MMWR Morbidity and Mortality Weekly Report

www.cdc.gov/mmwr

Weekly

October 5, 2007 / Vol. 56 / No. 39

National Disability Awareness Month — October 2007

October is National Disability Awareness Month in the United States. To mark this event, CDC is highlighting activities and interventions that have improved the health of persons with disabilities and reduced health-care costs $(1,2)$. One such intervention is health promotion, which can increase community awareness of the needs of persons with disabilities (3,4).
CDC provides funding to 16 states for healthpromotion programs for persons with disabilities. These 16 states use multiple strategies, including 1) creating a state disability advisory board to assist with strategic planning, development, and implementation of policies that address barriers to accessing health-promotion programs and primary preventive-care services; 2) implementing interventions to promote healthy behaviors among persons with disabilities; and 3) partnering with community-based disability organizations (e.g., independent living centers). Additional information regarding state disability and health programs is available at http://www. cdc.gov/ncbddd/dh/dhstateprograms.htm.

References

1. Ravesloot C, Seekins T, White G. Living well with a disability health promotion intervention: improved health status for consumers and lower costs for health care policymakers. Rehabil Psychol 2005;50:239-45.
2. Mann J, Zhou H, McDermott S, Poston MB. Healthy behavior change of adults with mental retardation: attendance in a health promotion program. Am J Ment Retard 2006;111:62-73.
3. Rimmer JH, Braddock D. Health promotion for people with physical, cognitive and sensory disabilities: an emerging national priority. Am J Health Promot 2002;16:220-4.
4. Lollar DJ. Public health and disability: emerging opportunities. Public Health Rep 1999;117:131-6.

Physical Activity Among Adults With a Disability — United States, 2005

The health benefits of physical activity have been well documented $(1,2)$ and are supported by recommendations from Healthy People 2010 (focus area 22) (3); however, fewer than half of U.S. adults follow these recommendations (4). Physical inactivity is particularly prevalent among adults with a disability (5), who are at increased risk for functional limitations and secondary health conditions (e.g., obesity, depression, or social isolation) (6) that can result from their disabilities, behavior, lifestyle, or environment (1). To estimate the statespecific prevalence of physical activity and physical inactivity among adults with and without a disability, CDC analyzed data from the 2005 Behavioral Risk Factor Surveillance System (BRFSS). This report summarizes the results of that analysis, which determined that, compared with adults without a disability, a smaller proportion of adults with a disability met national recommendations for physical activity (37.7% versus 49.4%), and a greater proportion were physically inactive (25.6% versus 12.8%). Public health measures to promote and increase physical activity should include consideration for the needs of adults with disabilities.
BRFSS is a state-based, random-digit-dialed telephone survey of the noninstitutionalized, U.S. civilian population aged ≥ 18 years. In 2005, approximately 350,000 persons from all 50 states, the District of Columbia, Puerto Rico (PR), and the U.S. Virgin Islands (USVI) participated in BRFSS. Consistent with the definition of disability from Healthy People 2010 (3), respondents were asked, "Are you limited in any

INSIDE

1025 Salmonella Oranienburg Infections Associated with Fruit Salad Served in Health-Care Facilities - Northeastern United States and Canada, 2006
1028 Progress in Measles Control - Nepal, 2000-2006

The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2007;56:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, MD, MPH
Director
Tanja Popovic, MD, PhD
Chief Science Officer
James W. Stephens, PhD
Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Suzanne M. Hewitt, MPA
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Catherine H. Bricker, MS Jude C. Rutledge Writers-Editors
Beverly J. Holland
Lead Visual Information Specialist Lynda G. Cupell Malbea A. LaPete Visual Information Specialists

Quang M. Doan, MBA Erica R. Shaver Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA
way in any activities because of physical, mental, or emotional problems?" and "Do you now have any health problem that requires you to use special equipment, such as a cane, a wheelchair, a special bed, or a special telephone?" Persons who responded yes to either question were classified as having a disability. To measure physical activity, respondents were asked how often they engaged in physical activities of moderate intensity (i.e., brisk walking, bicycling, vacuuming, gardening, or anything else that causes small increases in breathing or heart rate) and vigorous intensity (i.e., running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate) for at least 10 minutes at a time during a usual week.* Respondents were classified as meeting physical activity recommendations if they reported engaging in moderate-intensity activity for ≥ 30 minutes per day, ≥ 5 days per week, or vigorous-intensity activity for ≥ 20 minutes per day, ≥ 3 days per week. Respondents were classified as physically inactive if they reported participating in moderateintensity or vigorous-intensity activities for <10 minutes at a time during a usual week or reported no physical activity during a usual week. The Council of American Survey Research Organizations (CASRO) median response rate for the 2005 BRFSS was 51.1\%

Prevalence estimates were age-adjusted to the 2000 U.S. standard population. Bivariate analyses and chi-square tests were used to compare physical activity levels among those with and those without a disability, and all differences reported were considered to be statistically significant at $\mathrm{p}<0.05$. State-level prevalence estimates and 95% confidence intervals were calculated.

Nationwide in 2005, an estimated 19.6% of adults had a disability. Among states and territories, the prevalence of disability ranged from 11.5% in USVI to 27.1% in West Virginia (Table). Nationwide, a smaller proportion of adults with a disability engaged in recommended levels of physical activity than respondents without a disability (37.7% versus 49.4%; $\mathrm{p}<0.01$). A smaller proportion of adults with a disability met recommended levels for physical activity than adults without a disability in all states and territories except USVI, where the difference was not significant. Among states and territories, the prevalence of persons with a disability who met recommended physical activity levels ranged from 23.2% in Kentucky to 53.3\% in Alaska.

Nationwide, 25.6% of persons with a disability reported being physically inactive during a usual week compared with 12.8% of those without a disability ($\mathrm{p}<0.01$). Adults with a disability were more likely than those without a disability to

[^0]TABLE. Estimated age-adjusted prevalence of disability* and physical activity, by disability status and area - Behavioral Risk Factor Surveillance System, United States, 2005

Area			Physically active ${ }^{\dagger}$						Physically inactive§					
	Prevalence of disability		With a disability		Without a disability		Total		With a disability		Without a disability		Total	
	\%	(95\% CII')	\%	(95\% CI)	\%	(95\% CI)		(95\% CI)	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Alabama	23.2	(± 1.6)	31.2	(± 5.1)	45.3	(± 2.7)	41.9	(± 2.4)	31.4	(± 4.3)	15.7	(± 1.9)	20.1	(± 1.7)
Alaska	21.3	($\pm 2.2)$	53.3	(± 6.3)	57.9	(± 3.2)	56.7	(± 2.8)	16.7	(± 4.3)	10.2	(± 1.9)	11.8	(± 1.7)
Arizona	20.4	($\pm 2.2)$	45.0	(± 8.8)	54.8	(± 3.1)	52.3	($\pm 2.9)$	21.5	(± 6.4)	10.3	(± 1.8)	12.7	($\pm 1.8)$
Arkansas	21.6	($\pm 1.3)$	36.9	(± 4.1)	47.5	(± 2.0)	44.7	($\pm 1.7)$	28.2	(± 3.7)	13.2	(± 1.3)	16.8	($\pm 1.2)$
California	19.1	(± 1.2)	44.5	(± 4.3)	55.1	(± 1.9)	52.7	(± 1.7)	19.8	(± 3.6)	10.5	(± 1.3)	12.5	(± 1.2)
Colorado	18.0	(± 1.1)	42.4	(± 3.9)	55.0	(± 1.7)	52.5	(± 1.5)	16.6	(± 2.5)	9.1	(± 1.0)	10.8	(± 0.9)
Connecticut	15.9	(± 1.3)	41.5	(± 5.6)	52.0	(± 2.1)	50.0	(± 2.0)	21.3	(± 3.4)	10.9	(± 1.2)	12.9	($\pm 1.2)$
Delaware	18.5	(± 1.5)	35.3	(± 5.2)	46.8	($\pm 2.4)$	44.7	(± 2.1)	25.0	(± 4.0)	12.2	(± 1.5)	14.9	(± 1.4)
District of Columbia	16.7	(± 1.6)	46.2	(± 6.2)	52.7	(± 2.4)	50.7	($\pm 2.2)$	27.7	(± 4.8)	13.0	(± 1.7)	16.1	(± 1.6)
Florida	19.6	(± 1.2)	35.5	(± 3.9)	46.9	($\pm 1.9)$	44.4	(± 1.7)	27.2	(± 3.6)	13.6	(± 1.2)	16.7	(± 1.2)
Georgia	21.0	(± 1.4)	31.6	(± 4.4)	43.1	($\pm 2.0)$	40.2	(± 1.8)	35.1	(± 4.2)	14.2	(± 1.4)	19.0	(± 1.4)
Hawaii	15.7	(± 1.2)	46.7	(± 5.1)	53.1	(± 1.9)	52.0	(± 1.8)	18.3	(± 3.7)	11.0	(± 1.2)	12.4	(± 1.1)
Idaho	21.5	(± 1.3)	45.5	(± 4.1)	54.5	($\pm 2.0)$	52.3	(± 1.8)	17.2	(± 2.5)	10.9	($\pm 1.3)$	12.9	(± 1.2)
Illinois	15.8	(± 1.1)	35.4	(± 4.9)	48.2	(± 1.9)	45.8	(± 1.8)	27.2	(± 3.9)	13.4	(± 1.3)	16.0	($\pm 1.3)$
Indiana	18.3	(± 1.1)	42.8	(± 4.2)	47.5	(± 1.8)	46.1	(± 1.6)	23.5	(± 3.2)	12.5	(± 1.2)	15.1	(± 1.1)
lowa	17.7	(± 1.2)	35.8	(± 4.8)	47.4	(± 1.9)	45.2	($\pm 1.8)$	26.0	(± 4.3)	11.9	(± 1.2)	14.6	(± 1.1)
Kansas	19.3	(± 1.0)	36.9	(± 3.8)	50.9	(± 1.5)	47.8	(± 1.4)	25.9	(± 3.5)	10.8	(± 0.9)	14.3	(± 0.9)
Kentucky	24.1	(± 1.4)	23.2	(± 3.6)	36.7	(± 2.1)	32.9	(± 1.8)	43.4	(± 3.8)	23.4	(± 1.8)	28.8	(± 1.6)
Louisiana	20.2	(± 1.7)	27.4	(± 5.6)	38.9	(± 2.4)	36.5	($\pm 2.2)$	38.9	(± 5.3)	21.5	(± 2.0)	25.3	(± 1.8)
Maine	20.4	(± 1.5)	39.4	(± 4.8)	56.5	(± 2.3)	52.8	(± 2.0)	21.5	(± 3.0)	9.3	(± 1.3)	12.2	(± 1.2)
Maryland	17.4	(± 1.0)	38.1	(± 3.9)	50.0	(± 1.6)	47.6	(± 1.5)	24.2	($\pm 2.9)$	12.3	(± 1.1)	14.8	(± 1.0)
Massachusetts	17.9	(± 1.1)	40.8	(± 4.2)	53.9	(± 1.7)	51.3	(± 1.6)	26.1	(± 3.5)	11.9	(± 1.1)	14.8	(± 1.1)
Michigan	21.1	(± 0.8)	37.0	(± 2.8)	51.3	($\pm 1.3)$	48.0	(± 1.1)	24.0	(± 2.1)	11.6	(± 0.8)	14.6	(± 0.8)
Minnesota	22.8	(± 1.8)	42.9	(± 5.2)	51.5	($\pm 2.6)$	49.5	(± 2.3)	17.1	(± 3.7)	9.4	(± 1.4)	11.4	(± 1.4)
Mississippi	23.6	(± 1.5)	27.7	(± 4.8)	42.0	($\pm 2.2)$	38.6	(± 2.0)	33.8	(± 4.1)	17.6	(± 1.6)	21.9	(± 1.5)
Missouri	21.9	(± 1.5)	38.6	(± 4.9)	48.3	($\pm 2.6)$	45.8	($\pm 2.2)$	21.4	(± 3.5)	10.7	($\pm 2.0)$	13.6	(± 1.8)
Montana	21.2	(± 1.6)	40.7	(± 5.1)	58.6	($\pm 2.2)$	54.7	(± 2.1)	19.0	(± 3.5)	8.0	(± 1.1)	10.6	(± 1.1)
Nebraska	18.2	(± 1.0)	36.6	(± 4.1)	47.9	(± 1.7)	45.3	(± 1.6)	23.5	(± 3.1)	13.4	(± 1.2)	15.9	(± 1.1)
Nevada	20.3	(± 2.1)	38.6	(± 6.8)	53.0	(± 3.1)	49.5	(± 2.7)	18.5	(± 4.4)	10.8	($\pm 2.0)$	12.9	(± 1.9)
New Hampshire	17.9	(± 1.1)	40.3	(± 4.2)	57.7	(± 1.8)	54.4	(± 1.6)	22.3	($\pm 2.9)$	9.0	(± 1.0)	12.0	(± 1.0)
New Jersey	16.3	(± 0.8)	36.9	(± 3.3)	46.2	(± 1.4)	44.5	(± 1.3)	28.7	($\pm 2.9)$	15.5	(± 1.1)	18.0	(± 1.0)
New Mexico	21.1	(± 1.3)	42.1	(± 4.8)	52.5	(± 2.0)	49.6	(± 1.8)	21.7	(± 3.3)	11.5	(± 1.2)	14.2	(± 1.2)
New York	18.7	(± 1.1)	36.0	(± 3.8)	49.1	(± 1.7)	46.4	(± 1.5)	28.7	(± 3.3)	14.0	(± 1.3)	17.1	(± 1.2)
North Carolina	19.2	(± 0.7)	32.8	(± 2.9)	43.5	(± 1.2)	41.1	(± 1.0)	30.4	(± 2.5)	16.3	(± 0.9)	19.5	(± 0.8)
North Dakota	15.4	(± 1.2)	39.5	(± 5.9)	49.1	(± 2.1)	47.1	(± 2.0)	20.4	(± 3.5)	10.3	(± 1.2)	12.6	(± 1.1)
Ohio	19.0	(± 1.3)	38.9	(± 4.8)	50.0	($\pm 2.2)$	47.6	(± 2.0)	21.2	(± 3.3)	12.0	(± 1.4)	14.1	($\pm 1.3)$
Oklahoma	23.1	(± 1.1)	30.3	(± 3.1)	44.3	(± 1.8)	41.3	(± 1.5)	27.9	(± 2.7)	14.4	(± 1.3)	18.1	(± 1.2)
Oregon	23.6	(± 0.9)	47.1	(± 2.6)	57.1	(± 1.3)	54.3	(± 1.1)	17.9	(± 1.7)	9.3	(± 0.8)	11.8	(± 0.7)
Pennsylvania	19.1	(± 1.0)	37.5	(± 3.5)	50.1	(± 1.6)	47.5	(± 1.4)	25.5	(± 3.1)	11.6	(± 1.0)	14.5	(± 1.0)
Rhode Island	18.6	(± 1.5)	40.5	(± 5.6)	52.0	($\pm 2.3)$	49.6	(± 2.1)	26.5	(± 4.4)	14.4	(± 1.6)	17.0	(± 1.5)
South Carolina	20.7	(± 1.0)	32.2	(± 3.3)	46.7	(± 1.5)	43.7	(± 1.4)	25.9	($\pm 2.8)$	11.3	(± 0.9)	14.8	(± 0.9)
South Dakota	19.5	(± 1.2)	38.5	(± 4.7)	49.4	(± 1.8)	46.9	(± 1.7)	23.2	(± 4.1)	10.8	(± 1.1)	13.5	(± 1.1)
Tennessee	21.4	(± 1.5)	23.9	(± 4.5)	39.0	(± 2.4)	35.4	(± 2.1)	41.5	(± 4.8)	19.2	($\pm 2.2)$	24.3	(± 2.0)
Texas	18.9	(± 1.1)	37.2	(± 4.4)	47.1	(± 1.8)	44.8	(± 1.6)	25.9	(± 3.7)	12.9	(± 1.2)	16.1	(± 1.2)
Utah	21.6	(± 1.4)	42.5	(± 4.3)	56.0	(± 1.9)	52.8	(± 1.7)	15.3	($\pm 2.6)$	7.3	(± 1.1)	9.5	(± 1.0)
Vermont	20.1	(± 1.1)	47.2	(± 3.7)	58.4	(± 1.7)	55.9	(± 1.5)	18.4	(± 2.7)	8.8	(± 0.9)	11.2	(± 0.9)
Virginia	19.5	(± 1.3)	38.9	(± 4.6)	51.7	(± 2.2)	48.8	(± 2.0)	19.9	(± 3.1)	9.3	(± 1.1)	12.1	(± 1.1)
Washington	23.1	(± 0.7)	44.3	(± 2.1)	55.9	(± 1.0)	52.9	(± 0.9)	17.0	(± 1.5)	8.2	(± 0.6)	10.6	(± 0.5)
West Virginia	27.1	(± 1.7)	27.7	(± 4.0)	44.1	($\pm 2.4)$	39.6	($\pm 2.0)$	41.0	(± 4.3)	17.6	(± 1.7)	24.0	(± 1.7)
Wisconsin	18.7	(± 1.4)	50.3	(± 4.9)	57.6	(± 2.1)	55.6	(± 1.9)	17.2	($\pm 2.8)$	7.1	(± 1.1)	9.6	(± 1.0)
Wyoming	19.4	($\pm 1.2)$	43.4	(± 4.3)	57.8	($\pm 1.8)$	54.8	($\pm 1.7)$	18.7	($\pm 2.9)$	9.5	(± 1.1)	11.7	(± 1.0)
Puerto Rico	21.7	(± 1.5)	24.1	(± 4.8)	35.1	($\pm 2.4)$	32.2	(± 2.1)	50.2	(± 5.3)	32.9	($\pm 2.2)$	37.3	(± 2.0)
U.S. Virgin Islands	11.5	(± 1.5)	35.1	(± 8.4)	41.4	($\pm 2.7)$	40.4	($\pm 2.5)$	23.1	(± 5.7)	21.5	($\pm 2.2)$	22.3	(± 2.1)
Total	19.6	(± 0.2)	37.7	(± 0.9)	49.4	(± 0.4)	46.8	(± 0.3)	25.6	(± 0.7)	12.8	(± 0.3)	15.7	(± 0.2)

[^1]be physically inactive in all states and territories except USVI, where the difference was not significant. Among persons with a disability, the prevalence of physical inactivity ranged from 15.3\% in Utah to 50.2% in PR.

Reported by: JH Rimmer, PhD, Dept of Disability and Human Development, Univ of Illinois at Chicago. LA Wolf, MPH, BS Armour, PhD, LB Sinclair, MPH, Div of Human Development and Disability, National Center for Birth Defects and Developmental Disabilities, CDC.
Editorial Note: The findings in this report indicate that, in 2005, the proportion of persons without a disability in 28 of 53 (52.8%) U.S. states and territories surpassed the 50% target for meeting moderate or vigorous physical activity recommendations set by Healthy People 2010 (objective 22-2). ${ }^{\dagger}$ However, the proportion of persons with a disability surpassed the same target in only two of 53 (3.7\%) states and territories (Table). Furthermore, the findings indicate that the proportion of adults with a disability who were physically inactive (25.6%) during a usual week was nearly twice the proportion of adults without a disability who were inactive (12.8%). These results are consistent with those of previous reports finding significant differences in physical activity levels between persons with and without a disability (5).

Physical inactivity among persons with a disability might be more common than among persons without a disability because the inactivity is a consequence of 1) the disabling condition itself, 2) physiologic decline (e.g., decreased aerobic capacity, muscular strength and endurance, or flexibility), or 3) lack of access to physical-activity programs and facilities because of personal or environmental barriers (7). Persons with a disability often experience barriers to regular physical activity that differ from those experienced by the general population, including lack of transportation to fitness centers, lack of information on available and accessible facilities and programs, lack of accessible exercise equipment and adequate space to move about, and the perception that fitness facilities are unfriendly environments for those with a disability (7). Such barriers can result in a decline in physical function and a cycle of deconditioning, in which deteriorating physical function produces greater inactivity, further physical decline, and an increase in the number or severity of secondary conditions (8). To overcome deconditioning, public health officials and others designing strategies to increase adult physical activity should devise ways to eliminate barriers that limit participation by persons with a disability (2).

[^2]The findings in this report are subject to at least two limitations. First, BRFSS excludes persons living in institutions or group homes. Therefore, the results likely underestimate the actual prevalence of adults with a disability. Second, BRFSS questions relating to physical activity were developed and validated for the population without a disability, and the activities described (e.g., brisk walking, bicycling, vacuuming, or running) might be more demanding and difficult for a person with a disability. The need for a physical-activity scale specific to persons with a disability has been suggested (9).
Physical inactivity among persons with a disability is associated with increased functional limitation and higher risk for developing secondary conditions (1,2). Although not all adults with a disability are able to achieve recommended levels of physical activity because of the nature or severity of their disability, participation at lower levels has been determined to confer health benefits (e.g., pain reduction) (2). Persons unable to meet recommended levels might require physicalactivity regimens tailored to their specific needs. In addition, certain barriers to physical activity are unique to persons with a disability. Public health agencies and stakeholders should ensure that barriers to participation are addressed in the design of programs to promote health and physical activity.

References

1. Santiago M, Coyle C. Leisure-time physical activity and secondary conditions in women with physical disabilities. Disabil Rehabil 2004; 26:485-94.
2. Rimmer JH, Shenoy SS. Impact of exercise on targeted secondary conditions. In: Field MJ, Jette AM, Martin L, eds. Workshop on disability in America: a new look. Washington, DC: The National Academies Press; 2006:205-21.
3. US Department of Health and Human Services. Healthy people 2010 (conference ed, in 2 vols). Washington, DC: US Department of Health and Human Services; 2000. Available at http://www.health.gov/ healthypeople.
4. CDC. Adult participation in recommended levels of physical activityUnited States, 2001 and 2003. MMWR 2005;54:1208-12.
5. McGuire LC, Strine TW, Okoro CA, Ahluwalia IB, Ford ES. Healthy lifestyle behaviors among older U.S. adults with and without disabilities, Behavioral Risk Factor Surveillance System, 2003. Prev Chron Dis 2007;4:A09.
6. Kinne S, Patrick DL, Doyle DL. Prevalence of secondary conditions among people with disabilities. Am J Public Health 2004;94:443-5.
7. Rimmer JH, Riley B, Wang E, Rauworth A, Jurkowski J. Physical activity participation among persons with disabilities: barriers and facilitators. Am J Prev Med 2004;26:419-25.
8. Rimmer JH. The conspicuous absence of people with disabilities in public fitness and recreation facilities: lack of interest or lack of access? Am J Health Promot 2005;19:327-9,ii.
9. Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF. The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil 2002;83:193-200.

Salmonella Oranienburg Infections Associated with Fruit Salad Served in Health-Care Facilities Northeastern United States and Canada, 2006

During June-July 2006, a total of 41 culture-confirmed Salmonella serotype Oranienburg infections were diagnosed in persons in 10 northeastern U.S. states and one Canadian province. This report describes the epidemiologic, environmental, and laboratory investigations of this outbreak by federal, state, and local health agencies; the Food and Drug Administration (FDA); and the Canadian Food Inspection Agency. The results of the investigations determined that illness was associated with eating fruit salad in health-care facilities. Although the fruit salads were produced by one processing plant, the source of contamination was not determined. This outbreak highlights the importance of laboratory-based surveillance of Salmonella, including molecular subtyping, and timely communication of public health information.

On July 19, 2006, the New Hampshire Department of Health and Human Services (NHDHHS) began an investigation after S. Oranienburg was identified in stool specimens collected from two patients, two employees, and one cafeteria patron at a local hospital. On July 21, the Massachusetts Department of Public Health began an investigation after the state public health laboratory identified S. Oranienburg in stool specimens collected from three ill persons at a long-termcare facility. State public health laboratories in Massachusetts and New Hampshire subtyped S. Oranienburg isolates by pulsed-field gel electrophoresis (PFGE) and submitted the PFGE patterns to PulseNet, the national molecular subtyping network for foodborne disease surveillance. PulseNet compares these patterns within and among states and categorizes isolates with indistinguishable patterns into potential clusters of cases. The S. Oranienburg isolates from New Hampshire and Massachusetts had indistinguishable PFGE patterns (both with $X b a \mathrm{I}$ pattern JJXX01.0056 and $B \ln \mathrm{I}$ pattern JJXA26.0017); this uncommon pattern combination was designated the outbreak strain. NHDHHS coordinated the outbreak investigation with other state health departments, all of which were members of OutbreakNet, a network of local, state, and federal epidemiologists and public health agencies that investigate outbreaks of foodborne, waterborne, and other enteric illnesses.

Epidemiologists were contacted in jurisdictions that reported S. Oranienburg isolates with the outbreak strain during JuneDecember 2006. To develop hypotheses regarding sources of the S. Oranienburg infections, NHDHHS reviewed interview
records for all patients who had been interviewed by state and local health departments. Investigators also conducted extended interviews; interviewers sought information regarding nearly 300 sources of exposure, including consumption of 234 specific food items.
A case was defined as culture-confirmed S. Oranienburg infection with the outbreak strain and illness onset from June 15 to July 31. Forty-one cases of S. Oranienburg with the outbreak strain occurred in 10 U.S. states and one Canadian province: Massachusetts (12), New Hampshire (nine), New York (four), Pennsylvania (three), Vermont (three), Kentucky (two), Maine (two), Maryland (two), Connecticut (one), New Jersey (one), and Ontario, Canada (two). Date of illness onset ranged from June 15 to July 25 (Figure). The median age of patients was 59 years (range: 8 months- 96 years); 31% of cases were in persons aged >70 years. Twenty-eight (68\%) patients were female. Symptoms reported by patients included diarrhea (74%) (i.e., three or more loose stools in a 24 -hour period), abdominal cramps (52%), fever (39%), vomiting (23%), and bloody diarrhea (16%). Seven (17%) patients were hospitalized as a result of their Salmonella infections. No deaths were reported.
Among the 41 cases, 30 (73%) occurred among persons who worked, stayed, or ate in a health-care facility during the 7 days preceding illness onset, including 10 already-hospitalized patients, 10 residents of a long-term-care facility, nine employees of health-care facilities, and one visitor who had eaten in a hospital cafeteria. The interviews with 33 of the 41 patients suggested that illness was associated with eating fruit salad in a health-care facility; $23(70 \%)$ reported eating fresh fruit salad, $19(83 \%)$ of whom had eaten fresh fruit salad in a health-care facility.

FIGURE. Number of culture-confirmed cases $(\mathrm{N}=41)$ of infection with outbreak strain of Salmonella serotype Oranienburg, by date of illness onset* - United States and Canada, June-July 2006

[^3]A case-control study was conducted to identify risk factors for infection. Case-patients were eligible for the study if they experienced diarrhea, were able to respond to the questionnaire, and had an isolate with the outbreak PFGE patterns. For case-patients who were residents or patients of a healthcare facility, controls were selected randomly from a list of residents or patients who were in the facility at the same time as the case-patient. For case-patients who were employees, controls were selected randomly from a list of employees who worked in the facility at the same time as the case-patient. Controls for community case-patients (i.e., patients who were not exposed as employees or patients in health-care facilities) were well neighbors of the case-patient and were identified through a reverse telephone directory. Controls must not have had diarrhea since June 1 and must have been eating a solid diet during the 7 days before illness onset in the casepatient (i.e., the food-recall period). Based on hypotheses generated during interviews with case-patients, the questionnaire included 75 exposures focused on individual types of fresh fruit and on fruit salad eaten during the foodrecall period. Questionnaires were administered by telephone or in person during August 15-September 6, 2006.
At the time the case-control study was conducted, 36 cases of S. Oranienburg had been identified in eight states and Canada. Twenty-two case-patients were eligible for the study; one case-patient chose not to participate and was not enrolled. A total of 21 case-patients and 33 controls were enrolled from all eight states and Canada. Case-control data were analyzed using a fre-quency-matched univariate analysis; three strata were analyzed, with each stratum containing all case-patients and controls for the given exposure location (health-care patients, health-care employees, and community residents). Fourteen (70%) of 20 case-patients, compared with four (13%) of 30 controls, ate fruit salad (matched odds ratio $[\mathrm{mOR}]=8.9$; 95% confidence interval $[C I]=2.3-35.5)$. Illness was associated with eating fruit salad in a health-care facility (Table). Twelve (60\%) of 20 case-patients, compared with four (13%) of 30 controls, ate fruit salad in a health-care facility ($\mathrm{mOR}=6.0 ; \mathrm{CI}=1.5-23.5$). Salads eaten by case-patients were composed of multiple types of fruits; cantaloupe and honeydew melon were the most common fruits in salads eaten in health-care facilities. Cantaloupe was eaten by $10(50 \%)$ case-patients and two (7%) controls $(\mathrm{mOR}=7.6 ; \mathrm{CI}=1.6-$
36.7); honeydew melon was eaten by nine (45%) case-patients and one (3%) control ($\mathrm{mOR}=14.2$; $\mathrm{CI}=1.8-112.5$). Illness was not associated with consumption of individual fruits that were not part of a fruit salad. Use of multivariate analysis with conditional logistic regression was not feasible because of high consumption of multiple types of fruit.

Of 13 health-care facilities with case-patients, information regarding the source of the fruit served was collected for 11 facilities, 10 (91%) of which had served refrigerated, precut cantaloupe and honeydew melon purchased from the same processing plant in Canada. Inspections of the processing plant by the Canadian Food Inspection Agency did not identify any improper practices and determined that the plant was in compliance with its Hazard Analysis and Critical Control Points (HACCP) plan. The processing plant had received the fruit from multiple farms. At the plant, fruit was cleaned, sliced, packaged into containers, and refrigerated. Health-care facilities received the refrigerated, precut fruit as either a premixed fruit salad or as individual fruits that later were mixed on-site by the health-care facility. A traceback investigation of the original source of the cantaloupe and honeydew melons processed in the facility during June 1-July 15 indicated that the cantaloupe and honeydew melons likely originated from the

TABLE. Number and percentage of case-patients and controls reporting consumption of fruit and association with illness from the outbreak strain of Salmonella serotype Oranienburg, by type of food item - United States and Canada, June-July 2006

Food item	Cases$(\mathrm{n}=21)^{*}$		Control$(\mathrm{n}=33)^{*}$		Matched odds ratio	(95\% CI ${ }^{\dagger}$)
	No.	(\%)	No.	(\%)		
Any fruit salad	14/20	(70)	4/30	(13)	8.9	(2.3-35.5)
Fruit salad in health-care facility	12/20	(60)	4/30	(13)	6.0	(1.5-23.5)
Cantaloupe						
Any (whole or precut)	15/18	(83)	7/27	(26)	11.5	(2.4-55.5)
In fruit salad	12/20	(60)	2/30	(7)	9.9	(2.2-44.5)
In fruit salad in health-care facility	10/20	(50)	2/30	(7)	7.6	(1.6-36.7)
Honeydew						
Any (whole or precut)	14/19	(74)	2/28	(7)	19.5	(3.4-112.7)
In fruit salad	11/20	(55)	1/30	(3)	16.9	(2.4-119.6)
In fruit salad in health-care facility	9/20	(45)	1/31	(3)	14.2	(1.8-112.5)
Watermelon						
In fruit salad	9/19	(47)	2/30	(7)	6.9	(1.4-33.7)
In fruit salad in health-care facility	8/19	(42)	2/30	(7)	5.8	(1.1-29.8)
Pineapple						
Any (whole or precut)	11/18	(61)	6/27	(22)	6.1	(1.4-27.8)
In fruit salad	8/19	(42)	1/29	(3)	40.6	(3.0-548.4)
In fruit salad in health-care facility	6/19	(32)	1/30	(3)	15.2	(1.6-143.6)
Red grapes						
In fruit salad	7/20	(35)	0/30	(0)	$9.8{ }^{\text {§ }}$	(1.5-65.6)
In fruit salad in health-care facility	7/20	(35)	0/31	(0)	13.1 §	(1.9-89.0)

[^4]United States; however, no specific farm was identified. No salmonellae were isolated from fruit salad samples collected at health-care facilities with outbreak-related cases or from samples collected by FDA at the point of entry into the United States. The Canadian Food Inspection Agency did not collect samples from the processing plant.
Reported by: L Landry, Public Health Agency of Canada. Q Phan, MPH, Connecticut Dept of Public Health. S Kelly, MS, Kentucky Dept of Public Health. K Phillips, MPH, Maine Center for Disease Control and Prevention; S Onofrey, MPH, Maine Dept of Public Health. ER Daly, MPH, EA Talbot, MD, New Hampshire Dept of Health and Human Svcs. M Fage, New York State Dept of Health. M Deasy, Pennsylvania Dept of Health. M Spayne, Vermont Dept of Health. M Lynch, MD, CK Olson, MD, Div of Foodborne, Bacterial, and Mycotic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, CDC.
Editorial Note: Salmonellae infect an estimated 1.2 million persons each year in the United States (1). In 2005, 1 year before the outbreak described in this report, a total of 36,184 Salmonella infections reported in the United States were laboratory confirmed; 590 (1.6\%) were S. Oranienburg (2). The 41 cases in this international outbreak highlight the importance of laboratory-based surveillance, which relies on routine submission of Salmonella isolates from clinical laboratories to state public health laboratories. Furthermore, this outbreak illustrates the importance of sharing public health information domestically and internationally, because the investigation relied on the timely sharing of information among 10 state health departments, two national health agencies, two national food-regulatory agencies, and multiple local and provincial health departments.
The findings of this investigation indicated that infection with an uncommon strain of S. Oranienburg was associated with consumption of fruit salad in health-care facilities. The findings indicated that 1) 70% of case-patients ate fruit salad,
2) case-patients were six times more likely than controls to have eaten fruit salad in a health-care facility, and 3) 10 (91%) of 11 health-care facilities with Salmonella infections served refrigerated, precut fruit salad from the same processing plant in Canada. The source of the contamination of the fruit salad was not determined. However, because the fruit salad at the various health-care facilities was provided by several distributors but came from a common processing plant, contamination likely occurred either at the processing plant or earlier in the supply chain, such as at a farm.

Fruits such as cantaloupe and honeydew melon previously have been associated with salmonellosis outbreaks in the United States. During 1973-2003, a total of 11 cantaloupeassociated salmonellosis outbreaks were reported to CDC (3).

Reported outbreaks were associated both with whole melons contaminated in growing fields and with precut melons. Cut fruit can be contaminated during processing when rind is removed and fruit is sliced $(4,5)$. Furthermore, because the inner flesh of melons contains nutrients that can support microbial growth, improper refrigeration of cut fruit can cause bacteria proliferation (4,5). Although S. Oranienburg was not identified in any of the fruit salad samples collected, the samples were obtained several weeks after illness-onset dates in case-patients.

Salmonella outbreaks have not been frequently identified in health-care facilities in the United States, perhaps because not all cases are recognized. Current guidelines for the management of diarrhea discourage testing for Salmonella in hospitalized patients who have been in a facility for >72 hours unless an outbreak is suspected, the diarrhea is bloody, or the patient is an infant ($)$. These guidelines might make health-care facilities less likely to detect outbreaks of salmonellosis or recognize that they are part of larger outbreaks, such as the one discussed in this report $(7,8)$. During this outbreak, only two of the 13 health-care facilities with cases recognized that an outbreak was occurring, likely because most facilities only identified one or two cases. In the Massachusetts and New Hampshire facilities, the initial outbreaks were recognized after three and five cases were identified in each facility, respectively. After both facilities implemented an active surveillance program for staff members and patients, eight additional cases were identified, suggesting that certain cases might not have been detected in the facilities that adhered to the 72 -hour testing policy. Evaluation is needed to determine whether expanding the criteria for bacterial testing of stool specimens from inpatients beyond the presence of bloody diarrhea would improve foodborne outbreak detection and ultimately the safety of the food supply.

Acknowledgments

This report is based, in part, on contributions by L Caine, MPH, Elliot Hospital, Manchester, New Hampshire; A Yartel, MPH, K Sinclair, MSN, Maine Center for Disease Control and Prevention; E Harvey, B Bolstorff, K Foley, Maine Dept of Public Health; P Alexakos, MPH, L Carlson, MD, City of Manchester New Hampshire Health Dept; K Larson, Maryland Dept of Health and Mental Hygiene; J Manning, MPH, New Hampshire Dept of Health and Human Svcs; M Malavet, MSA, New Jersey Dept of Health and Senior Svcs; S Schoenfeld, MSPH, Vermont Dept of Health; public health laboratories in Connecticut, Kentucky, Maine, Massachusetts, Maryland, New Hampshire, New Jersey, New York, Pennsylvania, Vermont, and Canada; PulseNet; the Food and Drug Administration; and DD Blaney, MD, EIS Officer, CDC.

References

1. Voetsch AC, Van Gilder TJ, Angulo FJ, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 2004;38(Suppl 3):S127-34.
2. CDC. Salmonella surveillance: annual summary, 2005. Atlanta, GA: US Department of Health and Human Services, CDC; 2006. Available at http://www.cdc.gov/ncidod/dbmd/phlisdata/salmonella.htm.
3. Bowen A, Fry A, Richards G, Beuchat L. Infections associated with cantaloupe consumption: a public health concern. Epidemiol Infect 2006; 134:675-85.
4. Ukuku DO, Sapers GM. Effect of sanitizer treatments on Salmonella Stanley attached to the surface of cantaloupe and cell transfer to freshcut tissues during cutting practices. J Food Prot 2001;64:1286-91.
5. Ukuku DO, Pilizota V, Sapers GM. Effect of hot water and hydrogen peroxide treatments on survival of salmonella and microbial quality of whole and fresh-cut cantaloupe. J Food Prot 2004;67:432-7.
6. Guerrant RL, Van Gilder T, Steiner TS, et al. Practice guidelines for the management of infectious diarrhea. Clin Infect Dis 2001;32:331-51.
7. Bruins MJ, Fernandes TM, Ruijs GJ, et al. Detection of a nosocomial outbreak of salmonellosis may be delayed by application of a protocol for rejection of stool cultures. J Hosp Infect 2003;54:93-8.
8. Bauer TM, Lalvani A, Fahrenbach J, et al. Derivation and validation of guidelines for stool cultures for enteropathogenic bacteria other than Clostridium difficile in hospitalized adults. JAMA 2001;285:313-9.

Progress in Measles Control Nepal, 2000-2006

In 2002, the United Nations General Assembly Special Session on Children set a goal to reduce global measles deaths by half (compared with 1999) by 2005 (1). Nepal, a southeast Asian country with an estimated population of 27 million, adopted the measles mortality reduction strategies of the World Health Organization (WHO) (2) in 2003, with a goal of reducing measles deaths by half (compared with 2003) by 2005. The strategies consisted of strengthening routine childhood immunization programs, providing a second opportunity for measles vaccination through supplementary immunization activities (SIAs),* improving surveillance, and improving measles case management. This report describes routine immunization activities in Nepal, the implementation of measles SIAs, and measles surveillance data for the period 2000-2006. The findings demonstrate a substantial decrease in reported measles incidence. Assuming a reduction in measles deaths that paralleled the decrease in incidence, the findings also suggest progress toward the goal of measles mortality reduction.

[^5]
Background and Routine Vaccination

Nepal is divided into 75 districts in five regions. The Expanded Programme on Immunization (EPI) was initiated in 1979 in Nepal in three districts; by 1988, the program had been expanded to all 75 districts (3). The program aims to achieve and maintain coverage of $\geq 90 \%$ fully immunized ${ }^{\dagger}$ children nationwide by 2010 (4) and targets children aged ≥ 9 months with measles vaccine. According to WHO/ UNICEF estimates, measles vaccination coverage among children aged <1 year increased from 58% in 1988 to 71% in 2000; coverage further increased from 75% in 2003 to 85% in 2006 (5). Despite high national coverage in 2006, six of 75 districts (representing 4% of the population aged <5 years) were unable to reach $>70 \%$ coverage because of lack of security resulting from civil unrest, limited access to certain areas, or lack of human resources.

Surveillance

Measles in Nepal is reported as part of the Health Management Information System (HMIS), which covers all 4,102 government health facilities in Nepal. However, HMIS does not provide detailed geographic and age group data, and reports often are incomplete and not timely; moreover, HMIS reports only clinically suspected measles and does not report laboratory testing. Information on measles-related deaths is not reported systematically. In March 2003, the government of Nepal and WHO initiated a more comprehensive measles surveillance system to supplement HMIS with more detailed information on cases in clusters of suspected measles. The new measles surveillance system, which includes field investigations and laboratory testing of blood specimens, is supported by surveillance medical officers (SMOs), who have conducted health facility visits for active acute flaccid paralysis (AFP) surveillance since 1998. This integrated surveillance network provides timely and detailed data on AFP, Japanese encephalitis, and measles cases though weekly reports from 413 major health-care centers and hospitals throughout all 75 districts of the country (i.e., approximately 10% of all government health facilities), including all inpatient facilities. In addition, SMOs conduct weekly visits to 84 active surveillance sites within this network.
If five or more cases of suspected measles are detected during a 2 -week period from one geographic area, an outbreak investigation is undertaken in which epidemiologic informa-

[^6]tion is collected on all suspected measles cases ${ }^{\$}$ in the area, and blood samples are drawn for at least five cases for laboratory confirmation of measles (i.e., via identification of immunoglobulin $\mathrm{M}[\mathrm{IgM}]$ measles antibodies). An outbreak is considered a confirmed measles outbreak if at least one case is laboratory confirmed in a person who had not received measles vaccination 1 month before. All untested suspected cases in a laboratory-confirmed outbreak are considered epidemiologically confirmed. Since January 2004, all samples that test negative for measles IgM have been tested for rubella IgM . With rubella IgM testing, similar criteria allow an outbreak to be considered a confirmed rubella outbreak or a confirmed mixed measles and rubella outbreak. Approximately 90% of cases associated with confirmed measles outbreaks in 2003 were in children aged <15 years; this finding supported the decision to conduct a "catch-up" SIA ${ }^{9}$ targeting children aged 9 months- 15 years.

Measles Vaccination Campaign, 2004-2005

Nepal public health authorities conducted a nationwide measles SIA in three phases during September 2004-April 2005, targeting an estimated 9.4 million children aged 9 months15 years. Oral poliovirus vaccine also was administered to all children aged <5 years. The overall reported measles vaccina-

[^7]tion coverage was 105% of the population target; in one district the coverage was as low as 64%. The population targets were obtained from administrative lists.

Measles Incidence

In 2003, a total of 67 suspected measles outbreaks were investigated using the integrated system; in 2004, a total of 196 outbreaks were investigated. Nearly 70% of these outbreaks were confirmed measles outbreaks (Table). After the start of the SIAs, the number of suspected measles outbreaks detected decreased to 46 in 2005 and to 31 in 2006. In 2005, only one (2%) of the 46 investigated outbreaks was a laboratory-confirmed measles outbreak, whereas 36 (78\%) were laboratory-confirmed rubella outbreaks. Similarly, in 2006, two (6%) of 31 outbreaks were laboratory-confirmed measles outbreaks, and 24 (77%) were laboratory-confirmed rubella outbreaks. During 2005 and 2006, three mixed measles and rubella outbreaks were detected: two (4%) in 2005 and one (3%) in 2006. The number of measles cases associated with outbreaks decreased from approximately 1,000 in 2003 to approximately 50 in 2006. During 2005 and 2006, a total of 1,119 suspected measles cases that were not part of any recognized outbreak were reported to SMOs. Serum specimens were collected for 84 of these cases; three (4%) were laboratory confirmed as measles cases.
The average annual number of measles cases reported through HMIS during the 4 years (2000-2003) before the start of the SIA was 10,425 . After the SIA, the number of reported cases decreased to 3,931 in 2005 and to 1,935 in 2006 , decreases of 62% and 81%, respectively, from the 20002003 average (Table, Figure).
Reported by: YV Pradhan, MD, Dept of Health Svcs, Nepal Ministry of Health and Population; P Bangdel, MSc, UNICEF Country Office, Kathmandu; T Sedai, MA, B Lamichbane, MBBS, MPH, J Partridge,

TABLE. Number of suspected and laboratory-confirmed measles and rubella outbreaks and cases, by year - Nepal, 2000-2006

Year	Total no. of reported suspected measles cases*	No. of suspected measles outbreaks investigated ${ }^{\dagger}$ §	Outbreaks confirmed as measles outbreaks ${ }^{\dagger}$ §		No. of cases from confirmed measles outbreaks ${ }^{\dagger}$ §	Outbreaks confirmed as rubella outbreaks ${ }^{\dagger \S \\|}$		No. of cases from confirmed rubella outbreaks ${ }^{\dagger \S}{ }^{\\|}$	Outbreaks confirmed as mixed measles and rubella outbreaks ${ }^{\dagger \S \pi}$	
			No.	(\%)		No.	(\%)		No.	(\%)
2000	10,146	-	-	-	-	-	-	-	-	-
2001	8,799	-	-	-	-	-	-	-	-	-
2002	10,047	-	-	-	-	-	-	-	-	-
2003	12,709	67	41	(61)	1,536	-	-	-	-	-
2004	8,549	196	138	(70)	4,559	13	(7)	306	11	(6)
2005	3,931	46	1	(2)	25	36	(78)	728	2	(4)
2006	1,935	31	2	(6)	45	24	(77)	438	1	(3)

[^8]PhD, World Health Organization Country Office, Kathmandu, Nepal. J Liyanage, MBBS, MPH, World Health Organization Regional Office for Southeast Asia, New Delhi, India. P Strebel, MBChB, A Dabbagh, PhD, Dept of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland. O Mach, MD, VDietz, MD, Global Immunization Div, National Center for Immunization and Respiratory Diseases, CDC.
Editorial Note: Because information on measles-related deaths is not routinely collected in Nepal, no direct measurement of reduction in deaths associated with improved measles control is possible. However, reports from other countries have assumed that a reduction in measles deaths occurred in the same proportion as a reduction in reported measles cases $(6,7)$. A concomitant decrease in suspected cases and measles deaths has been observed in other countries that monitored measles deaths before and after SIAs $(8,9)$. By making this same assumption for Nepal, the findings in this report suggest that, by the end of 2005, Nepal had achieved its goal of reducing measles mortality by at least 50% from 2003 levels. The reduction in measles incidence in Nepal during 2003-2006 indicated by HMIS data might underestimate the actual relative reduction in measles deaths because, compared with pre-SIA years, a more pronounced decrease occurred in the number of confirmed outbreaks and in the proportion of confirmed measles cases in outbreaks during post-SIA years. In addition, treatment of measles patients** has been emphasized since 2003.

On the basis of progress to date, the government of Nepal has decided to set its measles program objective toward elimination. In the Ministry of Health and Population's Multi-Year Plan of Action for immunization, the measles elimination phase will begin in 2010 (4). Major components of the elimination strategy include high routine immunization coverage ($\geq 90 \%$ in $\geq 80 \%$ of districts), provision of a second opportunity for measles vaccination through routine vaccination or SIAs, and case-based surveillance with laboratory confirmation.

[^9]FIGURE. Number of measles cases from confirmed measles outbreaks, by month and year - Nepal, 2003-2006*

*Based on data from the Health Management Information System, Department of Health Services, ${ }^{+}$Nepal Ministry of Health and Population.
${ }^{\dagger}$ Supplementary immunization activity.

The integration of measles surveillance and AFP surveillance since 2003 has made use of the extensive surveillance infrastructure in Nepal, which was developed for AFP surveillance and, since 2004, has included investigation and laboratory testing of suspected encephalitis cases for Japanese B encephalitis. WHO formally accredited the Nepal national measles reference laboratory in 2006. The first steps toward further strengthening surveillance began in January 2007; a case-based measles surveillance system, in which all suspected measles cases are investigated and laboratory tested for IgM, was started in 12 active surveillance sites in the Kathmandu Valley and in two active surveillance sites in the Far West Development Region. In addition to continuing outbreak investigations, this case-based surveillance system will expand to include the entire country by 2010 and will use measles virus genotyping to determine the origin of virus isolates; however, data on measles-related mortality are not available through this system.

Additional measures to increase routine vaccination coverage, particularly in remote areas and those with low coverage, will be critical for preventing outbreaks and moving toward the goal of measles elimination. Despite advances in delivering routine vaccination, the proportion of children susceptible to measles started to increase after the 2004-2005 SIA,
increasing the likelihood of measles outbreaks. A nationwide follow-up measles vaccination campaign ${ }^{\dagger \dagger}$ targeting children aged 9 months to 4 years 11 months is planned for 2008. Given the difficulties with access to certain areas of Nepal, providing a second measles vaccination opportunity through routine vaccination is not likely to reach high coverage levels with both doses. Because SIAs have been effective throughout Nepal, including in areas that are difficult to access, repeated SIAs likely will be the long-term strategy for regularly providing a second measles vaccination opportunity.

Nepal has achieved a substantial reduction in reported measles incidence and in the number of confirmed measles outbreaks. This experience provides useful lessons for other countries in southeast Asia as they progress toward measles mortality reduction.

[^10]
References

1. United Nations General Assembly Special Session on Children. A world fit for children. New York, NY: United Nations General Assembly Special Session on Children; 2002. Resolution S-27/2. Available at http://www.unicef.org/specialsession/docs_new/documents/a-res-s272e.pdf.
2. World Health Organization, UNICEF. Measles mortality reduction and regional elimination: strategic plan 2001-2005. Geneva, Switzerland: World Health Organization; 2001. Available at http://www.who.int/ vaccines-documents/docspdf01/www573.pdf.
3. Suvedi BK. Twenty-five years of immunization program in Nepal. Kathmandu Univ Med J 2005;3:4.
4. Nepal Ministry of Health and Population. Multi-year plan of action, Nepal, 2007-2011. Kathmandu, Nepal: Nepal Ministry of Health and Population; 2006.
5. World Health Organization, UNICEF. WHO/UNICEF review of national immunization coverage, 1980-2006. Available at http://www. who.int/vaccines/globalsummary/immunization/countryprofile select.cfm.
6. Otten M, Kezaala R, Fall A, et al. Public-health impact of accelerated measles control in the WHO African Region 2000-03. Lancet 2005;366: 832-9.
7. CDC. Measles mortality reduction-West Africa, 1996-2002. MMWR 2004;53:28-30.
8. Biellik R, Madema S, Taole A, et al. First 5 years of measles elimination in southern Africa: 1996-2000. Lancet 2002;359:1564-8.
9. CDC. Progress in measles control-Zambia, 1999-2004. MMWR 2005;54:581-4.

TABLE I. Provisional cases of infrequently reported notifiable diseases (<1,000 cases reported during the preceding year) - United States, week ending September 29, 2007 (39th Week)*

-: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2007 are provisional, whereas data for 2002, 2003, 2004, 2005, and 2006 are finalized.
\dagger Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenzaassociated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
II Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** Data for H. influenzae (all ages, all serotypes) are available in Table II.
$\dagger \dagger$ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
$\$ \S$ Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. A total of 70 cases were reported for the 2006-07 flu season.
ๆाी The two measles cases reported for the current week were indigenous.
*** Data for meningococcal disease (all serogroups) are available in Table II
tit No rubella cases were reported for the current week.
§s§ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases.

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Chlamydia ${ }^{\text {a }}$					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	10,877	20,387	25,327	761,421	760,313	79	130	658	5,121	6,134	268	82	917	7,234	4,138
New England	378	720	1,357	25,427	23,787		0	1	2	-	-	4	36	198	317
Connecticut	-	223	829	7,420	6,738	N	0	0	N	N	-	0	36	36	38
Maine ${ }^{\text {® }}$	-	50	74	1,870	1,674	-	0	0	-	-	-	1	6	35	36
Massachusetts	241	305	600	11,609	10,720	-	0	0	-	-	-	,	5	50	158
New Hampshire	39	39	70	1,574	1,443	-	0	1	2	-	-	1	4	42	37
Rhode Island ${ }^{\text {® }}$	98	66	108	2,335	2,318	-	0	0	-	-	-	0	5	6	11
Vermont ${ }^{\text {® }}$	-	19	45	619	894	N	0	0	N	N	-	1	4	29	37
Mid. Atlantic	1,270	2,693	4,284	104,955	93,113	-	0	0	-	-	23	10	109	971	504
New Jersey	185	407	538	15,431	15,092	N	0	0	N	N	-	0	2	9	41
New York (Upstate)	631	514	2,758	19,859	18,059	N	0	0	N	N	21	3	19	181	124
New York City	40	907	1,683	35,402	30,257	N	0	0	N	N		1	10	44	110
Pennsylvania	414	775	1,760	34,263	29,705	N	0	0	N	N	2	4	103	737	229
E.N. Central	1,381	3,122	6,221	123,104	128,175	-	1	3	24	36	52	18	102	1,214	1,075
Illinois	499	943	1,367	35,016	40,303	-	0	0	-	-	-	2	10	110	172
Indiana	314	396	646	15,483	14,899	-	0	0	-	-	6	1	18	73	64
Michigan	353	715	1,080	26,466	26,230	-	0	3	16	32	1	3	10	132	112
Ohio	79	705	3,648	32,003	31,202	-	0	2	8	4	37	5	61	423	274
Wisconsin	136	371	528	14,136	15,541	N	0	0	N	N	8	6	48	476	453
W.N. Central	761	1,178	1,429	43,479	46,369	-	0	54	6	1	14	12	120	1,054	673
lowa	183	166	252	6,488	6,199	N	0	0	N	N	4	2	57	448	150
Kansas	223	151	294	6,176	5,990	N	0	0	N	N	-	1	15	90	67
Minnesota	-	231	314	7,505	9,640	-	0	54	-	-	-	3	34	150	141
Missouri	300	450	565	17,215	17,224	-	0	1	6	1	5	2	13	110	158
Nebraska ${ }^{\text {s }}$	-	97	183	3,122	4,004	N	0	0	N	N	2	1	20	110	80
North Dakota	3	27	69	1,044	1,347	N	0	0	N	N	3	0	11	14	8
South Dakota	52	49	84	1,929	1,965	N	0	0	N	N	-	2	15	132	69
S. Atlantic	2,860	4,026	6,760	150,833	144,914	1	0	1	3	3	58	20	67	802	782
Delaware	85	65	140	2,574	2,651	-	0	0	-	-	1	0	4	16	12
District of Columbia	107	101	166	4,303	2,162	-	0	0	-	-	-	0	2	3	12
Florida	1,189	1,091	1,767	43,266	36,744	N	0	0	N	N	35	11	34	447	327
Georgia	-	641	3,822	18,319	26,722	N	0	0	N	N	10	4	17	135	198
Maryland ${ }^{\text {® }}$	286	406	697	15,040	15,856	1	0	1	3	3	1	0	2	23	15
North Carolina	441	621	1,905	22,576	24,907	-	0	0	-	-	9	1	11	68	71
South Carolina ${ }^{\text {8 }}$	201	497	3,030	24,031	15,661	N	0	0	N	N	-	1	11	55	101
Virginia ${ }^{\text {§ }}$	533	490	685	18,535	17,999	N	0	0	N	N	2	1	4	45	39
West Virginia	18	59	91	2,189	2,212	N	0	0	N	N	-	0		10	7
E.S. Central	739	1,451	2,044	52,543	57,447	-	0	0	-	-	22	3	52	413	128
Alabama ${ }^{\text {® }}$	-	358	548	11,248	17,651	N	0	0	N	N	-	1	12	71	42
Kentucky	148	136	691	6,085	6,423	N	0	0	N	N	5	1	39	197	33
Mississippi	-	371	959	14,466	14,383	N	0	0	N	N		0	10	56	19
Tennessee ${ }^{\text {§ }}$	591	504	720	20,744	18,990	N	0	0	N	N	17	,	10	89	34
W.S. Central	1,713	2,288	2,974	90,234	86,294	-	0	1	1	1	9	5	41	210	293
Arkansas ${ }^{\text {® }}$	224	164	289	6,442	6,120	N	0	0	N	N	6	0	8	21	17
Louisiana	210	362	855	14,760	13,487	-	0	1	1	1	-	1	6	39	68
Oklahoma	205	274	467	10,011	8,976	N	0	0	N	N	3	1	12	82	29
Texas§	1,074	1,481	1,930	59,021	57,711	N	0	0	N	N	-	1	29	68	179
Mountain	329	1,300	2,026	45,340	50,341	59	82	293	3,077	4,247	90	6	570	2,273	299
Arizona	46	488	993	16,021	15,632	58	79	293	2,969	4,134	2	0	6	35	20
Colorado	-	251	416	7,509	12,275	N	0	0	N	N	-	1	25	126	57
Idaho ${ }^{\text {§ }}$	44	53	253	2,399	2,043	N	0	0	N	N	23	0	71	270	27
Montana ${ }^{\text {s }}$	-	48	82	1,488	1,902	N	0	0	N	N	-	1	18	52	106
Nevadas	239	181	397	7,086	6,265	1	1	5	46	49	3	0	3	13	7
New Mexicos	-	154	394	6,124	7,419	-	0	2	17	16	-	1	7	66	31
Utah	-	102	209	3,840	3,706	-	1	5	42	46	62	0	498	1,671	13
Wyoming ${ }^{\text {s }}$	-	23	38	873	1,099	-	0	1	3	2	-	0	8	40	38
Pacific	1,446	3,375	4,362	125,506	129,873	19	50	311	2,008	1,846	-		18	99	67
Alaska	67	87	157	3,270	3,287	N	0	0	N	N	-	0	2	3	4
California	1,059	2,678	3,627	101,132	101,834	19	50	311	2,008	1,846	-	0	0	-	-
Hawaii	4	102	133	3,908	4,342	N	0	0	N	N	-	0	4	6	4
Oregon ${ }^{\text {§ }}$	171	157	394	6,270	7,131	N	0	0	N	N	-	1	14	90	59
Washington	145	321	621	10,926	13,279	N	0	0	N	N	-	0	0	-	-
American Samoa	U	0	32	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	4	207	340	676	-	0	0	-	-	-	0	0	-	-
Puerto Rico	117	125	544	5,684	3,667	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	U	3	7	U	U	U	0	0	U	U	U	0	0	U	U

[^11]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Currentweek	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	290	301	1,513	11,638	13,114	3,476	6,626	8,941	247,627	265,491	18	46	184	1,678	1,720
New England	8	25	53	930	1,084	75	109	259	4,059	4,044	-	3	19	131	134
Connecticut	-	5	16	251	224	-	45	204	1,503	1,605		0	7	40	38
Maine ${ }^{\text {s }}$	7	4	10	146	128		2	8	94	96		0	2	9	16
Massachusetts	-	9	20	356	487	56	51	96	1,988	1,777		2	6	58	59
New Hampshire	-	0	3	19	20	6	3	8	118	148		0	2	15	9
Rhode Islands	-	0	14	36	92	13	8	18	311	366		0	10	7	4
Vermont ${ }^{\text {S }}$	1	3	12	122	133	-	1	5	45	52	-	0	1	2	8
Mid. Atlantic	62	56	127	2,043	2,615	382	718	1,537	27,604	24,640	-	10	27	355	344
New Jersey		5	11	142	377	83	117	159	4,505	3,988		1	5	50	59
New York (Upstate)	57	24	108	827	890	183	112	1,035	5,125	4,679		3	15	103	106
New York City	5	15	24	585	741	10	203	360	7,547	7,506		2	6	76	64
Pennsylvania	-	14	34	489	607	106	240	586	10,427	8,467	-	3	10	126	115
E.N. Central	39	46	99	1,657	2,117	495	1,225	2,585	49,667	52,899	2	6	15	202	294
Illinois		11	21	410	537	162	347	498	13,050	15,172		1	6	47	88
Indiana	N	0	0	N	N	155	163	307	6,650	6,628	1	1	7	45	63
Michigan	3	12	38	421	538	107	290	747	10,818	10,957		0	5	21	22
Ohio	26	15	37	596	599	26	318	1,564	14,221	14,916	1	2	5	80	65
Wisconsin	10	7	20	230	443	45	129	181	4,928	5,226		0	4	9	56
W.N. Central	21	20	553	840	1,450	203	372	512	13,849	14,556	-	3	24	103	113
Iowa	3		20	210	229	34	39	60	1,413	1,388		0	1	1	1
Kansas	-	3	11	119	156	59	44	86	1,767	1,686		0	2	9	16
Minnesota	-	0	514	12	475		60	87	1,976	2,439		1	17	44	57
Missouri	10	7	22	329	409	103	198	266	7,546	7,616	-	1	5	34	28
Nebraska ${ }^{\text {8 }}$	5	2	8	91	93		26	57	885	1,044	-	0	2	13	7
North Dakota	2	0	16	15	14	-	2	7	65	100	-	0	2	2	4
South Dakota	1	1	6	64	74	7	6	11	197	283	-	0	0	-	
S. Atlantic	70	57	106	2,068	1,973	876	1,624	3,209	58,067	65,210	14	11	34	446	426
Delaware	2	1	3	29	33	18	27	43	987	1,105		0	3	6	1
District of Columbia		0	7	34	52	36	47	72	1,768	1,304		0	2	3	4
Florida	42	24	47	956	781	467	472	717	17,792	18,185	3	3	8	123	132
Georgia	8	10	33	431	482		296	2,068	7,454	13,264	6	2	7	90	88
Maryland ${ }^{\text {s }}$	13	4	11	177	172	64	122	227	4,644	5,382	1	2	6	64	61
North Carolina	-	0	0				306	675	10,080	12,999	1	0	9	45	46
South Carolina ${ }^{\text {s }}$	-	2	8	71	77	149	206	1,361	10,181	7,241	-	1	4	38	29
Virginia ${ }^{\text {s }}$	4	10	28	334	359	134	122	222	4,491	5,037		1	22	53	49
West Virginia	1	0	21	36	17	8	18	44	670	693	3	0	6	24	16
E.S. Central	9	10	23	387	321	254	559	752	20,438	23,486	1	2	9	96	88
Alabamas	-		16	175	151		154	242	5,122	8,210		0	3	20	18
Kentucky	N	0	0	N	N	63	52	268	2,423	2,294	-	0	1	2	5
Mississippi	N	0	0	N	N		146	310	5,455	5,659		0	1	7	11
Tennessee ${ }^{\text {® }}$	9	5	16	212	170	191	193	261	7,438	7,323	1	1	6	67	54
W.S. Central	5	7	55	263	241	712	983	1,175	37,559	37,978	-	2	34	81	69
Arkansas ${ }^{\text {s }}$	1	2	13	87	86	99	78	120	2,856	3,192		0	2	8	8
Louisiana	-	1	9	71	63	109	222	384	8,557	8,122	-	0	2	6	17
Oklahoma	4	3	42	105	92	70	102	235	3,859	3,382		1	29	61	37
Texas ${ }^{\text {8 }}$	N	0	0	N	N	434	573	733	22,287	23,282	-	0	3	6	7
Mountain	18	29	63	1,086	1,254	88	252	454	9,099	11,349	1	4	11	174	167
Arizona		2	9	87	122	16	105	220	3,400	4,016	1	1	6	56	72
Colorado	-	9	26	356	418	-	55	93	1,842	2,785	-	1	4	43	41
Idahos ${ }^{\text {s }}$	1	3	12	128	138	5	3	20	178	117		0	1	4	3
Montana ${ }^{\text {s }}$	4	2	8	79	77	-	1	8	50	154	-	0	1	2	
Nevada ${ }^{\text {8 }}$	5	2	8	86	93	67	46	135	1,744	2,174		0	2	9	10
New Mexicos	-	2	6	74	59		30	58	1,255	1,367	-	1	3	29	24
Utah	8	6	27	246	318	-	17	34	575	637		0	3	28	14
Wyoming ${ }^{\text {8 }}$	-	1	4	30	29	-	2	5	55	99	-	0	1	3	3
Pacific	58	60	558	2,364	2,059	391	722	885	27,285	31,329	-	2	16	90	85
Alaska		1	17	53	74	8	10	27	365	458		0	2	10	10
California	49	43	93	1,612	1,636	340	611	734	23,665	25,838	-	0	10	21	25
Hawaii		1	4	51	44	4	11	22	464	746		0	2	9	14
Oregon§	-	8	15	299	305	14	23	46	743	1,110	-	1	6	48	36
Washington	9	6	449	349	-	25	61	142	2,048	3,177	-	0	5	2	-
American Samoa	U	0	0	U	U	U	0	2	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	,	U	U	U	-		U	U
Guam	-	0	0		-		1	38	63	85	-	0	0	-	1
Puerto Rico	-	5	15	165	181	3	6	23	261	231		0	1	2	3
U.S. Virgin Islands	U	0	0	U	U	U	1	3	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
${ }^{*}$ Incidence data for reporting year 2007 are provisional.
${ }_{\S}^{\dagger}$ Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A				B									
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{gathered} \text { Cum } \\ 2006 \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	41	52	201	2,013	2,651	44	78	405	2,862	3,250	39	44	109	1,595	1,925
New England	1	2	6	79	152	-	1	5	50	93	-	2	12	88	133
Connecticut	-	0	3	14	34	-	0	5	23	38	-	1	9	29	29
Maine ${ }^{\text {§ }}$	-	0	1	2	8	-	0	2	6	19	-	0	1	3	7
Massachusetts	-	1	4	34	73	-	0	1	4	18	-	0	3	14	61
New Hampshire	1	0	3	11	21	-	0	1	5	8	-	0	2	6	10
Rhode Island ${ }^{\text {§ }}$	-	0	2	10	9	-	0	3	11	8	-	0	6	29	20
Vermont ${ }^{\text {® }}$	-	0	1	8	7	-	0	1	1	2	-	0	2	7	6
Mid. Atlantic	2	8	16	301	299	3	9	21	327	395	6	12	55	494	676
New Jersey	-	2	5	71	89	-	1	8	62	127	-	1	8	57	96
New York (Upstate)	2	1	11	54	63	3	2	13	68	48	6	4	30	155	218
New York City	-	2	6	112	96	-	2	6	69	90	-	2	24	70	139
Pennsylvania	-	2	5	64	51	-	3	8	128	130	-	5	21	212	223
E.N. Central	2	6	13	212	268	3	9	23	318	383	14	9	26	362	439
Illinois	-	2	6	72	81	-	2	6	86	109	-	2	6	56	96
Indiana	2	0	7	23	19	-	0	21	41	41	3	1	6	34	34
Michigan	-	2	8	57	89	1	2	8	79	110	1	3	11	104	105
Ohio	-	1	4	53	44	2	3	7	100	97	10	3	17	160	168
Wisconsin	-	0	3	7	35	-	0	3	12	26	-	0	3	8	36
W.N. Central	8	2	18	126	104	1	2	15	98	110	4	1	9	71	58
lowa	-	1	4	32	8	-	0	3	14	18	-	0	1	7	10
Kansas	-	0	1	3	24	-	0	2	7	10	-	0	1	2	7
Minnesota	7	0	17	56	9	1	0	13	17	14	2	0	6	17	11
Missouri	-	0	2	19	38	-	1	5	47	51	1	0	3	33	18
Nebraska ${ }^{\text {§ }}$	1	0	2	11	16	-	0	3	9	12	1	0	1	8	8
North Dakota	-	0	3	-	-	-	0	1	-	-	-	0	1	-	-
South Dakota	-	0	1	5	9	-	0	1	4	5	-	0	1	4	4
S. Atlantic	12	10	21	387	410	12	20	56	723	917	12	7	25	274	328
Delaware	-	0	1	6	11	-	0	3	15	35	-	0	2	6	8
District of Columbia	-	0	5	14	6	-	0	2	1	5	-	0	4	1	16
Florida	3	3	11	119	160	5	7	14	259	314	10	2	9	116	125
Georgia	1	1	4	56	44	2	3	6	85	160	-	0	2	18	24
Maryland ${ }^{\text {s }}$	1	1	5	59	52	4	2	6	85	123	-	1	6	49	69
North Carolina	7	0	11	44	66	1	0	16	96	123	-	1	4	35	29
South Carolina ${ }^{\S}$	-	0	4	14	20	-	1	5	44	67	-	0	2	12	3
Virginias	-	1	5	67	46	-	3	8	101	44	1	1	4	29	46
West Virginia	-	0	2	8	5	-	0	23	37	46	1	0	4	8	8
E.S. Central	1	2	5	80	98	3	6	17	258	245	-	2	7	70	70
Alabama ${ }^{\text {® }}$	-	0	3	15	11	1	2	10	92	72	-	0	1	7	9
Kentucky	-	0	2	16	30	1	1	7	53	56	-	1	6	35	23
Mississippi	-	0	4	7	6	-	0	8	17	9	-	0	1	-	3
Tennessee ${ }^{\text {® }}$	1	1	5	42	51	1	3	8	96	108	-	1	4	28	35
W.S. Central	-	5	43	136	269	15	18	169	593	625	-	2	16	75	54
Arkansas ${ }^{\text {® }}$	-	0	2	9	43	-	1	7	48	54	-	0	3	6	4
Louisiana	-	0	3	20	25	-	1	4	58	48	-	0	1	3	10
Oklahoma	-	0	8	11	4	6	1	24	36	30	-	0	6	5	1
Texas ${ }^{\text {® }}$	-	3	39	96	197	9	14	135	451	493	-	1	13	61	39
Mountain	3	5	15	183	211	-	3	7	125	107	1	2	5	72	97
Arizona	3	3	11	127	122	-	0	3	40	-	1	0	3	23	32
Colorado	-	0	3	20	34	-	0	2	21	29	-	0	2	14	21
Idahos	-	0	1	4	9	-	0	1	11	10	-	0	1	5	10
Montana ${ }^{\text {® }}$	-	0	2	9	9	-	0	3	-	-	-	0	1	3	5
Nevadas	-	0	2	9	11	-	1	3	29	29	-	0	2	7	7
New Mexicos	-	0	2	7	12	-	0	2	9	19	-	0	2	8	5
Utah	-	0	1	5	12	-	0	4	14	20	-	0	2	9	17
Wyoming ${ }^{\text {§ }}$	-	0	1	2	2	-	0	1	1	-	-	0	1	3	-
Pacific	12	13	92	509	840	7	10	106	370	375	2	2	11	89	70
Alaska	-	0	1	3	1	-	0	3	4	5	-	0	1	-	-
California	12	10	40	443	797	7	7	31	280	304	2	1	11	65	70
Hawaii	-	0	2	4	10	-	0	1	4	7	-	0	1	1	-
Oregon ${ }^{\text {® }}$	-	1	2	21	32	-	1	5	45	59	-	0	1	6	-
Washington	-	0	52	38	-	-	0	74	37	-	-	0	3	17	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	1	10	45	48	-	1	9	44	46	-	0	2	3	1
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
\dagger Data for acute hepatitis C, viral are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serogroups				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{gathered} \text { Cum } \\ 2006 \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	229	252	1,104	14,151	15,601	12	22	105	772	1,088	10	19	87	768	874
New England	30	39	286	2,672	3,661	-	1	5	31	44	-	1	3	32	36
Connecticut	8	12	214	1,471	1,513	-	0	3	1	10	-	0	1	6	9
Maine ${ }^{\text {§ }}$	6	3	53	296	162	-	0	2	6	4	-	0	3	5	3
Massachusetts	-	1	21	21	1,332	-	0	3	16	21	-	0	2	17	19
New Hampshire	2	6	77	646	567	-	0	4	6	8	-	0	1	-	3
Rhode Island ${ }^{\text {§ }}$	13	0	93	136	1	-	0	1	-	-	-	0	1	1	-
Vermont ${ }^{\text {8 }}$	1	1	13	102	86	-	0	2	2	1	-	0	1	3	2
Mid. Atlantic	147	136	568	7,473	8,009	2	5	12	185	278	1	2	8	104	134
New Jersey	1	27	120	1,520	2,134	-	0	3	-	75	-	0	2	11	17
New York (Upstate)	140	50	426	2,566	2,894	2	1	5	50	33	1	0	3	27	31
New York City	-	1	19	91	260	-	3	7	105	133	-	0	4	25	50
Pennsylvania	6	42	280	3,296	2,721	-	1	3	30	37	-	1	5	41	36
E.N. Central	-	7	92	670	1,596	-	2	8	81	132	2	3	9	101	133
Illinois	-	1	10	86	104	-	1	6	33	66	-	0	3	26	33
Indiana	-	0	7	39	20	-	0	2	8	11	2	0	4	20	20
Michigan	-	1	6	49	45	-	0	2	13	17	-	0	3	18	24
Ohio	-	0	4	19	40	-	0	2	18	25	-	1	3	28	37
Wisconsin	-	4	82	477	1,387	-	0	2	9	13	-	0	3	9	19
W.N. Central	1	5	195	337	505	1	0	12	28	32	-	1	5	45	49
lowa	-	1	11	88	91	-	0	1	3	1	-	0	3	10	13
Kansas	-	0	2	9	4	-	0	1	2	6	-	0	1	1	3
Minnesota	1	1	188	208	396	-	0	12	11	14	-	0	3	14	11
Missouri	-	0	6	25	4	-	0	1	5	6	-	0	3	13	13
Nebraska ${ }^{\text {§ }}$	-	0	1	5	9	1	0	1	6	3	-	0	1	2	6
North Dakota	-	0	7	2	-	-	0	1	-	1	-	0	3	2	1
South Dakota	-	0	0	-	1	-	0	1	1	1	-	0	1	3	2
S. Atlantic	38	50	167	2,766	1,691	4	5	13	187	272	2	3	11	133	151
Delaware	3	11	34	575	408	-	0	1	4	5	-	0	1	1	4
District of Columbia	-	0	7	13	39	-	0	2	3	3	-	0	1	-	1
Florida	11	1	6	67	17	2	1	7	47	45	1	1	7	51	58
Georgia	-	0	1	1	7	-	0	5	27	77	-	0	4	19	13
Maryland ${ }^{\text {® }}$	12	25	108	1,412	961	1	1	5	44	63	-	0	2	19	12
North Carolina	8	0	6	39	24	-	0	4	17	24	1	0	6	15	24
South Carolina ${ }^{\text {® }}$	-	0	2	17	15	-	0	1	5	9	-	0	2	13	18
Virginia ${ }^{\text {® }}$	4	11	60	585	211	1	1	4	38	44	-	0	2	13	16
West Virginia	-	0	14	57	9	-	0	1	2	2	-	0	2	2	5
E.S. Central	3	1	5	43	29	1	0	3	28	22	-	1	4	39	32
Alabama ${ }^{\text {® }}$	-	0	3	10	7	1	0	1	5	8	-	0	2	7	5
Kentucky	-	0	2	4	7	-	0	1	7	3	-	0	2	9	7
Mississippi	-	0	0	-	3	-	0	1	2	6	-	0	4	9	4
Tennessee ${ }^{\text {® }}$	3	0	4	29	12	-	0	2	14	5	-	0	2	14	16
W.S. Central	2	1	5	45	17	-	1	29	62	85	1	1	15	79	82
Arkansas ${ }^{\text {® }}$	-	0	1	1	-	-	0	2	-	4	-	0	2	9	9
Louisiana	-	0	1	2	-	-	0	2	14	6	-	0	4	24	33
Oklahoma	-	0	0	-	$\bar{\square}$	-	0	3	5	7	1	0	4	15	8
Texas ${ }^{\text {¢ }}$	2	1	5	42	17	-	1	25	43	68	-	0	11	31	32
Mountain	-	1	4	32	22	1	1	6	42	58	1	1	4	47	59
Arizona	-	0	1	2	7	-	0	3	7	19	-	0	2	8	14
Colorado	-	0	1	2	-	-	0	2	14	13	-	0	2	17	19
Idaho ${ }^{\text {§ }}$	-	0	2	7	5	-	0	2	2	1	-	0	1	3	3
Montana ${ }^{\text {s }}$	-	0	1	2	-	-	0	1	3	2	-	0	1	1	4
Nevada ${ }^{\text {s }}$	-	0	2	7	2	-	0	1	2	2	-	0	1	4	5
New Mexico§	-	0	1	4	3	-	0	1	3	5	-	0	1	2	4
Utah	-	0	2	5	4	1	0	3	11	16	1	0	2	10	6
Wyoming ${ }^{\text {§ }}$	-	0	1	3	1	-	0	0	-	-	-	0	1	2	4
Pacific	8	2	16	113	71	3	3	45	128	165	3	4	48	188	198
Alaska	-	0	1	4	3	-	0	1	2	23	-	0	1	1	3
California	8	2	9	105	62	3	2	7	89	125	3	3	10	135	152
Hawaii	N	0	0	N	N	-	0	1	2	8	-	0	2	7	8
Oregon§	-	0	1	3	6	-	0	3	13	9	-	0	3	27	35
Washington	-	0	8	1	-	-	0	43	22	-	-	0	43	18	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	-	-
Guam	-	0	0	-	-	U	0	0	-	-	U	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	3	1	-	0	1	6	6
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-

[^12]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }_{\S}^{\dagger}$ Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	38	171	1,479	6,154	10,475	69	94	158	3,688	4,295	22	31	211	1,544	1,694
New England	-	26	77	804	1,257	9	12	22	443	344	-	0	10	-	11
Connecticut	-	2	5	44	82	3	4	10	175	156	-	0	0	-	-
Maine ${ }^{\text {¢ }}$	-	2	14	54	91	1	2	8	63	85	-	0	0	-	-
Massachusetts	-	20	46	613	789	-	0	0	-	-	-	0	1	-	10
New Hampshire	-	1	9	44	160	2	1	4	40	33	-	0	0	-	1
Rhode Island ${ }^{\dagger}$	-	0	31	22	45	-	0	3	29	23	-	0	9	-	-
Vermont ${ }^{\dagger}$	-	0	9	27	90	3	2	13	136	47	-	0	0	-	-
Mid. Atlantic	12	25	155	881	1,359	-	13	44	605	415	-	1	6	48	75
New Jersey	-	3	16	110	227	-	0	0	-	-	-	0	2	6	35
New York (Upstate)	12	13	146	460	602	-	-	-	-	-	-	0	1	3	-
New York City	-	2	6	90	74	-	1	5	33	26	-	0	3	19	21
Pennsylvania	-	7	20	221	456	-	12	44	572	389	-	0	3	20	19
E.N. Central	8	32	80	1,127	1,602	5	3	48	339	139	-	1	4	36	55
Illinois	-	3	23	108	402	4	1	15	105	43	-	0	3	20	24
Indiana	-	1	45	46	176	-	0	1	10	11	-	0	2	5	6
Michigan	-	7	39	217	407	-	1	27	161	40	-	0	1	3	2
Ohio	8	15	54	557	445	1	0	11	63	45	-	0	2	8	22
Wisconsin	-	3	24	199	172	-	0	0	-	-	-	0	0	-	1
W.N. Central	2	14	151	483	971	7	4	13	211	261	4	3	31	326	178
lowa	-	4	16	113	234	2	0	3	28	53	-	0	4	12	5
Kansas	-	3	13	106	216	-	2	7	93	64	-	0	1	1	1
Minnesota	-	0	119	111	145	-	0	5	22	35	-	0	1	1	3
Missouri	-	2	9	63	253	3	0	4	39	58	3	3	25	298	147
Nebraska ${ }^{\dagger}$	2	1	4	36	78	-	0	0	-	-	1	0	2	10	22
North Dakota	-	0	18	4	25	2	0	6	15	16	-	0	0	-	-
South Dakota	-	1	6	50	20	-	0	2	14	35	-	0	1	4	-
S. Atlantic	7	19	163	704	835	44	40	63	1,574	1,818	12	12	109	749	921
Delaware	-	0	2	10	3	-	0	0	-	-	-	0	2	9	19
District of Columbia	-	0	2	2	4	-	0	0	-	-	-	0	1	1	1
Florida	5	4	18	181	169	-	0	29	98	176	1	0	4	17	10
Georgia	-	1	5	24	72	34	4	23	200	216	4	0	3	28	48
Maryland ${ }^{\dagger}$	-	2	8	79	113	-	7	18	267	327	-	1	7	49	66
North Carolina	-	2	112	227	154	10	9	19	383	405	5	4	96	491	662
South Carolina ${ }^{\dagger}$	-	2	9	59	139	-	1	11	46	137	1	1	7	51	32
Virginia ${ }^{\dagger}$	-	2	17	95	155	-	13	31	529	471	1	2	10	98	80
West Virginia	2	0	19	27	26	-	0	8	51	86	-	0	3	5	3
E.S. Central	-	5	28	287	267	1	3	11	118	194	1	5	16	203	309
Alabama ${ }^{\text {a }}$	-	1	18	63	56	-	0	8	-	61	-	1	8	61	77
Kentucky	-	0	1	5	55	1	0	3	18	23	-	0	2	5	3
Mississippi	-	1	26	150	30	-	0	1	1	4	-	0	2	7	4
Tennessee ${ }^{\dagger}$	-	2	7	69	126	-	2	7	99	106	1	3	10	130	225
W.S. Central	-	20	226	671	628	-	2	32	69	748	2	1	168	146	101
Arkansas ${ }^{+}$	-	2	17	113	69	-	0	5	24	25	1	0	53	73	46
Louisiana	-	0	1	14	23	-	0	1	-	5	-	0	1	2	3
Oklahoma	-	0	36	5	18	-	0	22	45	52	-	0	108	45	28
Texas ${ }^{\dagger}$	-	16	174	539	518	-	0	27	-	666	1	0	7	26	24
Mountain	2	24	61	789	2,058	1	3	14	165	183	-	0	4	28	42
Arizona	1	5	13	161	422	-	2	12	115	120	-	0	1	6	10
Colorado	-	6	17	216	629	-	0	0	-	-	-	0	2	3	4
Idaho ${ }^{\text { }}$	-	1	5	34	75	-	0	0	-	24	-	0	1	4	13
Montana ${ }^{\dagger}$	-	0	7	32	101	-	0	3	13	14	-	0	1	1	2
Nevada ${ }^{+}$	-	0	5	11	61	-	0	1	2	5	-	0	0	-	-
New Mexico ${ }^{\dagger}$	-	2	8	54	89	-	0	2	8	8	-	0	1	4	7
Utah	1	7	47	262	618	1	0	2	12	8	-	0	0	-	-
Wyoming ${ }^{\dagger}$	-	0	5	19	63	-	0	4	15	4	-	0	2	10	6
Pacific	7	12	547	408	1,498	2	4	13	164	193	3	0	1	8	2
Alaska	1	0	8	40	70	-	0	6	35	15	N	0	0	N	N
California	-	3	167	107	1,255	2	3	12	120	159	3	0	1	6	-
Hawaii	-	0	2	16	82	N	0	0	N	N	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	1	11	76	91	-	0	3	9	19	-	0	1	2	2
Washington	6	1	377	169	-	-	0	0	-	-	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam		0	2	-	55	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	1	-	1	-	1	5	37	66	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.

Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	702	842	2,338	30,077	32,300	68	77	336	3,015	3,053	219	334	1,287	11,242	9,667
New England	-	31	348	1,452	1,858	-	3	60	186	245	-	3	33	148	234
Connecticut	-	0	333	333	503	-	0	55	55	75	-	0	30	30	67
Maine ${ }^{\text {® }}$	-	3	14	96	96	-	1	4	29	35	-	0	5	14	4
Massachusetts	-	20	49	775	960	-	1	10	74	86	-	2	8	91	143
New Hampshire	-	3	13	127	175	-	0	3	14	23	-	0	2	5	4
Rhode Island ${ }^{\text {§ }}$	-	1	20	61	73	-	0	2	6	8	-	0	3	5	11
Vermont ${ }^{\text {® }}$	-	2	6	60	51	-	0	3	8	18	-	0	2	3	5
Mid. Atlantic	42	100	186	3,788	4,109	2	8	63	295	366	2	11	47	515	737
New Jersey	-	11	29	288	884	-	1	20	17	96	-	2	7	80	266
New York (Upstate)	37	29	112	1,106	945	2	3	15	149	129	2	3	42	109	187
New York City	5	24	50	1,019	989	-	0	4	26	39	-	5	10	189	213
Pennsylvania	-	33	69	1,375	1,291	-	3	47	103	102	-	1	21	137	71
E.N. Central	53	104	208	4,231	4,365	11	9	28	415	546	49	32	123	1,610	1,052
Illinois	-	30	142	1,270	1,236	-	1	6	35	90	-	10	32	339	488
Indiana	7	15	54	553	687	-	1	9	61	67	-	2	17	82	115
Michigan	6	17	34	678	788	-	1	6	63	73	1	1	7	51	129
Ohio	30	26	65	1,035	944	9	3	11	130	143	47	8	104	954	128
Wisconsin	10	17	50	695	710	2	3	8	126	173	1	4	13	184	192
W.N. Central	30	49	101	2,044	2,018	3	12	45	553	530	16	39	156	1,462	1,280
lowa	-	9	19	350	357	-	2	38	132	109	-	2	14	68	86
Kansas	-	7	20	289	281	-	0	4	39	21	-	1	10	20	113
Minnesota	-	13	44	507	508	-	4	17	181	160	-	5	24	178	105
Missouri	20	15	26	553	576	2	2	12	101	134	16	18	72	1,066	561
Nebraska ${ }^{\text {§ }}$	9	4	12	186	157	1	1	6	64	65	-	0	7	18	111
North Dakota	1	0	23	32	21	-	0	12	1	4	-	0	127	5	56
South Dakota	-	3	11	127	118	-	0	5	35	37	-	1	30	107	248
S. Atlantic	344	221	420	8,128	8,184	21	14	37	507	465	63	88	174	3,446	2,155
Delaware	-	2	10	115	119	-	0	3	13	7	-	0	1	7	8
District of Columbia	-	0	4	16	48	-	0	1	1	2	-	0	5	4	13
Florida	149	85	176	3,212	3,310	3	2	8	111	70	29	46	76	1,806	991
Georgia	44	33	72	1,391	1,380	1	1	6	63	66	17	35	94	1,252	783
Maryland ${ }^{\text {® }}$	21	15	36	647	578	1	2	10	68	94	5	2	9	86	96
North Carolina	110	29	108	1,138	1,146	14	2	24	114	83	8	0	14	67	125
South Carolina ${ }^{\text {s }}$	12	18	51	729	763	-	0	2	11	10	2	1	7	97	74
Virginia ${ }^{\text {§ }}$	2	20	39	735	749	-	3	8	111	126	2	3	10	120	63
West Virginia	6	2	31	145	91	2	0	5	15	7	-	0	6	7	2
E.S. Central	38	54	134	2,120	2,105	7	4	26	229	231	18	26	89	1,277	500
Alabama ${ }^{\text {® }}$	9	15	78	624	579	-	0	19	55	20	5	11	67	453	146
Kentucky	14	9	23	411	350	3	1	8	76	74	11	3	32	319	171
Mississippi	-	12	101	482	602	-	0	2	4	8	-	4	76	361	73
Tennessee ${ }^{\text {§ }}$	15	17	34	603	574	4	2	10	94	129	2	3	14	144	110
W.S. Central	56	81	595	2,724	3,671	7	4	73	139	149	30	39	655	1,244	1,379
Arkansas ${ }^{\text {® }}$	14	14	45	508	652	1	1	7	27	26	-	2	10	69	78
Louisiana	-	15	48	541	775	-	0	2	3	13	-	8	22	342	173
Oklahoma	42	8	103	436	367	-	0	17	16	16	5	3	63	96	94
Texas ${ }^{\text {® }}$	-	42	470	1,239	1,877	6	2	68	93	94	25	24	580	737	1,034
Mountain	25	45	90	1,704	2,022	5	8	31	349	421	14	19	66	639	979
Arizona	20	13	44	532	649	4	1	8	68	80	13	9	37	364	491
Colorado	-	10	22	416	503	-	1	9	63	92	-	3	9	83	166
Idahos	2	3	7	99	138	1	2	16	102	74	-	0	2	8	14
Montana ${ }^{\text {§ }}$	-	1	6	71	108	-	0	0	-	-	-	1	13	18	13
Nevadas	1	4	10	138	170	-	0	5	18	24	1	1	9	38	98
New Mexicos	-	5	13	192	202	-	1	3	31	36	-	2	8	79	139
Utah	2	4	14	201	215	-	1	9	67	98	-	1	4	20	49
Wyoming ${ }^{\text {§ }}$	-	1	4	55	37	-	0	1	-	17	-	0	19	29	9
Pacific	114	103	890	3,886	3,968	12	5	164	342	100	27	26	256	901	1,351
Alaska	1	1	5	61	61	N	0	0	N	N	-	0	2	7	7
California	94	85	260	2,906	3,399	7	2	13	163	N	26	21	84	731	1,200
Hawaii	2	5	16	194	180	-	0	4	19	12	-	0	3	21	38
Oregon§	-	7	15	244	326	-	1	11	65	88	-	1	6	59	106
Washington	17	8	625	481	2	5	0	162	95	-	1	1	170	83	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	N	0	0	N	N	-	0	0	-	
Puerto Rico	-	13	66	446	418	-	0	0	-	-	-	0	4	18	33
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

[^13]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }_{\S}$ Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Streptococcal disease, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max		
United States	34	96	261	3,863	4,191	10	31	108	1,136	967
New England	-	6	28	307	278	1	2	11	77	83
Connecticut	-	0	23	96	73	-	0	6	-	24
Maine ${ }^{\text {§ }}$	-	0	3	22	15	1	0	1	2	-
Massachusetts	-	3	12	141	140	-	2	6	58	48
New Hampshire	-	0	4	31	33	-	0	2	7	7
Rhode Island ${ }^{\text {® }}$	-	0	12	2	5	-	0	2	8	4
Vermont ${ }^{\text {s }}$	-	0	2	15	12	-	0	1	2	-
Mid. Atlantic	2	17	41	724	760	-	5	27	186	133
New Jersey	-	2	9	99	124	-	1	4	25	50
New York (Upstate)	2	5	27	242	244	-	2	15	78	66
New York City	-	4	13	172	137	-	1	25	83	17
Pennsylvania	-	5	11	211	255	N	0	0	N	N
E.N. Central	5	17	32	668	808	2	5	14	177	256
Illinois	-	4	13	176	246	-	1	6	47	63
Indiana	2	2	17	108	97	1	0	10	16	46
Michigan	3	4	10	164	169	-	1	4	56	58
Ohio	-	4	14	192	203	1	1	7	49	51
Wisconsin	-	0	6	28	93	-	0	2	9	38
W.N. Central	-	5	32	266	276	-	2	8	84	77
lowa	-	0	0	-	-	-	0	0	-	-
Kansas	-	0	3	28	45	-	0	1	1	11
Minnesota	-	0	29	131	127	-	1	6	56	47
Missouri	-	2	6	67	59	-	0	2	16	11
Nebraska ${ }^{\text {® }}$	-	0	3	21	25	-	0	2	10	5
North Dakota	-	0	2	12	10	-	0	2	1	3
South Dakota	-	0	2	7	10	-	0	0	-	-
S. Atlantic	18	21	52	985	940	4	4	14	218	61
Delaware	-	0	1	9	10	-	0	0	-	-
District of Columbia	-	0	3	8	11	-	0	1	-	1
Florida	3	6	16	241	224	3	1	5	52	-
Georgia	3	5	13	190	193	-	0	5	44	-
Maryland ${ }^{\text {® }}$	4	4	10	170	177	1	1	6	49	50
North Carolina	5	1	22	140	138	-	0	0	-	-
South Carolinas	-	1	7	81	54	-	0	4	35	-
Virginias	1	2	11	123	108	-	0	4	31	-
West Virginia	2	0	3	23	25	-	0	4	7	10
E.S. Central	1	4	13	169	169	2	1	6	73	16
Alabama§	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	3	32	39	-	0	0	-	-
Mississippi	N	0	0	N	N	-	0	2	3	16
Tennessee§	1	3	13	137	130	2	1	6	70	-
W.S. Central	4	6	90	244	320	1	4	43	165	167
Arkansas ${ }^{\text {§ }}$	-	0	2	17	23	1	0	2	10	18
Louisiana	-	0	4	16	16	-	0	4	27	19
Oklahoma	4	1	23	60	81	-	1	13	38	37
Texas§	-	3	64	151	200	-	1	27	90	93
Mountain	3	9	21	389	553	-	4	9	132	155
Arizona	2	3	11	127	290	-	2	7	72	88
Colorado	-	3	9	126	96	-	1	4	34	38
Idaho ${ }^{\text {§ }}$	1	0	2	14	8	-	0	1	2	1
Montanas	N	0	0	N	N	N	0	0	N	N
Nevadas	-	0	1	2	-	-	0	1	1	2
New Mexico§	-	1	5	43	103	-	0	4	19	26
Utah	-	2	7	72	53	-	0	2	4	-
Wyoming ${ }^{\text {§ }}$	-	0	1	5	3	-	0	0	-	-
Pacific	1	3	9	111	87	-	0	4	24	19
Alaska	-	0	3	30	N	-	0	2	22	-
California	N	0	0	N	N	N	0	0	N	N
Hawaii	1	2	9	81	87	-	0	2	2	19
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U

[^14]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week) ${ }^{*}$

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	All ages					Age < 5 years									
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	25	49	256	1,727	1,812	3	9	35	317	285	136	200	310	7,616	7,085
New England	-	1	12	35	100	-	0	3	6	3	4	5	13	184	155
Connecticut	-	0	5	-	75	-	0	0	-	-	-	0	10	24	33
Maine ${ }^{\text {® }}$	-	0	2	9	6	-	0	2	1	1	-	0	2	6	8
Massachusetts	-	0	0	-	-	-	0	0	-	-	4	3	8	117	94
New Hampshire	-	0	0	-	-	-	0	0	-	-	-	0	3	22	10
Rhode Island ${ }^{\text {§ }}$	-	0	4	14	9	-	0	1	3	-	-	0	5	14	8
Vermont ${ }^{\text {8 }}$	-	0	2	12	10	-	0	1	2	2	-	0	1	1	2
Mid. Atlantic	-	2	9	98	109	-	0	5	21	15	23	28	44	1,151	849
New Jersey	-	0	0	-	-	-	0	0	-	-	1	4	8	148	130
New York (Upstate)	-	1	5	34	35	-	0	4	7	7	1	3	14	105	113
New York City	-	0	0	-	-	-	0	0	-	-	15	16	34	709	401
Pennsylvania	-	2	6	64	74	-	0	2	14	8	6	5	10	189	205
E.N. Central	10	9	40	416	388	-	2	7	55	60	3	16	27	593	664
Illinois	-	0	4	15	21	-	0	1	2	5	-	7	13	269	324
Indiana	5	2	31	106	102	-	0	5	17	16	-	1	6	39	67
Michigan	-	0	1	2	15	-	0	1	1	2	-	2	9	90	85
Ohio	5	5	38	293	250	-	1	5	35	37	2	4	10	151	137
Wisconsin	N	0	0	N	N	-	0	0	-	-	1	1	4	44	51
W.N. Central	-	2	124	116	33	-	0	15	9	2	2	6	13	260	217
lowa	-	0	0	-	-	-	0	0	-	-	-	0	3	11	15
Kansas	-	0	11	63	-	-	0	2	5	-	1	0	3	16	18
Minnesota	-	0	123	-	1	-	0	15	-	-	-	1	5	50	37
Missouri	-	1	5	45	31	-	0	1	-	2	1	4	11	174	130
Nebraska§	-	0	1	2	-	-	0	0	-	-	-	0	2	2	5
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0		1
South Dakota	-	0	3	6	1	-	0	1	4	-	-	0	3	7	11
S. Atlantic	10	21	59	783	885	3	4	15	166	139	50	47	180	1,782	1,593
Delaware	-	0	1	7	-	-	0	1	2	-	1	0	3	12	16
District of Columbia	-	0	2	5	20	-	0	0	-	2	3	2	12	133	90
Florida	6	11	29	454	473	3	2	8	97	89	23	15	38	661	554
Georgia	3	7	17	267	297	-	1	10	59	48	-	6	153	249	283
Maryland ${ }^{\text {® }}$	-	0	1	1	-	-	0	0	-	-	10	6	15	234	235
North Carolina	-	0	0	-	-	-	0	0	-	-	5	5	23	242	223
South Carolina ${ }^{\text {® }}$	-	0	0	-	-	-	0	0	-	-	2	2	11	78	52
Virginia ${ }^{\text {® }}$	N	0	0	N	N	-	0	0	-	-	6	4	17	168	133
West Virginia	1	1	17	49	95	-	0	1	8	-	-	0	1	5	7
E.S. Central	4	3	9	122	153	-	0	3	27	28	10	17	30	631	530
Alabama ${ }^{\text {s }}$	N	0	0	N	N	-	0	0	-	-	-	6	16	251	243
Kentucky	1	0	2	19	29	-	0	1	2	6	3	1	7	44	55
Mississippi	-	0	2	-	20	-	0	0	-	-	-	2	9	76	47
Tennessee ${ }^{\text {§ }}$	3	2	8	103	104	-	0	3	25	22	7	6	14	260	185
W.S. Central	-	2	11	113	66	-	0	3	17	6	34	35	55	1,351	1,131
Arkansas ${ }^{\text {§ }}$	-	0	1	1	10	-	0	0	-	2	1	1	10	92	59
Louisiana	-	1	4	51	56	-	0	2	7	4	12	8	29	347	200
Oklahoma	-	0	9	61	-	-	0	2	10	-	-	1	4	42	54
Texas§	-	0	0	-	-	-	0	0	-	-	21	21	39	870	818
Mountain	1	1	5	44	78	-	0	3	14	32	6	7	19	262	380
Arizona	-	0	0	-	-	-	0	0	-	-	-	3	12	104	142
Colorado	-	0	0	-	-	-	0	0	-	-	-	1	5	30	57
Idaho ${ }^{\text {§ }}$	N	0	0	N	N	-	0	0	-	-	-	0	1	1	3
Montana ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	-	0	1	1	1
Nevada ${ }^{\text {s }}$	1	0	3	17	16	-	0	2	5	1	6	2	6	83	108
New Mexicos	-	0	0	-	-	-	0	0	-	-	-	1	7	36	55
Utah	-	0	5	15	32	-	0	3	8	22	-	0	2	6	14
Wyoming ${ }^{\text {§ }}$	-	0	2	12	30	-	0	1	1	9	-	0	1	1	-
Pacific	-	0	0	-	-	-	0	1	2	-	4	38	57	1,402	1,566
Alaska	-	0	0	-	-	-	0	0	-	-	-	0	1	5	8
California	N	0	0	N	N	-	0	0	-	-	2	36	54	1,279	1,388
Hawaii	-	0	0	-	-	-	0	1	2	-	1	0	1	6	15
Oregon§	N	0	0	N	N	-	0	0	-	-	-	0	6	13	14
Washington	N	0	0	N	N	-	0	0	-	-	1	2	12	99	141
American Samoa	U	0	0	U	U	U	0	1	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	N	0	0	N	N	-	0	0	-	-	-	0	1	3	-
Puerto Rico	N	0	0	N	N	-	0	0	-	-	2	3	11	117	109
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }^{\dagger}$ Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending September 29, 2007, and September 30, 2006 (39th Week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
						Current week	Neuroinvasive				Nonneuroinvasive ${ }^{\text {§ }}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$			ous	Cum	Cum	Current		$\begin{aligned} & \text { ous } \\ & \text { eks } \end{aligned}$	Cum	Cum
		Med	Max				Med	Max	2007	2006	week	Med	Max	2007	2006
United States	205	796	2,813	26,596	33,790	2	1	110	766	1,421	5	2	263	1,745	2,667
New England	4	17	124	524	3,304	-	0	2	4	9	-	0	2	4	3
Connecticut	-	0	76	2	1,191	-	0	2	3	7	-	0	1	1	2
Maine ${ }^{\text {¹ }}$	-	0	7	-	181	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	1,141	-	0	1	1	2	-	0	2	2	1
New Hampshire	3	7	17	239	279	-	0	0	-	-	-	0	0	-	-
Rhode Island"	-	0	0	-	-	-	0	0	-	-	-	0	1	1	-
Vermont ${ }^{\text {¹ }}$	1	9	66	283	512	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	-	111	195	3,351	3,638	-	0	2	7	25	-	0	1	1	12
New Jersey	N	0	0	N	N	-	0	0	-	2	-	0	0	-	3
New York (Upstate)	N	0	0	N	N	-	0	0	-	8	-	0	0	-	4
New York City	-	0	0	-	-	-	0	2	5	8	-	0	0	-	4
Pennsylvania	-	111	195	3,351	3,638	-	0	1	2	7	-	0	1	1	1
E.N. Central	89	229	568	7,457	10,892	-	0	13	56	237	-	0	5	24	168
Illinois	-	2	11	111	107	-	0	7	34	123	-	0	4	14	87
Indiana	-	0	0	-	-	-	0	2	6	26	-	0	3	4	50
Michigan	30	97	258	3,016	3,277	-	0	3	8	42	-	0	0	-	12
Ohio	59	106	449	3,533	6,709	-	0	3	6	35	-	0	1	4	10
Wisconsin	-	19	80	797	799	-	0	1	2	11	-	0	1	2	9
W.N. Central	12	32	136	1,275	1,344	-	0	37	185	220	-	0	101	594	474
lowa	N	0	0	N	N	-	0	3	6	22	-	0	3	11	15
Kansas	-	8	52	439	257	-	0	3	9	16	-	0	6	18	13
Minnesota	-	0	0	-	-	-	0	11	36	31	-	0	11	53	34
Missouri	12	15	78	690	999	-	0	7	37	50	-	0	1	8	10
Nebraska ${ }^{1}$	N	0	0	N	N	-	0	3	9	44	-	0	13	72	211
North Dakota	-	0	60	84	44	-	0	10	44	20	-	0	43	280	117
South Dakota	-	1	15	62	44	-	0	8	44	37	-	0	32	152	74
S. Atlantic	56	100	239	3,798	3,368	-	0	11	29	16	-	0	4	21	13
Delaware	-	1	6	36	54	-	0	1	1	-	-	0	0	-	-
District of Columbia	7	0	8	14	28	-	0	0	-	-	-	0	1	-	1
Florida	27	19	76	937	N	-	0	1	3	3	-	0	0	-	
Georgia	N	0	0	N	N	-	0	8	18	2	-	0	3	14	6
Maryland"	N	0	0	N	N	-	0	2	3	10	-	0	1	4	1
North Carolina	-	0	0	-	-	-	0	1	-	-	-	0	0	-	-
South Carolina ${ }^{\text {I }}$	5	18	72	740	862	-	0	2	2	-	-	0	1	2	-
Virginia ${ }^{\text {a }}$	-	29	190	1,201	1,284	-	0	1	2	-	-	0	1	1	5
West Virginia	24	24	50	870	1,140	-	0	0	-	1	-	0	0	-	-
E.S. Central	1	5	571	383	27	-	0	10	51	113	-	0	11	54	91
Alabama ${ }^{\text {a }}$	1	5	571	380	26	-	0	2	12	8	-	0	1	1	-
Kentucky	N	0	0	N	N	-	0	1	3	5	-	0	0	-	1
Mississippi	,	0	2	3	1	-	0	7	34	84	-	0	10	51	84
Tennessee ${ }^{\text {® }}$	N	0	0	N	N	-	0	1	2	16	-	0	1	2	6
W.S. Central	41	167	1,640	7,826	9,163	-	0	22	126	359	-	0	14	47	218
Arkansas"	5	13	105	551	644	-	0	4	9	24	-	0	1	2	5
Louisiana	-	2	11	96	187	-	0	4	1	87	-	0	6	1	83
Oklahoma	-	0	0	-	-	-	0	11	41	26	-	0	7	28	18
Texas"	36	150	1,534	7,179	8,332	-	0	14	75	222	-	0	5	16	112
Mountain	1	56	131	1,952	2,054	-	0	30	187	360	-	1	132	814	1,430
Arizona	-	0	0	-	-	-	0	10	10	37	-	0	14	21	42
Colorado	-	22	62	780	1,109	-	0	16	79	66	-	0	61	378	274
Idaho ${ }^{\text {I }}$	N	0	0	N	N	-	0	1	1	138	-	0	15	69	847
Montana ${ }^{\text {a }}$	-	5	40	304	N	-	0	10	32	12	-	0	28	139	22
Nevada"	-	0	1	1	9	-	0	1	2	34	-	0	3	8	89
New Mexico"	-	5	37	302	314	-	0	7	33	3	-	0	6	18	4
Utah	1	15	73	547	588	-	0	8	17	56	-	0	5	20	102
Wyoming"	-	0	11	18	34	-	0	4	13	14	-	0	35	161	50
Pacific	1	0	9	30	-	2	0	16	121	82	5	0	21	186	258
Alaska	1	0	9	30	N	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	N	2	0	15	118	76	5	0	19	172	193
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Oregon"	N	0	0	N	N	-	0	1	3	6	-	0	3	14	62
Washington	N	0	0	N	N	-	0	0	-	-	-	0	0	-	3
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	6	30	146	175	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	11	30	467	449	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

[^15]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }^{\top}$ Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data § for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
${ }^{5}$ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenza-
associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending September 29, 2007 (39th Week)

	All causes, by age (years)								All causes, by age (years)						
Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	P\& ${ }^{\dagger}$ Total	Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	P\& ${ }^{\dagger}$ Total
New England	492	349	96	27	11	8	41	S. Atlantic	969	574	271	83	23	18	59
Boston, MA	124	77	29	11	3	4	11	Atlanta, GA	100	46	40	7	5	2	7
Bridgeport, CT	29	21	5	2	1	-	1	Baltimore, MD	146	74	47	20	3	2	9
Cambridge, MA	11	8	2	-	1	-	1	Charlotte, NC	103	72	25	5	-	1	11
Fall River, MA	26	22	2	-	1	-	1	Jacksonville, FL	152	87	45	15	3	2	8
Hartford, CT	48	31	10	6	1	-	5	Miami, FL	96	60	23	7	2	4	4
Lowell, MA	22	17	4	1	-	-	3	Norfolk, VA	49	25	15	4	2	3	2
Lynn, MA	11	9	1	1	-	-	-	Richmond, VA	57	29	11	10	6	1	2
New Bedford, MA	19	14	4	-	1	-	1	Savannah, GA	47	35	10	-	2	-	6
New Haven, CT	41	30	8	1	1	1	7	St. Petersburg, FL	50	30	11	9	-	-	2
Providence, RI	47	34	12	-	1	-	-	Tampa, FL	151	103	40	5	-	3	4
Somerville, MA	4	3	-	1	-	-	-	Washington, D.C.	U	U	U	U	U	U	U
Springfield, MA	34	25	5	1	1	2	2	Wilmington, DE	18	13	4	1	-	-	4
Waterbury, CT	25	20	4	1	-	-	5	E.S. Central	886	547	226	72	19	22	63
Worcester, MA	51	38	10	2	-	1	4	Birmingham, AL	160	109	36	8	3	4	14
Mid. Atlantic	1,913	1,322	422	99	36	33	94	Chattanooga, TN	73	47	21	4	1	-	4
Albany, NY	51	37	8	4	1	1	1	Knoxville, TN	87	60	16	7	3	1	4
Allentown, PA	20	17	3	-	-	-	2	Lexington, KY	81	48	21	8	-	4	4
Buffalo, NY	71	40	25	6	-	-	2	Memphis, TN	177	112	43	13	3	6	13
Camden, NJ	17	8	7	1	-	1	1	Mobile, AL	94	51	27	11	3	2	8
Elizabeth, NJ	11	9	2	-	-	-	1	Montgomery, AL	72	39	17	11	2	3	4
Erie, PA	37	30	6	-	-	1	1	Nashville, TN	142	81	45	10	4	2	12
Jersey City, NJ	U	U	U	U	U	U	U	W.S. Central	1,342	855	326	88	32	41	53
New York City, NY	1,045	712	234	59	20	19	37	Austin, TX	1,342 93	55	32	12	1	3	6
Newark, NJ	27	17	5	4	1	-	2	Baton Rouge, LA	U	U	U	U	U	U	\cup
Paterson, NJ	18	12	2	2	1	1	11	Corpus Christi, TX	65	44	15	5	-	1	4
Philadelphia, PA	156	82	47	13	8	6	11	Corpus Christi, TX Dallas, TX	178	100	15 49	21	3	5	7
Pittsburgh, PA ${ }^{\text {§ }}$	33	24	6	2	1	-	3	El Paso, TX	+69	53	10	3	1	2	2
Reading, PA	32	25	7	-	-	-	3	Fort Worth, TX	118	79	29	4	-	6	5
Rochester, NY	139	110	23	4	2	-	11	Houston, TX	381	221	107	22	18	13	11
Schenectady, NY	22	19	3	-	-	-	1	Little Rock, AR	71	47	18	2	2	2	1
Scranton, PA	30	24	6	-	2	-	1	New Orleans, LA ${ }^{\text {a }}$	U	U	U	U	U	U	U
Syracuse, NY	154	115	30	3	2	4	14	San Antonio, TX	210	151	41	10	6	2	10
Trenton, NJ	17	14	2	1	-	-	-	Shreveport, LA	39	27	11	1	6	-	4
Utica, NY	15	11	4	-	-	-	3	Tulsa, OK	118	78	24	8	1	7	3
Yonkers, NY	18	16	2	-	-	-	-	Tusa, OK	118	78	24	8	1	7	3
E.N. Central	2,040	1,340	463	147	46	43	128	Mountain	810	525	186	64	22	13	39
Akron, OH	37	25	7	2	2	1	1	Albuquerque, NM	122	84	24	12	1	1	5
Canton, OH	29	20	8	-	-	1	2	Boise, ID	64	49 40	10	3	2	1	1
Chicago, IL	359	208	93	37	10	10	28	Colorado Springs, CO Denver, CO	80	40 53	13	3	3	1	2
Cincinnati, OH	80	48	16	10	2	4	4	Las Vegas, NV	828	53	15 57	6 24	2 7	6 1	4 10
Cleveland, OH	249	172	48	18	8	3	13	Las Vegas, NV Ogden, UT	228 39	139 30	57 7	24 1	7	1	10 3
Columbus, OH	199	134	39	18	4	4	13	Phoenix, AZ	U	U	\cup	U	U	U	${ }^{3}$
Dayton, OH	124	93	24	3	3	1	6	Pueblo, CO	29	21	7	U	1	-	1
Detroit, MI	181	87	57	25	8	4	10	Sult Lake City, UT	29 96	21 52	7 30	8	1	3	1
Evansville, IN	50	41	7	2	-	-	5	Tucson, AZ	90	57	23	7	2	1	6
Fort Wayne, IN	55	38	13	2	2	-	4	Tucson, AZ	90	57	23	7	2	1	6
Gary, IN	20	10	7	1	2	-	-	Pacific	1,092	735	250	70	14	21	83
Grand Rapids, MI	53	38	12	1	-	2	3	Berkeley, CA	13	8	4	1	-	-	-
Indianapolis, IN	192	121	52	11	1	7	13	Fresno, CA	104	70	26	6	-	2	7
Lansing, MI	47	30	9	5	2	1	2	Glendale, CA	U	U	U	U	U	U	U
Milwaukee, WI	66	50	13	3	-	-	7	Honolulu, HI	50	33	13	-	2	2	7
Peoria, IL	50	32	15	2	1	-	3	Long Beach, CA	69	46	13	6	2	2	11
Rockford, IL	43	33	7	2	1	-	2	Los Angeles, CA	U	U	U	U	U	U	U
South Bend, IN	52	39	9	2	-	2	2	Pasadena, CA	33	21	6	6	-	-	2
Toledo, OH	87	63	20	1	-	3	3	Portland, OR	121	78	33	8	-	2	9
Youngstown, OH	67	58	7	2	-	-	7	Sacramento, CA	U	U	U	U	U	U	U
W.N. Central	645	405	151	42	17	30	46	San Diego, CA	117	83	26	6	1	1	8
Des Moines, IA	66	47	13	3	2	1	7	San Francisco, CA	106	64	24	11	-	7	12
Duluth, MN	27	21	4	2	-	-	2	San Jose, CA	163	113	30	11	5	2	11
Kansas City, KS	20	13	6	-	-	1	1	Santa Cruz, CA	34	26	7	1	-	-	5
Kansas City, MO	92	47	30	6	2	7	8	Seattle, WA Spokane, WA	136 38	90 31	32 6	9	3	2 1	5
Lincoln, NE	42	33	7	6	1	1	5	Spokane, WA Tacoma, WA	38 108	31 72	6 30	5	1	1	4
Minneapolis, MN	60	33	18	6	-	3	4	Tacoma, WA	108	72	30	5	1	-	2
Omaha, NE	92	68	12	3	2	7	5	Total	10,189**	6,652	2,391	692	220	229	606
St. Louis, MO	121	57	39	12	6	7	5								
St. Paul, MN	49	35	7	4	2	1	4								
Wichita, KS	76	51	15	6	2	2	5								

U: Unavailable. -: No reported cases.
${ }^{*}$ Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $\geq 100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
${ }^{\dagger}$ Preumonia and influenza.
${ }^{\text {s }}$ Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
${ }^{\pi}$ "Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
** Total includes unknown ages.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals September 29, 2007, with historical data

* Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

[^16]The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr$t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/ publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to www.mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: *The 2005 BRFSS questionnaire is available at http://www.cdc.gov/brfss/questionnaires/ pdf-ques/2005brfss.pdf.

[^1]:
 having a disability.

 heart rate) for ≥ 20 minutes per day, ≥ 3 days per week.
 § Reported participating in moderate-intensity or vigorous-intensity activities for <10 minutes at a time or reported no physical activity during a usual week.
 T Confidence interval.

[^2]: ${ }^{\dagger}$ Healthy People 2010 midcourse review: physical activity and fitness. Available at http://www.healthypeople.gov/data/midcourse/pdf/fa22.pdf.

[^3]: * If illness onset date was unknown, date of specimen collection was used.

[^4]: *Case-patients and controls were excluded from analysis if the relevant interview question
 †was not answered or the respondent answered "unknown."
 ${ }_{\S}^{\dagger}$ Confidence interval.
 ${ }^{\text {§ }}$ Calculation uses a 0.5 continuity correction because of stratum cells that contain zero.

[^5]: *Mass campaigns conducted during a short period (days to weeks) in which a dose of measles-containing vaccine is administered to all children in a targeted age group (e.g., 9 months -15 years), regardless of previous vaccination history. Campaigns can be conducted nationally or in portions of the country.

[^6]: ${ }^{\dagger}$ A fully immunized child is a child who, by his or her first birthday, has received 1 dose of bacille Calmette-Guérin vaccine; 3 doses of diphtheria, tetanus, and pertussis vaccine; 3 doses of oral poliovirus vaccine; and 1 dose of measlescontaining vaccine.

[^7]: ${ }^{\$}$ For surveillance purposes, a suspected case of measles is defined as generalized maculopapular rash and fever plus one of the following: cough, coryza (i.e., runny nose), or conjunctivitis (i.e., red eyes). Additional information available at http://www.afro.who.int/measles/guidelines/index.html.
 ${ }^{\text {I }}$ Catch-up campaigns are one-time events targeting all children in a particular age group. The goal is to vaccinate all children who might not have been previously vaccinated for the first time against measles and provide a second opportunity for measles vaccination in addition to routine vaccination. During a catch-up campaign, all children in the targeted age group receive a supplementary dose of measles vaccine, regardless of previous disease or vaccination history. Additional information is available at http:// www.measlesinitiative.org/vaccination.asp.

[^8]: * Based on data from the Health Management Information System, Department of Health Services, Nepal Ministry of Health and Population.
 ${ }_{\S}^{\dagger}$ Based on data from the World Health Organization/Nepal Ministry of Health and Population integrated vaccine-preventable disease surveillance network.
 § Outbreak investigations and laboratory testing started in March 2003.
 ${ }^{9}$ Laboratory confirmation for rubella-specific immunoglobulin M did not start until January 2004.

[^9]: ** Treatment includes administration of vitamin A and, if complications are noted, antibiotics. Additional information available at http://www.who.int/ mediacentre/factsheets/fs286/en.

[^10]: $\dagger \dagger$ Follow-up SIAs are conducted periodically (i.e., every $3-5$ years) to maintain low levels of susceptibility. A follow-up campaign provides children with a second opportunity for measles vaccination and aims to reach all children aged ≥ 9 months who were born after the previous catch-up campaign. Additional information available at http://www.measlesinitiative.org/ vaccination.asp.

[^11]: C.N.M.I.: Commonwealth of Northern Mariana Islands

[^12]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

[^13]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

[^14]: C.N.M.I.: Commonwealth of Northern Mariana Islands

 U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

 * Incidence data for reporting year 2007 are provisional.
 \dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
 ${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^15]: N.M.I. Commonwealth of Northern Mariana Islands

[^16]: Notifiable Disease Data Team and 122 Cities Mortality Data Team
 Patsy A. Hall
 Deborah A. Adams Rosaline Dhara
 Willie J. Anderson Carol Worsham
 Lenee Blanton
 Pearl C. Sharp

