	-	2	-	0	2	2	1	-	0	6	23	22
E.S. Central	8	3	14	145	121	9	13	31	432	955	3	3	11	158	134
Alabama ${ }^{\text {® }}$	1	0	5	20	23	-	3	14	131	183	N	0	0	N	N
Kentucky	2	1	8	55	46	-	5	12	161	230	-	0	5	33	26
Mississippi	-	0	1	-	5	-	1	6	42	68	-	0	0	-	-
Tennessee ${ }^{\text {® }}$	-	0	4	24	47	9	3	11	98	474	3	3	9	125	108
W.S. Central	2	1	52	23	70	10	30	596	867	2,537	2	7	58	289	236
Arkansas	-	0	2	10	9	6	1	7	72	46	1	0	5	24	15
Louisiana	-	0	1	-	18	2	0	7	43	112	-	0	1	4	5
Oklahoma	2	0	8	13	18	2	3	286	89	493	1	2	14	78	86
Texas§	-	1	44	53	25	-	27	308	663	1,886	-	4	43	183	130
Mountain	7	5	15	206	214	53	22	48	768	543	11	11	78	507	452
Arizona	3	1	8	68	20	29	12	29	425	282	6	6	57	273	193
Colorado	2	1	8	77	56	16	3	18	153	86	3	3	8	106	140
Idaho ${ }^{\text {§ }}$	5	1	7	50	28	-	0	4	14	10	1	0	2	8	2
Montana	-	0	1	-	13	1	0	1	6	5	-	0	0	-	-
Nevada§	-	0	3	9	16	-	0	8	30	41	-	0	6	-	2
New Mexico§	-	0	2	4	21	-	2	10	85	84	1	1	7	59	67
Utah	5	1	12	83	53	4	1	4	49	32	-	1	7	58	45
Wyoming	2	0	3	15	7	3	0	1	6	3	-	0	1	3	3
Pacific	9	7	55	215	233	28	40	148	1,232	1,465	-	2	9	82	75
Alaska	-	0	1	-	9	1	0	2	9	11	-	0	0	-	-
California	6	4	18	139	92	21	32	104	1,007	1,242	-	0	0	-	-
Hawaii	-	0	2	11	10	-	1	4	32	26	-	2	9	82	75
Oregon§	3	2	47	74	64	1	1	31	98	98	N	0	0	N	N
Washington	3	2	32	65	58	5	2	43	86	88	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	2	U	5	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-	-	0	3	-	15	-	0	0	-	-
Puerto Rico	-	0	0	-	2	-	0	2	11	5	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2005 and 2006 are provisional.
${ }_{\S}^{\dagger}$ Includes E. coli O157:H7; Shiga toxin positive, serogroup non-0157; and Shiga toxin positive, not serogrouped.
§ontains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	Streptococcus pneumoniae, invasive disease Drug resistant, all ages					Syphilis, primary and secondary					Varicella (chickenpox)				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	19	51	334	1,832	1,915	110	172	334	6,145	5,942	262	802	3,204	29,698	19,752
New England	2	1	24	30	168	5	4	17	152	144	5	43	144	1,098	3,801
Connecticut	U	0	7	U	70	3	0	11	33	30	U	0	58	U	1,091
Maine ${ }^{\dagger}$	-	0	2	8	N	-	0	2	7	1	-	5	20	151	224
Massachusetts	-	0	6	-	75	2	2	6	91	91	-	1	54	94	1,731
New Hampshire	-	0	0	-		-	0	2	12	11	2	6	47	349	210
Rhode Island	-	0	11	10	14	-	0	6	7	10	-	0	0	-	
Vermont ${ }^{\dagger}$	2	0	2	12	9	-	0	1	2	1	3	12	50	504	545
Mid. Atlantic	1	3	15	120	164	9	21	35	773	732	34	105	183	3,390	3,327
New Jersey	N	0	0	N	N	-	3	7	115	99	-	0	0	-	-
New York (Upstate)	1	1	10	44	64	2	2	14	99	54	-	0	0	-	-
New York City	U	0	0	U	U	3	10	23	376	449	-	0	0	-	-
Pennsylvania	-	2	9	76	100	4	5	9	183	130	34	105	183	3,390	3,327
E.N. Central	-	11	41	429	486	11	17	38	640	657	8	237	587	10,772	4,123
Illinois	-	0	3	15	23	-	8	23	297	370	-	2	7	64	72
Indiana	-	2	21	115	156	-	1	4	60	47	-	0	475	475	251
Michigan	-	0	4	17	30	3	2	19	88	62	6	102	174	3,104	2,458
Ohio	-	6	32	282	277	6	4	8	151	155		82	420	6,526	1,011
Wisconsin	N	0	0	N	N	2	1	4	44	23	2	12	52	603	331
W.N. Central	1	1	191	34	32	2	5	10	184	180	27	22	84	1,070	310
lowa	N	0	0	N	N	-	0	2	11	6	N	0	0	N	N
Kansas	N	0	0	N	N	-	0	2	16	15	3	0	8	20	-
Minnesota	-	0	191	-	-	-	1	3	21	52	-	0	0	-	-
Missouri	1	1	3	33	26	-	3	8	123	102	24	17	82	969	213
Nebraska ${ }^{\dagger}$	-	0	0	-	2	-	0	1	3	4	-	0	0	-	-
North Dakota	-	0	1	-	1	-	0	1	-	-	-	0	25	44	13
South Dakota	-	0	1	1	3	2	0	3	10	1	-	1	12	37	84
S. Atlantic	12	26	53	983	787	40	42	186	1,442	1,429	31	90	860	3,154	1,508
Delaware	-	0	2	-	1	-	0	2	16	8	-	1	5	46	22
District of Columbia	-	0	3	21	13	6	2	9	86	73	-	0	5	27	24
Florida	7	13	36	538	425	12	15	29	530	492	-	0	0	-	-
Georgia	5	8	29	331	252	2	7	147	218	293	-	0	0	-	-
Maryland ${ }^{\dagger}$	-	0	0	-	-	12	5	19	212	228	-	0	0	-	-
North Carolina	N	0	0	N	N	4	6	17	215	195	-	0	0	-	-
South Carolina ${ }^{\dagger}$	-	0	0	-	-	1	1	7	49	47	2	16	53	765	411
Virginia ${ }^{\text {+ }}$	N	0	0	N	N	3	3	12	113	91	16	30	812	1,248	323
West Virginia	-	1	14	93	96	-	0	1	3	2	13	26	70	1,068	728
E.S. Central	2	4	13	146	133	10	13	24	491	324	1	0	70	90	36
Alabama ${ }^{\text {+ }}$	N	0	0	N	N	3	4	18	216	106	1	0	70	89	36
Kentucky	-	0	5	28	24	2	1	8	50	33	N	0	0	N	N
Mississippi	-	0	0	-	1	5	0	6	42	37	-	0	1	1	-
Tennessee ${ }^{\dagger}$	2	3	13	118	108	5	5	13	183	148	N	0	0	N	N
W.S. Central	-	0	4	14	99	26	27	42	1,070	883	136	181	1,757	8,176	4,744
Arkansas	-	0	3	11	12	3	1	6	55	38	1	7	110	590	-
Louisiana	-	0	4	3	87	1	4	17	155	192	-	0	8	43	108
Oklahoma	N	0	0	N	N	2	1	6	53	29	-	0	0	7-	
Texas ${ }^{\dagger}$	N	0	0	N	N	20	21	37	807	624	135	167	1,647	7,543	4,636
Mountain	1	2	27	76	46	-	7	24	286	305	20	52	138	1,948	1,903
Arizona	N	0	0	N	N	-	4	16	131	113	-	0	0		-
Colorado	N	0	0	N	N	-	1	3	30	33	12	33	76	1,040	1,301
Idaho ${ }^{+}$	N	0	0	N	N	-	0	1	2	20	-	0	0	,	
Montana	-	0	1	-	-	-	0	1	1	5	-	0	0	-	-
Nevada ${ }^{+}$	-	0	27	4	2	-	1	12	71	88	-	0	2	4	-
New Mexico ${ }^{\dagger}$	-	0	1	1	-	-	1	5	45	39	-	3	34	304	165
Utah	-	0	8	33	23	-	0	1	6	7	8	11	55	568	388
Wyoming	1	1	3	38	21	-	0	0	-	-	-	0	8	32	49
Pacific	-	0	0	-	-	7	32	49	1,107	1,288	-	0	0	-	-
Alaska	-	0	0	-	-	-	0	4	6	6	-	0	0	-	-
California	N	0	0	N	N	4	28	39	940	1,157	-	0	0	-	-
Hawaii	-	0	0	-	-	-	0	2	13	8	N	0	0	N	N
Oregon ${ }^{\dagger}$	N	0	0	N	N	-	0	6	13	21	N	0	0	N	N
Washington	N	0	0	N	N	3	2	11	135	96	N	0	0	N	N
American Samoa	-	0	0	-	-	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	-	0	0	-	-	U	0	0	U	U	U	0	0	U	U
Guam	-	0	0	-	-		0	0		3		3	12		380
Puerto Rico	N	0	0	N	N	-	3	10	86	155	-	8	47	266	520
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable.
Cum: Cumulative year-to-date counts.
Med: Median
Max: Maximum.

* Incidence data for reporting years 2005 and 2006 are provisional.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 16, 2006, and September 17, 2005 (37th Week)*

Reporting area	West Nile virus disease ${ }^{\dagger}$									
	Neuroinvasive					Non-neuroinvasive				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2005 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	1	1	146	827	1,070	3	1	282	1,254	1,461
New England	-	0	2	6	7	-	0	2	2	2
Connecticut	-	0	2	6	2	-	0	1	2	1
Maine ${ }^{\text {® }}$	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	0	-	4	-	0	1	-	1
New Hampshire	-	0	0	-	-	-	0	0	-	-
Rhode Island	-	0	0	-	1	-	0	0	-	-
Vermont ${ }^{\text {® }}$	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	-	0	8	16	35	-	0	3	5	18
New Jersey	-	0	2	2	2	-	0	2	1	1
New York (Upstate)	-	0	4	-	13	-	0	1	-	4
New York City	-	0	4	7	7	-	0	2	3	3
Pennsylvania	-	0	2	7	13	-	0	1	1	10
E.N. Central	-	0	25	118	222	-	0	16	53	112
Illinois	-	0	17	79	118	-	0	15	39	87
Indiana	-	0	2	5	9	-	0	1	3	1
Michigan	-	0	5	15	44	-	0	1	-	7
Ohio	-	0	6	14	43	-	0	3	4	12
Wisconsin	-	0	3	5	8	-	0	2	7	5
W.N. Central	1	0	27	141	138	-	0	57	260	433
lowa	-	0	3	12	9	-	0	4	8	17
Kansas	-	0	3	14	9	-	0	3	10	N
Minnesota	-	0	6	24	17	-	0	7	30	21
Missouri	-	0	7	23	14	-	0	3	7	12
Nebraska ${ }^{\text {§ }}$	-	0	6	23	44	-	0	14	52	122
North Dakota	-	0	4	13	12	-	0	23	88	72
South Dakota	1	0	7	32	33	-	0	20	65	189
S. Atlantic	-	0	4	6	26	-	0	3	3	19
Delaware	-	0	0	-	1	-	0	0	-	-
District of Columbia	-	0	1	-	1	-	0	1	1	-
Florida	-	0	2	3	8	-	0	0	-	11
Georgia	-	0	3	2	6	-	0	3	2	5
Maryland ${ }^{\text {s }}$	-	0	0		4	-	0	0	-	1
North Carolina	-	0	0	-	2	-	0	0	-	2
South Carolina ${ }^{\text {s }}$	-	0	1	-	4	-	0	0	-	-
Virginia ${ }^{\text {® }}$	-	0	0	-	-	-	0	1	-	-
West Virginia	-	0	1	1	-	N	0	0	N	N
E.S. Central	-	0	10	61	55	-	0	11	56	29
Alabama ${ }^{\text {§ }}$	-	0	1	4	5	-	0	2	-	2
Kentucky	-	0	1	-	3	-	0	0		-
Mississippi	-	0	9	52	35	-	0	11	55	26
Tennessee ${ }^{\text {§ }}$	-	0	2	5	12	-	0	1	1	1
W.S. Central	-	1	43	202	207	-	0	15	83	135
Arkansas	-	0	3	12	9	-	0	2	4	14
Louisiana	-	0	12	38	97	-	0	6	26	50
Oklahoma	-	0	6	17	4	-	0	3	8	6
Texas ${ }^{\text {s }}$	-	1	28	135	97	-	0	9	45	65
Mountain	-	0	54	225	98	1	0	158	635	205
Arizona	-	0	8	10	22	-	0	8	10	39
Colorado	-	0	9	40	18	1	0	32	159	78
Idahos	-	0	27	90	3		0	99	305	10
Montana	-	0	2	3	8	-	0	3	7	17
Nevada§	-	0	9	32	8	-	0	13	65	15
New Mexico§	-	0	2	1	15	-	0	1	2	13
Utah	-	0	7	39	21	-	0	15	66	28
Wyoming	-	0	4	10	3	-	0	6	21	5
Pacific	-	0	17	52	282	2	0	39	157	508
Alaska	-	0	0	-	-	-	0	0	-	-
California	-	0	17	50	281	2	0	30	137	502
Hawaii	-	0	0	-	-	-	0	0	-	-
Oregon§	-	0	1	2	1	-	0	9	19	6
Washington	-	0	0	-	-	-	0	1	1	-
American Samoa	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	0	0	U	U	U	0	0	U	U
Guam	U	0	0	U	U	U	0	0	U	U
Puerto Rico	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting years 2005 and 2006 are provisional.

Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (proposed) (ArboNET Surveillance),
${ }^{8}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending September 16, 2006 (37th Week)

	All causes, by age (years)								All causes, by age (years)						
Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	$\begin{aligned} & \text { P\& } I^{\dagger} \\ & \text { Total } \end{aligned}$	Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	$\begin{aligned} & \text { P\&I }{ }^{+} \\ & \text {Total } \end{aligned}$
New England	504	348	114	24	8	10	42	S. Atlantic	1,156	692	295	89	37	42	60
Boston, MA	137	96	30	9	1	1	12	Atlanta, GA	146	73	33	17	5	18	6
Bridgeport, CT	50	32	11	3	1	3	2	Baltimore, MD	208	120	64	16	6	2	22
Cambridge, MA	6	3	3	-	-	-	2	Charlotte, NC	106	60	32	8	5	1	6
Fall River, MA	27	16	8	3	-	-	1	Jacksonville, FL	144	95	32	8	3	5	5
Hartford, CT	49	33	12	2	2	-	9	Miami, FL	38	17	11	7	2	1	1
Lowell, MA	13	10	3	-	-	-	-	Norfolk, VA	51	32	9	6	1	3	2
Lynn, MA	12	9	2	1	-	-	-	Richmond, VA	46	32	9	4	1	-	2
New Bedford, MA	22	15	6	-	-	1	4	Savannah, GA	45	27	10	1	3	4	3
New Haven, CT	11	7	1	1	-	2	,	St. Petersburg, FL	54	37	12	3	1	1	4
Providence, RI	79	58	15	2	1	3	3	Tampa, FL	173	117	46	4	4	2	8
Somerville, MA	7	5	2	-	-	-	-	Washington, D.C.	123	71	29	12	6	5	-
Springfield, MA	24	12	10	1	1	-	1	Wilmington, DE	22	11	8	3	-	-	1
Waterbury, CT	17	14	1	-	2	-	1	E.S. Central	815	516	205	53	18	23	66
Worcester, MA	50	38	10	2	-	-	6	E.S. Ceningham, AL	8171	516 113	205 38	13	18 3	23 4	12
Mid. Atlantic	1,888	1,273	437	116	38	22	94	Chattanooga, TN	97	65	24	2	2	4	6
Albany, NY	43	30	8	2	1	2	3	Knoxville, TN	101	69	24	3	5	-	5
Allentown, PA	20	17	3	-	-	-	1	Lexington, KY	72	41	20	6	2	3	9
Buffalo, NY	58	46	10	1	1	-	7	Memphis, TN	130	79	26	18	3	4	15
Camden, NJ	12	7	3	1	1	-	-	Mobile, AL	46	27	15	3	-	1	2
Elizabeth, NJ	21	13	6	2	-	-		Montgomery, AL	57	38	16	2	-	1	6
Erie, PA	48	35	9	2	1	1	3	Nashville, TN	141	84	42	6	3	6	11
Jersey City, NJ	21	11	4	5	1	9	2	W.S. Central	1,402	888	333	103	36	42	42
New York City, NY	973	677	206	68	12	9	37	Austin, TX	1,45	62	15	3	4	1	-
Newark, NJ	32	13 7	8 3	9	2	-	-	Baton Rouge, LA	61	43	11	4	1	2	-
Paterson, NJ ${ }^{\text {Philadelphia, PA }}$	11 277	151	88	18	14	5	16	Corpus Christi, TX	66	41	18	4	1	2	2
Pittsburgh, $\mathrm{PA}^{\text {§ }}$	34	24	8	18	1	1	-	Dallas, TX	203	113	51	18	8	13	11
Reading, PA	25	16	6	-	1	2	1	El Paso, TX	104	69	24	8	1	2	5
Rochester, NY	140	104	27	6	2	1	11	Fort Worth, TX	97 375	63	28	3 34	13	3	4
Schenectady, NY	24	16	8	-	-	-	1	Houston, TX Little Rock, AR	375 68	229 48	93 11	34 6	13 1	6 2	9
Scranton, PA	32	23	9	-	-	1	1	New Orleans, LA ${ }^{\text {a }}$	68 U	48	U	U	U	\cup	U
Syracuse, NY	72	45	24	1	1	1	7	New Orleans, LA	178	113	49	6	5	5	7
Trenton, NJ	13	11	2	-	-	-	2	Shreveport, LA	50	39	7	3	1	-	3
Utica, NY	13	11	2	-	-	-	2	Tulsa, OK	115	68	26	14	1	6	3
Yonkers, NY	19	16	3	-	-	-	1								
E.N. Central	1,975	1,297	470	119	43	46	107	Mountain Albuquerque, NM	1,137 167	725 107	254 36	79 14	40 7	38 3	66
Akron, OH	47	33	10	3	-	1	3	Albuquerque, NM Boise, ID	167 48	107 37	36 5	14 6	7	3	15 6
Canton, OH	48	34	11	2	1	-	3	Colorado Springs, CO	48 55	37 40	5 9	6 3	-	3	4
Chicago, IL	293	171	74	30	12	6	8	Denver, CO	111	69	27	5	2	8	2
Cincinnati, OH	77	43	22	4	1	7	5	Las Vegas, NV	273	170	70	r	9	8 9	13
Cleveland, OH	208	156	44	4	3	1	11	Ogden, UT	25	17	4	3	1	-	
Columbus, OH	199	123	49	13	7	7	10	Phoenix, AZ						-12	11
Dayton, OH	120	76	34	9	1	5	4	Phoenix, AZ	184 34	95 20	46 11	21 2	10 1	12	11
Detroit, MI	173	94	47	18	9	5	10	Salt Like City, UT	115	84	20	3	6	2	7
Evansville, IN	58	45	9	4	?	4	1	Tucson, AZ	125	86	26	7	4	1	6
Fort Wayne, IN	75	54	14	1	2	4	5	Tucson, AZ	125	86	26	7	4	1	6
Gary, IN	12	9	3	-	-	-	1	Pacific	1,388	949	307	78	31	23	86
Grand Rapids, MI	68	49	13	3	1	2	5	Berkeley, CA	6	3	1	1	1	-	-
Indianapolis, IN	206	131	54	10	6	5	11	Fresno, CA	64	40	13	8	2	1	-
Lansing, MI	45	30	13	1	-	1	3	Glendale, CA	-	-	-	-	-	-	-
Milwaukee, WI	94	63	23	6	-	2	13	Honolulu, HI	91	61	24	4	-	2	6
Peoria, IL	60	44	13	2	-	1	6	Long Beach, CA	68	43	18	6	1	-	9
Rockford, IL	47	38	5	4	-	-	1	Los Angeles, CA	84	42	29	6	5	2	2
South Bend, IN	49	36	12	1	-	-	2	Pasadena, CA	29	21	6	2	-	-	3
Toledo, OH	96	68	20	4	-	4	5	Portland, OR	116	82	29	-	2	3	7
Youngstown, OH	U	U	U	U	U	U	U	Sacramento, CA	196	129	47	10	6	4	13
W.N. Central	532	350	127	30	9	15	39	San Diego, CA	156	108	26	12	6	4	16
Des Moines, IA	-		-	30	-	15	3	San Francisco, CA	138	84	42	8	1	3	10
Duluth, MN	27	23	1	1	1	1	4	San Jose, CA	143	98	30	10	3	2	10
Kansas City, KS	19	15	2	1	1	-	1	Santa Cruz, CA	40	30	9	-	1	-	2
Kansas City, MO	91	53	25	5	2	6	4	Seattle, WA	110 41	97 35	11	2	1	2	5
Lincoln, NE	43	34	7	2	,	-	4		106	35 76	20	1	2	-	3
Minneapolis, MN	63	32	20	4	3	4	7	Tacoma, WA	106	76	20	8	2	-	3
Omaha, NE	84	56	24	4	-	-	6	Total	10,797**	7,038	2,542	691	260	261	602
St. Louis, MO	82	51	22	7	-	1	4								
St. Paul, MN	52	40	10	-	-	2	5								
Wichita, KS	71	46	16	6	2	1	4								

a, KS
U: Unavailable. -:No reported cases.

[^11]FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals September 16, 2006, with historical data

* Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

Notifiable Disease Morbidity and 122 Cities Mortality Data Team Patsy A. Hall
Deborah A. Adams Rosaline Dhara
Willie J. Anderson Vernitta Love
Lenee Blanton Pearl C. Sharp

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr$t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/ publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to www.mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: *Available at http://www.cdc.gov/travel/other/2006/malaria_bahamas.htm.

[^1]: INSIDE
 1016 Inadvertent Misadministration of Meningococcal Conjugate Vaccine — United States, June-August 2005
 1017 Effects of Measles-Control Activities - African Region, 1999-2005
 1021 Update: Influenza Activity - United States and Worldwide, May 21-September 9, 2006

[^2]: *As defined in 21 CFR 1240.62 (Postmarketing reporting of adverse experiences), available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch. cfm $? \mathrm{FR}=600.80$.

[^3]: * Serum bactericidal assay with baby rabbit complement (rSBA). A titer ≥ 8 is considered to be protective on the basis of population studies on
 + meningococcal C conjugate vaccine efficacy in the United Kingdom $(3,4)$.
 ${ }^{\dagger}$ Serology results from a group of 372 subjects (available via the clinical trial database for the new meningococcal conjugate vaccine [MCV4, Menactra] [Sanofi Pasteur, Inc., Swiftwater, Pennsylvania]) were used as age-matched controls for comparison with the SC vaccinees.

[^4]: * Initial, nationwide catch-up SIAs target all children of a particular age group (in this region, children aged 9 months-14 years), with the goal of eliminating susceptibility to measles in the general population. Periodic follow-up SIAs then target all children born since the last SIA; follow-up SIAs are generally conducted nationwide every $3-5$ years and target children aged 9-59 months, with the goal of eliminating any measles susceptibility that has developed in recent birth cohorts and protecting children who did not respond to their first measles vaccination.

[^5]: ${ }^{\dagger}$ These activities were supported by the Measles Initiative. Founded in 2001, the Measles Initiative is a partnership formed to reduce measles mortality and is led by the American Red Cross, the United Nations Foundation, CDC, WHO, UNICEF, and the Canadian International Development Agency. The initiative supported implementation of high-quality measles SIAs during 20002004 for approximately 40 African countries. Additional information is available at http://www.measlesinitiative.org.
 ${ }^{\S}$ By convention, Algeria and the island nations of the Comoros, Mauritius, Sao Tome and Principe, and the Seychelles are not routinely included in analyses of data from the WHO African Region.

[^6]: ${ }^{9}$ Botswana, Lesotho, Malawi, Namibia, South Africa, Swaziland, and Zimbabwe.
 ** Angola, Benin, Burkina Faso, Burundi, Cameroon, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Liberia, Madagascar, Mali, Mauritania, Niger, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Togo, Uganda, Tanzania, and Zambia.
 ${ }^{\dagger \dagger}$ Central African Republic, Chad, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Guinea-Bissau, Mozambique, and Nigeria.

[^7]: *Data as of September 15, 2006.

[^8]: ${ }^{\dagger}$ Defined as a temperature of $\geq 100.0^{\circ} \mathrm{F}\left(\geq 37.8^{\circ} \mathrm{C}\right)$, oral or equivalent, and cough and/or sore throat in the absence of a known cause other than influenza.
 ${ }^{\$}$ The national baseline was calculated as the mean percentage of patient visits for ILI during noninfluenza weeks for the preceding three influenza seasons, plus 2 standard deviations. Noninfluenza weeks are those in which $<10 \%$ of laboratory specimens are positive for influenza. Wide variability in regional data precludes calculating region-specific baselines; therefore, applying the national baseline to regional data is inappropriate. National and regional percentages of patient visits for ILI are weighted on the basis of state population. IThe seasonal baseline is projected using a robust regression procedure that applies a periodic regression model to the observed percentage of deaths from pneumonia and influenza during the preceding 5 years. The epidemic threshold is 1.645 standard deviations above the seasonal baseline.

[^9]: 一: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts.

[^10]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

 U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
 ${ }^{*}$ Incidence data for reporting years 2005 and 2006 are provisional.
 ${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^11]: *Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $\geq 100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 \dagger Pneumonia and influenza.
 § Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 ${ }^{\pi}$ "Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
 ** Total includes unknown ages.

