MMWR Morbidity and Mortality Weekly Report

www.cdc.gov/mmwr

Weekly

November 30, 2007 / Vol. 56 / No. 47

World AIDS Day December 1, 2007

December 1 marks the 20th observance of World AIDS Day, an annual worldwide event established to increase awareness and education regarding human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS). In 2007, an estimated 33.2 million persons worldwide are living with HIV; the number of deaths from AIDS in 2007 is expected to total 2.1 million (1). In the United States, an estimated 1 million persons were living with HIV in 2003 (2); of these, approximately 25% were unaware of their infection and thus were at high risk for infecting others.
HIV testing remains a crucial component of HIV prevention strategies. Persons who know they are infected with HIV can seek health care and protect their partners from becoming infected. In 2006, CDC issued new guidelines recommending routine HIV testing of adults, adolescents, and pregnant women in health-care settings in the United States (3). In addition, CDC recently provided funding to increase testing among populations disproportionately affected by HIV/AIDS. Additional information regarding World AIDS Day and HIV prevention measures is available at http://www.cdc.gov/ features/worldaidsday and http://www.cdc.gov/hiv.

References

1. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO). 2007 AIDS epidemic update. Geneva, Switzerland: UNAIDS/WHO; 2007. Available at http:// data.unaids.org/pub/epislides/2007/2007_epiupdate_en.pdf.
2. Glynn M, Rhodes P. Estimated HIV prevalence in the United States at the end of 2003 [Abstract T1-B1101]. Programs and abstracts of the 2005 National HIV Prevention Conference; June 12-15, 2005; Atlanta, GA. Available at http://www.aegis.com/conferences/ nhivpc/2005/t1-b1101.html.
3. CDC. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR 2006;55(No. RR-14).

Rapid HIV Testing in Outreach and Other Community Settings United States, 2004-2006

In 2003, an estimated 1 million persons in the United States were living with human immunodeficiency virus (HIV) infection (1). Approximately 25% were unaware of their infection (1); however, that percentage might have been greater among persons at high risk for HIV infection, including racial/ ethnic minority populations (2,3). To increase the proportion of persons aware of their HIV serostatus, CDC launched the Advancing HIV Prevention initiative in 2003 (4). One strategy of the initiative is to implement new models for diagnosing HIV infections outside medical settings. During 2004-2006, CDC funded a demonstration project to provide rapid HIV testing and referral to medical care, targeted to racial/ethnic minority populations and others at high risk in outreach and other community settings. This report summarizes the results of that project, which indicated that, of 23,900 clients who received a rapid HIV test, 39% were nonHispanic blacks, 31% were Hispanics, 17% reported malemale sex, and 6% were injection-drug users. A total of 267 (1\%) persons had confirmed HIV-positive test results; of these, 195 (74\%) were either non-Hispanic blacks or Hispanics. The project results demonstrate that rapid HIV testing in outreach and other community settings can identify large numbers of persons in racial/ethnic minority populations and others at high risk who are unaware they are infected with HIV.
Rapid HIV testing was conducted by eight communitybased organizations (CBOs) in seven U.S. cities: Boston, Massachusetts; Chicago, Illinois; Detroit, Michigan; Kansas

[^0]The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2007;56:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, MD, MPH Director
Tanja Popovic, MD, PhD
Chief Science Officer
James W. Stephens, PhD Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Suzanne M. Hewitt, MPA
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Catherine H. Bricker, MS Jude C. Rutledge Writers-Editors
Beverly J. Holland
Lead Visual Information Specialist Lynda G. Cupell Malbea A. LaPete Visual Information Specialists

Quang M. Doan, MBA Erica R. Shaver Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Stanley A. Plotkin, MD, Doylestown, PA Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA

City, Missouri; Los Angeles, California; San Francisco, California; and Washington, D.C. (DC). CBOs identified testing venues where persons at high risk congregated, resided, or sought medical care (e.g., parks, shelters, hotels, clubs, health fairs, syringe-exchange sites, and community clinics). Trained CBO staff members offered counseling and rapid HIV testing to clients either in mobile testing units or inside venues. Persons eligible for testing were those capable of providing written, informed consent who met age of consent criteria for HIV testing in the state in which the CBO was operating; persons not meeting these criteria and persons with a previous diagnosis of HIV infection were excluded. CBO staff members collected information from persons tested regarding their demographic characteristics, risk behaviors, and HIV testing history. HIV testing was performed with rapid tests (Oraquick ${ }^{\circledR}$ Rapid HIV-1 Antibody Test or OraQuick ${ }^{\circledR}$ Advance ${ }^{\text {TM }}$ Rapid HIV-1/2 Antibody Test [OraSure Technologies, Bethlehem, Pennsylvania]) on either oral fluid or wholeblood specimens, and results were provided to clients 20-40 minutes after specimens were collected. For persons with reactive (i.e., preliminary positive) rapid test results, testing staff members collected either oral fluid or whole-blood specimens for confirmatory Western blot testing and scheduled a follow-up appointment to give the client the confirmatory test results. HIV-positive persons who returned for confirmatory test results were referred to clinics affiliated with participating CBOs or to other local health-care providers for medical care.
Of 24,172 persons who agreed to be tested, 44 persons did not meet age of consent criteria, and 84 persons reported a previous diagnosis of HIV infection. Data on the total number of persons offered testing were not collected. Of the 24,044 persons who met eligibility criteria for participation and agreed to be tested, 144 were excluded from the analysis because they either did not receive their rapid HIV test results or had missing test-result information. A total of 23,900 persons were included in the analysis: 5,536 from Los Angeles; 5,162 from Boston; 4,586 from DC; 2,985 from Kansas City; 1,931 from San Francisco; 1,868 from Detroit; and 1,832 from Chicago. Among participants, 39\% were non-Hispanic blacks, 31\% were Hispanics, and 21% were non-Hispanic whites. Sixtythree percent of participants were male, 50% reported not having any public or private health insurance, 40% reported not visiting a health-care provider during the preceding year, and 9% reported being homeless (Table).
Sixty-six percent of participants reported having multiple sex partners, 17% reported male-male sex, and 6% reported injection-drug use during the preceding year. A total of 7,034 (30%) participants had never been tested for HIV; among the 16,543 (70%) who had been tested, 6,982 (43%) had not been tested during the preceding year. Of 14,096 persons who

TABLE. Number and percentage of persons tested for human immunodeficiency virus (HIV) in outreach and other community settings, by confirmed HIV test result and selected characteristics - Advancing HIV Prevention demonstration project, United States, 2004-2006*

Characteristic	$\begin{gathered} \text { Total } \\ (\mathrm{N}=23,900) \end{gathered}$		HIV positive ($\mathrm{n}=267$)		HIV negative$(n=23,633)$	
	No.	(\%)	No.	(\%)	No.	(\%)
Age group (yrs)						
13-24	6,467	(27)	37	(14)	6,430	(27)
25-34	6,889	(29)	95	(35)	6,794	(29)
35-44	5,645	(24)	85	(32)	5,560	(24)
≥ 45	4,899	(20)	50	(19)	4,849	(20)
Race/Ethnicity						
Hispanic	7,443	(31)	106	(40)	7,337	(31)
White, non-Hispanic	4,882	(21)	51	(19)	4,831	(21)
Black, non-Hispanic	9,142	(39)	89	(34)	9,053	(39)
Other, non-Hispanic	2,127	(9)	19	(7)	2,108	(9)
Sex/Gender						
Female	8,583	(36)	38	(14)	8,545	(36)
Male	14,978	(63)	225	(85)	14,753	(63)
Transgender ${ }^{\dagger}$	164	(1)	3	(1)	161	(1)
Health-insurance status						
Insured	11,922	(50)	104	(39)	11,818	(50)
Not insured	11,978	(50)	163	(61)	11,815	(50)
Housing status						
Not homeless	21,309	(91)	230	(88)	21,079	(91)
Homeless	2,218	(9)	30	(12)	2,188	(9)
Visited health-care provider during preceding year						
Yes	14,096	(60)	140	(54)	13,956	(60)
No	9,370	(40)	119	(46)	9,251	(40)
Risk behavior during preceding year						
Injection-drug use						
Yes	1,441	(6)	29	(12)	1,412	(6)
No	21,723	(94)	222	(88)	21,501	(94)
Male-male sex						
Yes	4,136	(28)	155	(69)	3,981	(27)
No	10,842	(72)	70	(31)	10,772	(73)
Multiple sex partners						
Yes	14,183	(66)	159	(69)	14,024	(66)
No	7,437	(34)	72	(31)	7,365	(34)
HIV testing history						
Ever tested for HIV						
Yes	16,543	(70)	198	(76)	16,345	(70)
No	7,034	(30)	63	(24)	6,971	(30)
Tested for HIV during preceding year§						
Yes	9,216	(57)	106	(55)	9,110	(57)
No	6,982	(43)	87	(45)	6,895	(43)

${ }^{*}$ Numbers might not add to totals because of missing data.
${ }^{\dagger}$ Persons who identify with or express a gender or sex different from their biologic sex.
${ }^{\S}$ Among persons ever tested for HIV.
had seen a health-care provider during the preceding year, 6,257 (44%) had received an HIV test during that period, and 3,299 (24%) had never been tested for HIV, including 19 persons who were confirmed to have HIV infection.
A total of 331 persons (1%) had a preliminary positive rapid HIV test result; of these, 286 (86\%) received a confirmatory test (Figure). The most common reason cited by persons with preliminary positive HIV test results for refusing confirmatory testing was that they wanted to have the testing performed elsewhere. Of the 286 persons who received a confirmatory test, 267 (93%) were confirmed to have HIV infection, and

17 had negative confirmatory test results (i.e., false preliminary positive rapid HIV test results). The positive predictive value of a preliminary positive rapid result for a confirmed test was 94% (267 of 284). Of the 267 persons with newly diagnosed HIV infection, 200 (75%) received their confirmatory test results. The most common reason cited by participating sites for why clients with preliminary positive test results did not receive their confirmatory test results was that the clients could not be located. Of the 200 persons who received their confirmatory results, $171(86 \%)$ accepted referrals to medical care for HIV; the reasons that 29 persons

FIGURE. Follow-up testing and referral to medical care for persons with preliminary positive rapid human immunodeficiency virus (HIV) test results - Advancing HIV Prevention demonstration project, United States, 2004-2006

* Includes two persons who had indeterminate confirmatory test results but subsequently tested positive on repeat tests.
(14\%) did not accept referrals to medical care are not known. Referral to care encompassed a range of actions, including escorting clients to medical care, scheduling medical appointments, or providing contact information for clients to schedule their own appointments.
Reported by: D Aguirre, Bienestar Human Svcs; A Mares-DelGrasso, AIDS Healthcare Foundation, Los Angeles; C Emerson, Tenderloin Health, San Francisco, California. J Tsang, The Night Ministry, Chicago, Illinois. J Pincus, MD, Dotwell, Dorchester, Massachusetts. C Calhoun, Community Health Awareness Group, Detroit, Michigan. H Buckendabl, Kansas City Free Clinic, Missouri. D Dekker, PhD, Whitman Walker Clinic, Washington, DC. K Jafa-Bhushan, MBBS, K Bowles, MPH, H Clark, MPH, B Song, MS, PS Sullivan, PhD, JD Heffelfinger, MD, Div of HIVIAIDS Prevention; J Cleveland, MS, National Center for HIV, Viral Hepatitis, STD, and TB Prevention; E Tai, MD, EIS Officer, CDC.
Editorial Note: The Advancing HIV Prevention demonstration project described in this report provided rapid HIV testing to 23,900 persons, including 30% who had never been tested previously for HIV, and identified 267 newly diagnosed cases of HIV infection. Seventy percent of those tested were in racial/ethnic minority populations at greater risk for HIV infection, and 66% had multiple sex partners. These results suggest that rapid HIV testing in outreach and other community settings can effectively target substantial numbers of persons at high risk for HIV infection. Overall, approximately 1% of persons tested had newly diagnosed HIV infection. This is comparable to the 1% rate of positive test results at CDC-supported HIV counseling and testing sites, although
clients differed in referral status, race/ethnicity, and risk behaviors (5).
In this project, the percentage of persons who had been tested previously for HIV (70\%) was lower than the percentage ($73 \%-88 \%$) who reported being tested previously in a 2002 survey of populations at high risk for HIV infection (G). Overall, in this project, 75% of persons with confirmed positive HIV tests received their results, a rate similar to those reported previously from six rapid HIV testing studies (7). Nonetheless, improved strategies might increase that proportion and also the proportion of clients who receive their results and accept referral to medical care. One strategy to improve the rate of referral might be to refer persons with preliminary positive HIV test results immediately to medical care rather than waiting until results of confirmatory testing are available. This strategy would eliminate the need for clients to return to the testing site to receive confirmatory results before being referred to medical care. Another way to increase acceptance of referral might be to use a combination of rapid HIV tests rather than a Western blot test to confirm preliminary positive HIV results. This practice would allow clients to receive a preliminary positive HIV test result and a confirmed test result rapidly and be linked to health-care and prevention services the same day (8). CDC currently is evaluating use of a confirmatory algorithm with a combination of rapid tests. However, until this strategy can be validated, preliminary positive tests should always be confirmed with Western blot tests.
In this project, 19 persons with newly diagnosed HIV infection had visited a health-care provider during the pre-
ceding year but had never been tested for HIV; these persons appear to represent missed opportunities to test medical patients routinely in populations at high risk for HIV infection. In 2006, CDC published revised recommendations for HIV testing in medical settings, including routine HIV testing for patients aged 13-64 years in all health-care settings (9). Routine testing without risk assessment can identify persons with undiagnosed HIV infection and reduce the reluctance associated with testing protocols that require assessment of risk behavior (10).

The findings in this report are subject to at least three limitations. First, the project did not track the number of persons who were offered testing; therefore, the rate of acceptance of rapid HIV testing in outreach and other community settings cannot be calculated. However, rapid HIV testing has been preferred over conventional HIV testing (8). Second, selection of venues for HIV testing by the CBOs was not systematic; therefore, those persons tested might not be representative of all persons served by the CBOs, and other risk factors for HIV infection might exist that were not elicited. Finally, information regarding whether the 171 persons with newly diagnosed HIV infection who accepted referral to medical care were actually linked to HIV care (e.g., made at least one followup medical visit) was either incomplete or unavailable for most participating CBOs.
This project demonstrated that rapid HIV testing in a range of settings can effectively target multiple populations at high risk for HIV infection. Offering rapid HIV testing in outreach and other community settings provides opportunities to identify HIV infections and to link persons with positive test results to prevention and medical care.

References

1. Glynn M, Rhodes P. Estimated HIV prevalence in the United States at the end of 2003 [Abstract T1-B1101]. Programs and abstracts of the 2005 National HIV Prevention Conference; June 12-15, 2005; Atlanta, GA. Available at http://www.aegis.com/conferences/nhivpc/2005/ t1-b1101.html.
2. MacKellar DA, Valleroy LA, Secura GM; Young Men's Survey Study Group, et al. Unrecognized HIV infection, risk behaviors, and perceptions of risk among young men who have sex with men: opportunities for advancing HIV prevention in the third decade of HIV/AIDS. J Acquir Immune Defic Syndr 2005;38:603-14.
3. CDC. Unrecognized HIV infection, risk behaviors, and perceptions of risk among young black men who have sex with men-six U.S. cities, 1994-1998. MMWR 2002;51:733-6.
4. CDC. Advancing HIV prevention: new strategies for a changing epi-demic-United States, 2003. MMWR 2003;52:329-32.
5. CDC. HIV counseling and testing at CDC-supported sites, United States, 1999-2004. Atlanta, GA: US Department of Health and Human Services, CDC; 2006. Available at http://www.cdc.gov/hiv/ topics/testing/resources/reports/pdf/ctr04.pdf.
6. CDC. HIV testing survey, 2002. Atlanta, GA: US Department of Health and Human Services, CDC; 2004.
7. Hutchinson A, Branson B, Kim A, Farnham P. A meta-analysis of the effectiveness of alternative HIV counseling and testing methods to increase knowledge of HIV status. AIDS 2006;20:1597-604.
8. San Antonio-Gaddy M, Richardson-Moore A, Burstein GR, Newman DR, Branson BM, Birkhead GS. Rapid HIV antibody testing in the New York State anonymous HIV counseling and testing program: experience from the field. J Acquir Immune Defic Syndr 2006;43:446-50.
9. CDC. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR 2006; 55(No. RR-14).
10. Hutchinson AB, Corbie-Smith G, Thomas SB, Mohanan S, del Rio C. Understanding the patient's perspective on rapid and routine HIV testing in an inner-city urgent care center. AIDS Educ Prev 2004;16:101-14.

Progress in Global Measles Control and Mortality Reduction, 2000-2006

The World Health Organization (WHO) and United Nations Children's Fund (UNICEF) comprehensive strategy for measles mortality reduction is focused on 47 priority countries.* Components include 1) achieving and maintaining high coverage ($>90 \%$) with the first dose of measles vaccine by age 12 months in every district of each priority country through routine immunization services; 2) ensuring that all children receive a second opportunity for measles vaccination; 3) maintaining effective case-based surveillance and monitoring of vaccination coverage; and 4) providing appropriate clinical management, including vitamin A supplementation (1). In 2005, the World Health Assembly set a goal for global measles control as part of the Global Immunization Vision and Strategy (GIVS) (2): a 90\% reduction in measles mortality by 2010, compared with 2000 levels. In January 2007, WHO/UNICEF reported that implementation of measles mortality reduction strategies had reduced measles mortality by 60%, from an estimated 873,000 deaths in 1999 to 345,000 deaths in 2005 (3). This reduction exceeded the goal of 50% measles mortality reduction by 2005 (compared with 1999 levels) that had been set in $2002(1,4)$. This report updates previous reports $(5,6)$ by detailing 1) measles mortality reduction activities implemented during 2006 and 2) the impact of activities since 2000 on the global burden of measles and progress toward the GIVS mortality reduction goal for 2010.

[^1]
Immunization Activities

WHO/UNICEF produces estimates of routine coverage with a single dose of measles vaccine on the basis of data from administrative records and surveys (7). Measles vaccination coverage levels achieved during supplementary immunization activities (SIAs) ${ }^{\dagger}$ are estimated from the reported number of doses administered divided by the target population.
According to WHO/UNICEF estimates, global routine firstdose measles vaccination coverage reached 80% for the first time in 2006, increasing from 72% in 2000. Coverage varied substantially by WHO region (Table 1). From 2000 to 2006, the greatest improvements in routine coverage were observed in the WHO Africa Region (from 56\% to 73\%), the Eastern Mediterranean Region (73% to 83%), and the Western Pacific Region (86% to 93%). Despite this progress, in 2006, an estimated 26.2 million (20%) infants worldwide missed receiving their first dose of measles vaccine through routine immunization services by age 12 months (or by the time of vaccination if first dose was scheduled after 12 months). Of these, 12.8 million (49%) resided in the WHO South-East Asia Region, 7.5 million (29\%) in the Africa Region, 2.3 mil-

[^2]lion (9\%) in the Eastern Mediterranean Region, and 1.8 million (7\%) in the Western Pacific Region.
During 2000-2006, approximately 478 million children aged 9 months-14 years received measles vaccine through SIAs in 46 of the 47 priority countries. In 2006, a total of 25 (53%) of these 47 countries conducted SIAs, reaching approximately 136 million children (Table 2). Of the total SIA doses administered in 2006, 67% were administered in catch-up campaigns, and 33% were administered in follow-up campaigns. Of the 25 countries conducting SIAs in 2006, a total of 20 (80%) countries integrated at least one other child-survival intervention (e.g., administration of oral polio vaccine or distribution of insecticide-treated bednets) with measles vaccination (Table 2).

Surveillance Activities

All WHO member countries are requested to report their annual measles case counts to WHO/UNICEF by means of a common form. Annual reporting of measles surveillance data increased from 169 (88%) member countries in 2000 to 180 (93\%) in 2006. Effective surveillance for measles includes establishing case-based surveillance ${ }^{\S}$ with laboratory testing of all suspected cases (8). In 2006, of 193 WHO member countries, 146 (76%) had implemented case-based surveillance, compared with 120 (62%) countries in 2004.
Countries report clinically, epidemiologically, or laboratoryconfirmed measles cases. A 56% decrease was observed in the number of reported measles cases worldwide in 2006 $(373,421)$, compared with $2000(852,937)$. However, the number of reported cases in the European Region increased from 37,421 in 2000 to 53,344 in 2006, primarily because of

[^3]TABLE 1. First-dose measles vaccination coverage through routine immunization services and estimated number of deaths from measles, by World Health Organization (WHO) region, 2000 and 2006*

WHO region	2000		2006			Decrease in measles deaths from 2000 to 2006		Proportion of global decrease attributable to region (\%)
	First-dose measles vaccination coverage (\%)	Estimated no. of measles deaths (uncertainty bounds) ${ }^{\dagger}$	First-dose measles vaccination coverage (\%)	Estimated no. of measles deaths (uncertainty bounds)				
						No.	(\%)	
Africa	56	396,000 (290,000-514,000)	73	36,000	$(26,000-49,000)$	360,000		70
Americas	92	<1,000§	93		$<1,000$ §	-	-	-
Eastern Mediterranean	73	96,000 (71,000-124,000)	83	23,000	$(16,000-34,000)$	73,000		14
European	91	$<1,000$ §	94		<1,000§	-	-	-
South-East Asia	60	240,000 (173,000-316,000)	65	178,000	$(128,000-234,000)$	62,000	(26)	12
Western Pacific	86	25,000 (17,000-35,000)	93	5,000	(3,000-7,000)	20,000		4
Total	72	757,000 (551,000-990,000)	80	242,000	(173,000-325,000)	515,000		100

[^4]TABLE 2. Measles supplementary immunization activities (SIAs) and other child-survival interventions among selected World Health Organization (WHO)/UNICEF priority countries,* by WHO region, 2006

WHO region/Country	Age group	Extent of SIA	Children reached in targeted age group		Other child-survival interventions§				
					Oral poliovirus	Vitamin	Insecticidetreated		Tetanus
			No.	$(\%)^{\dagger}$	vaccine	A	bednets	Deworming ${ }^{\text {II }}$	toxoid**
Africa									
Angola	9-59 mos	National	3,210,160	(100)	Yes	Yes	Yes	Yes	-
Burundi	9-59 mos	National	1,226,689	(110)	-	Yes	Yes	Yes	-
Cameroon	9-59 mos	National	1,249,041	(99)	-	-	Yes	-	-
Central African Republic	9 mos -14 yrs	National	515,956	(96)	-	-	Yes	-	-
Chad	9 mos -14 yrs	National	2,735,760	(101)	-	-	-	-	-
Democratic Republic	6-59 mos	Subnational	2,158,329	(99)	-	Yes	-	Yes	-
of the Congo	$6 \mathrm{mos}-14 \mathrm{yrs}$	Subnational	6,966,200	(97)	Yes	Yes	Yes	Yes	-
Eritrea	6-59 mos	National	387,479	(95)	-	Yes	-	-	-
Ethiopia	6-59 mos	Subnational	10,398,045	(89)	-	-	-	Yes	-
Ghana	9-59 mos	National	3,994,052	(79)	Yes	Yes	Yes	Yes	-
Guinea	9-59 mos	National	1,707,633	(97)	-	Yes	-	Yes	-
Guinea-Bissau	$6 \mathrm{mos}-14 \mathrm{yrs}$	National	590,602	(91)	-	-	-	Yes	-
Kenya	9-59 mos	Subnational	5,260,241	(111)	Yes	Yes	Yes	-	-
Nigeria	9 mos -14 yrs	Subnational	26,353,793	(83)	Yes	Yes	Yes	-	-
Rwanda	9-59 mos	National	1,380,870	(107)	-	Yes	Yes	Yes	-
Senegal	9-59 mos	National	1,833,931	(99)	-	Yes	-	Yes	-
Sierra Leone	9-59 mos	National	751,107	(100)	-	Yes	Yes	Yes	-
Uganda	6-59 mos	National	5,239,221	(100)	Yes	-	Yes	-	Yes
United Republic of Tanzania	$6 \mathrm{mos}-14 \mathrm{yrs}$	Subnational	882,789	(102)	-	-	-	-	-
Eastern Mediterranean									
Afghanistan	9-59 mos	Subnational	2,873,823	(106)	-	-	-	-	Yes
Somalia	$9 \mathrm{mos}-14 \mathrm{yrs}$	National	2,019,717	(85)	-	Yes	-	-	-
Sudan	$6 \mathrm{mos}-14 \mathrm{yrs}$	National	3,230,497	(75)	-	-	-	-	-
Yemen	$9 \mathrm{mos}-14 \mathrm{yrs}$	National	9,322,918	(98)	-	-	-	-	-
South-East Asia									
Bangladesh	$9 \mathrm{mos}-10 \mathrm{yrs}$	National	34,637,764	(101)	-	-	-	-	-
Indonesia	$6 \mathrm{mos}-5 \mathrm{yrs}$	Subnational	3,661,475	(92)	Yes	Yes	-	-	-
	$6 \mathrm{mos}-14 \mathrm{yrs}$	Subnational	615,577	(91)	Yes	Yes	-	-	-
	$6-12 \mathrm{yrs}$	Subnational	3,049,844	(96)	Yes	Yes	Yes	-	-
Timor-Leste	$6 \mathrm{mos}-14 \mathrm{yrs}$	National	157,673	(40)	-	Yes	-	-	-
Total			136,411,186	$(94)^{\dagger \dagger}$					

* Includes 25 of the 47 countries on which WHO/UNICEF measles mortality reduction measures are focused: Afghanistan, Angola, Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, India, Indonesia, Kenya, Lao People’s Democratic Republic, Liberia, Madagascar, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, Papua New Guinea, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Timor-Leste, Togo, Uganda, United Republic of Tanzania, Vietnam, Yemen, and Zambia.
\dagger Values $>100 \%$ indicate that the intervention reached more persons than the estimated target population.
§ Administered according to national plans and, in certain cases, targeted only districts at high risk for measles transmission or only certain age groups.
Il Anthelminthics.
** Tetanus toxoid vaccination of women of childbearing age.
$\dagger \dagger$ Weighted average.
large measles outbreaks in Ukraine and Romania. In addition, the number of reported cases in the South-East Asia Region increased from 78,574 in 2000 to 94,562 in 2006, primarily because of improved measles surveillance in India and Indonesia. ${ }^{9}$
In settings with high measles vaccination coverage (i.e., where the majority of clinically suspected measles cases are likely to be attributed to nonmeasles causes of rash illness), laboratory

[^5]confirmation is essential. In 1998, the WHO measles and rubella laboratory network (MRLN) consisted of fewer than 40 measles laboratories. By the end of 2006, this network had expanded to 678 national and subnational laboratories serving 164 countries. These laboratories perform enzyme-linked immunosorbent assays for measles immunoglobulin M (IgM) antibody on serum samples collected from persons with suspected measles during their first contact with a health facility. Testing of specimens for rubella IgM antibody also is performed in many countries on specimens testing negative for measles IgM antibody. Approximately 180,000 serum samples
were tested worldwide in 2006, an increase from approximately 119,000 tested in 2005. Approximately 80% of laboratories met the timeliness performance target of reporting at least 80% of results within 7 days of receipt of the sample. Annual MRLN proficiency testing has been conducted since 2001. Of the 163 national laboratories that participated in the 2006 assessment, $160(97.5 \%)$ met the proficiency requirement. A similar proficiency testing program has been established for subnational laboratories.

Mortality Estimates for 2006

Despite the global progress in measles surveillance and reporting, complete and reliable data on the number of measles deaths is lacking in many countries, particularly those with the highest disease burden. To estimate measles mortality, WHO updated a natural history model using 1) the most recent population data through 2006, 2) WHO/UNICEF routine vaccination coverage estimates and reported vaccination coverage from SIAs, and 3) country-specific measles incidence as reported to WHO for selected countries based on assessed quality of surveillance (3).

From 2000 to 2006, estimated measles deaths worldwide declined 68%, from 757,000 deaths (uncertainty bounds**: 551,000-990,000 deaths) in 2000 to 242,000 deaths (uncertainty bounds: $173,000-325,000$ deaths) in 2006 (Table 1 and Figure). The largest percentage reduction in estimated measles mortality during this period was in the Africa Region (91%), accounting for 70% of the global reduction in measles mortality.

[^6]FIGURE. Estimated number of measles deaths, by year worldwide, 2000-2006

[^7]Reported by: A Dabbagh, PhD, M Gacic-Dobo, L Wolfson, PhD, D Featherstone, PhD, P Strebel, MBChB, JM Okwo-Bele, MD, Dept of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland. E Hoekstra, MD, P Salama, MD, United Nations Children's Fund, New York, New York. S Wassilak, MD, A Uzicanin, MD, Global Immunization Div, National Center for Immunization and Respiratory Diseases, $C D C$.
Editorial Note: In 2006, WHO/UNICEF estimates of global coverage with the first dose of measles vaccine reached the highest level ever reported, in large part because of increased routine measles vaccination coverage in countries of the Africa, Eastern Mediterranean, and Western Pacific regions. Increased routine measles vaccination coverage, combined with the estimated 478 million children vaccinated through SIAs in the 47 priority countries during 2000-2006 (327 million [68\%] of whom resided in the Africa Region), has resulted in a 68% decrease in the estimated number of global measles deaths. The largest decrease in estimated measles deaths was observed in the Africa Region, which had already met the 2010 GIVS goal of 90% reduction in global measles mortality. The reduction in the South-East Asia region was substantially smaller (26%) because certain countries with large populations (e.g., India and Pakistan) had not yet begun large-scale measles SIAs and because little improvement in routine vaccination coverage had occurred. Pakistan initiated phased SIAs in 2007.
A key factor contributing to progress in reducing measles mortality in Africa has been support from the Measles Initiative, which was launched in 2001. ${ }^{\dagger \dagger}$ With additional resources from the Global Alliance for Vaccines and Immunization ${ }^{\$ \$}$ and the International Finance Facility for Immunization, ${ }^{\text {g }}$ the Measles Initiative is expanding its support to countries with high measles burdens in other WHO regions, especially South-East Asia.

Measles vaccination campaigns are an opportunity to provide other interventions aimed at improving child survival, such as distribution of vitamin A supplements, delivery of insecticide-treated bednets to prevent malaria, and delivery of deworming medication. The majority of measles SIAs conducted in priority countries in 2006 were integrated with other child-survival interventions. Experience with combining essential health interventions with measles vaccination campaigns increases high-level political support, allows for resources to be pooled, and increases community participation (9). However, these interventions should be integrated in such a way as not to cause delays or reduce the quality of the SIAs (9).

[^8]Substantial improvements in measles surveillance, including improvements in reporting and timeliness of laboratory testing of specimens, have occurred since 2000. Nonetheless, reported measles case data should be interpreted with caution because of incomplete reporting of data to WHO, incomplete case detection and reporting in many countries, and the lack of case-based surveillance systems in nearly one fourth of countries.
Ongoing assessment is critical for guiding future measures for global measles mortality reduction. Because surveillance data do not allow direct measurement of global measles mortality, models must continue to be used for this purpose. Global measles mortality estimates based on a static natural history model (3) are expected to become less robust with further declines in measles incidence. To improve the estimation of global measles disease burden as measles incidence declines and to allow country-specific evaluations that can be used to modify measles mortality reduction strategies, WHO has developed a quasi-dynamic model, the measles strategic planning (MSP) tool. The MSP tool recently was reviewed by a WHO technical advisory group and was determined to be superior to the static model for estimating trends in measles mortality because the MSP tool uses 1 -year instead of 5 -year age groups and approximates the effect of herd immunity. After appropriate validation and adjustments have been made, the MSP tool will be used to generate annual estimates of global measles mortality beginning in 2008.
Although the WHO/UNICEF measles mortality reduction goal for 2005 was surpassed, major challenges exist to achieving the 2010 GIVS goal of 90% reduction in global measles mortality, and substantial work is required to sustain the gains already made. First, measles mortality reduction activities need to be implemented successfully in several countries with large populations and high measles burdens (e.g., India and Pakistan). Second, to sustain the gains in reduced measles deaths in the 47 priority countries, particularly in the Africa Region, vaccination programs need to be improved to ensure that $>90 \%$ of infants are vaccinated against measles through routine health services before their first birthday. Third, all priority countries need to conduct follow-up SIAs every 2-4 years until their routine vaccination programs are capable of providing two opportunities for measles vaccination to $>90 \%$ of all birth cohorts before age 5 years. Fourth, disease surveillance systems need to be strengthened at all levels to enable case-based surveillance with testing of clinical specimens from all suspected measles cases by laboratories participating in the global MRLN. Finally, measles case management, including appropriate vitamin A supplementation for all children with diagnosed measles cases (10), should be strengthened.

References

1. World Health Organization, United Nations Children's Fund. Measles mortality reduction and regional elimination strategic plan 2001-2005. Geneva, Switzerland: World Health Organization; 2001. Available at http://www.who.int/vaccines-documents/docspdf01/www573.pdf.
2. World Health Organization, United Nations Children's Fund. Global Immunization Vision and Strategy 2006-2015. Geneva, Switzerland: World Health Organization; 2005. Available at http://www.who.int/ vaccines-documents/docspdf05/givs_final_en.pdf.
3. Wolfson L, Strebel P, Gacic-Dobo M, et al. Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 2007;369:191-200.
4. United Nations Children's Fund. Building a world fit for children: the United Nations General Assembly Special Session on Children, May 8-10, 2002. New York, NY: United Nations Children's Fund; 2003. Available at http://www.unicef.org/publications/files/pub_build_ wffc_en.pdf.
5. CDC. Progress in reducing global measles deaths, 1999-2004. MMWR 2006;55:247-9.
6. CDC. Effects of measles-control activities-African region, 19992005. MMWR 2006;55:1017-21.
7. World Health Organization, United Nations Children's Fund. WHO/ UNICEF estimates of national immunization coverage, 1980-2006. Geneva, Switzerland: World Health Organization; 2007. Available at http://www.who.int/immunization_monitoring/routine/immunization_ coverage/en/index4.html.
8. World Health Organization. Module on best practices for measles surveillance. Geneva, Switzerland: World Health Organization; 2001. Available at http://www.who.int/vaccines-documents/docspdf01/ www617.pdf.
9. CDC. Progress in measles control-Kenya, 2002-2007. MMWR 2007; 56:969-72.
10. Hussey GD, Klein M. A randomized, controlled trial of vitamin A in children with severe measles. N Engl J Med 1990;323:160-4.

Errata: Vol. 56, No. RR-8

Errors occurred in the MMWR Recommendations and Reports, "Interpreting and Managing Blood Lead Levels $<10 \mu \mathrm{~g} / \mathrm{dL}$ in Children and Reducing Childhood Exposures to Lead: Recommendations of CDC's Advisory Committee on Childhood Lead Poisoning Prevention."

On page 4, in the first column, the sentence at the top of the page should read, "Blood lead values for urban children are predicted to be $1-2 \mu \mathrm{~g} / \mathrm{dL}$ higher in the summer than winter months (42)."

Also on page 4, in the second column, the second sentence of the first full paragraph should read, "The child's family and personal psychosocial experiences are strongly associated with performance on neurodevelopment measures and account for a greater proportion of the explained variance in these measures than BLLs $<10 \boldsymbol{\mu} \mathrm{~g} / \mathrm{dL}(2,43,45,49)$."

On page 5 , in the first column, the first sentence of the first full paragraph should read, "Certain state and local health departments initiate case management services and home inspections when BLLs reach $10 \mu \mathrm{~g} / \mathrm{dL}$."

On page 7, in the second column, the second sentence should read, "One study indicated that a highly intensive education program starting at birth and lasting for ≥ 3 years (28 sessions) delivered by community members lowered the risk of BLLs $\geq 10 \mu \mathrm{~g} / \mathrm{dL} 34 \%$, but this result was not statistically significant (92)."

Erratum: Vol. 56, No. 46

In the $M M W R$ Notice to Readers, "Satellite Broadcast: Surveillance of Vaccine-Preventable Diseases 2007," the second sentence should read, "The 3.5 -hour broadcast will occur live from 12:00 p.m. to 3:30 p.m. EST."

QuickStats

FROM THE NATIONAL CENTER FOR HEALTH STATISTICS
Percentage of Infant Deaths from Preterm-Related Causes,* by Race/Ethnicity — United States, 2000 and 2004

Race/Ethnicity ${ }^{\dagger}$

* Deaths among infants born at <37 weeks of gestation with cause of death that was a direct cause or consequence of preterm birth (e.g., respiratory distress, bacterial sepsis, and necrotizing enterocolitis). Based on International Classification of Diseases, Tenth Revision codes K550, P000, P010, P011, P015, P020, P021, P027, P070-P073, P102, P220-P229, P250-279, P280, P281, P360-P369, P520-P523, and P77.
† Source document presents information on other racial/ethnic groups.

The percentage of infant deaths from preterm-related causes increased from 34.6\% in 2000 to 36.5% in 2004. Nearly half (46.3%) of the deaths of infants of non-Hispanic black mothers were preterm related in 2004, compared with 32.1% of the deaths of infants of non-Hispanic white mothers and 33.4% of the deaths of infants of Hispanic mothers. During 2000-2004, the percentage of infants born preterm increased in the United States, from 11.6% of all births in 2000 to 12.5% in 2004.

SOURCE: MacDorman MF, Callaghan WM, Mathews TJ, Hoyert DL, Kochanek KD. Trends in preterm-related infant mortality by race and ethnicity: United States, 1999-2004. Hyattsville, MD: US Department of Health and Human Services, CDC, National Center for Health Statistics; 2007. Available at http://www.cdc.gov/nchs/ products/pubs/pubd/hestats/infantmort99-04/infantmort99-04.htm.

TABLE I. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending November 24, 2007 (47th Week)*

-: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2007 are provisional, whereas data for 2002, 2003, 2004, 2005, and 2006 are finalized.
 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pd
 associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.

Borne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** Data for H. influenzae (all ages, all serotypes) are available in Table II.

 management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
 been reported. A total of 73 cases were reported for the 2006-07 influenza season.
ITl The one measles case reported for the current week was indigenous.
*** Data for meningococcal disease (all serogroups) are available in Table II
$\dagger \dagger \dagger$ No rubella cases were reported for the current week.
§§§ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Chlamydia ${ }^{\text {a }}$					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	7,666	20,634	25,327	923,647	920,769	87	139	658	6,664	7,166	79	80	974	9,718	5,165
New England	567	705	1,357	31,754	30,190	-	0	1	2	-	-	4	39	292	360
Connecticut	260	217	829	9,565	8,728	N	0	0	N	N	-	0	39	39	38
Maine ${ }^{\text {® }}$	39	49	74	2,290	2,050	-	0	0	-	-	-	1	6	48	46
Massachusetts	192	301	672	14,456	13,702	-	0	0	-	-	-	2	11	107	169
New Hampshire	23	38	73	1,868	1,796	-	0	1	2	-	-	1	5	50	45
Rhode Island ${ }^{\text {§ }}$	53	62	106	2,801	2,848	-	0	0	-	-	-	0	3	10	14
Vermont ${ }^{\text {® }}$	-	19	45	774	1,066	N	0	0	N	N	-	1	3	38	48
Mid. Atlantic	1,759	2,780	4,284	127,612	113,002	-	0	0	-	-	4	11	113	1,246	610
New Jersey	-	391	528	17,712	18,387	N	0	0	N	N	-	0	6	41	42
New York (Upstate)	719	526	2,758	24,951	21,783	N	0	0	N	N	2	3	20	229	159
New York City	834	971	1,978	44,707	37,540	N	0	0	N	N			7	85	141
Pennsylvania	206	755	1,760	40,242	35,292	N	0	0	N	N	2	5	103	891	268
E.N. Central	931	3,195	6,215	151,062	152,342	-	1	3	31	42	20	19	131	1,634	1,260
Illinois	558	984	1,370	44,115	48,476	-	0	0	-	-		2	13	150	188
Indiana	154	398	646	18,640	17,856	-	0	0	-	-	2	2	12	97	91
Michigan	32	705	1,059	31,525	31,847	-	0	3	20	36	-	3	11	169	134
Ohio	143	755	3,640	40,216	35,680	-	0	1	11	6	8	5	61	543	334
Wisconsin	44	370	443	16,566	18,483	N	0	0	N	N	10	7	59	675	513
W.N. Central	282	1,206	1,465	54,464	55,977	-	0	54	8	1	14	13	124	1,504	817
Iowa	83	160	252	7,855	7,596	N	0	0	N	N	-	3	61	594	166
Kansas	-	154	294	6,998	7,109	N	0	0	N	N	-	1	16	145	77
Minnesota	-	253	314	11,164	11,681	-	0	54	-	-	7	3	34	280	206
Missouri	160	459	551	20,895	20,734	-	0	1	8	1	4	2	13	144	184
Nebraska ${ }^{\text {s }}$	-	95	183	3,956	4,871	N	0	0	N	N	1	1	21	150	92
North Dakota	-	27	61	1,277	1,641	N	0	0	N	N	2	0	11	26	9
South Dakota	39	49	84	2,319	2,345	N	0	0	N	N	-	2	16	165	83
S. Atlantic	1,448	3,934	6,760	178,772	177,065	-	0	1	3	4	21	20	69	1,152	1,105
Delaware	76	65	140	3,126	3,212	-	0	0	-	-	-	0	4	20	15
District of Columbia	69	111	166	5,243	2,928	-	0	0	-	-	-	0	2	3	14
Florida	670	1,168	1,767	52,633	44,521	N	0	0	N	N	9	11	35	624	504
Georgia	1	629	3,822	22,508	32,240	N	0	0	N	N	-	4	22	208	262
Maryland ${ }^{\text {® }}$	196	390	696	17,950	19,266	-	0	1	3	4	-	0	2	29	19
North Carolina	196	549	1,905	24,523	30,224	-	0	0	-	-	10	1	18	112	93
South Carolina ${ }^{\text {8 }}$	31	508	3,030	28,181	20,617	N	0	0	N	N	-	1	14	78	127
Virginia ${ }^{\text {§ }}$	206	485	621	21,840	21,440	N	0	0	N	N	2	1	5	67	61
West Virginia	3	63	93	2,768	2,617	N	0	0	N	N	-	0	5	11	10
E.S. Central	577	1,468	1,875	65,848	69,177	-	0	0	-	-	3	4	63	566	164
Alabama ${ }^{\text {® }}$	29	359	585	15,357	21,047	N	0	0	N	N	2	1	14	113	59
Kentucky	160	150	691	7,626	7,876	N	0	0	N	N	-	1	40	244	38
Mississippi	75	381	959	18,123	17,332	N	0	0	N	N	-	0	11	91	24
Tennessee ${ }^{\text {§ }}$	313	516	723	24,742	22,922	N	0	0	N	N	1	1	19	118	43
W.S. Central	655	2,348	3,006	110,053	104,129	-	0	1	2	1	-	5	41	338	381
Arkansas ${ }^{\text {® }}$	95	173	328	8,555	7,392	N	0	0	N	N	-	0	8	32	22
Louisiana	107	359	851	17,305	16,330	-	0	1	2	1	-	1	4	50	86
Oklahoma	160	256	467	11,475	11,452	N	0	0	N	N	-	1	11	115	38
Texas ${ }^{\text {® }}$	293	1,534	2,015	72,718	68,955	N	0	0	N	N	-	1	29	141	235
Mountain	214	1,235	1,706	54,150	63,323	75	95	293	4,403	4,864	17	6	580	2,865	387
Arizona	30	473	834	19,407	20,858	75	93	293	4,269	4,732	1	0	6	45	28
Colorado	28	217	376	9,121	14,869	N	0	0	N	N	1	2	26	205	69
Idahos	11	56	252	3,266	2,947	N	0	0	N	N	14	0	71	446	35
Montana ${ }^{\text {® }}$	-	44	73	1,506	2,361	N	0	0	N	N	1	1	7	64	135
Nevadas	-	174	293	7,279	7,587	-	1	5	50	58	-	0	3	18	13
New Mexicos	62	149	393	7,561	8,870	-	0	2	18	19	-	1	9	101	41
Utah	71	105	209	4,928	4,531	-	1	7	63	53	-	0	499	1,933	17
Wyoming ${ }^{\text {s }}$	12	23	35	1,082	1,300	-	0	1	3	2	-	0	8	53	49
Pacific	1,233	3,345	4,362	149,932	155,564	12	40	311	2,215	2,254	-	1	16	121	81
Alaska	41	87	157	3,878	4,027	N	0	0	N	N	-	0	2	3	4
California	1,051	2,656	3,627	121,525	121,873	12	40	311	2,215	2,254	-	0	0	-	-
Hawaii	-	108	134	4,878	5,107	N	0	0	N	N	-	0	0	-	4
Oregon ${ }^{\text {§ }}$	65	166	394	7,747	8,498	N	0	0	N	N	-	1	16	118	73
Washington	76	246	621	11,904	16,059	N	0	0	N	N	-	0	0	-	-
American Samoa	U	0	32	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	4	15	34	661	797	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	120	543	6,536	4,604	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	U	3	7	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	140	309	1,513	15,478	16,120	2,361	6,755	8,941	300,543	320,525	19	43	184	1,990	2,049
New England	8	25	54	1,277	1,319	78	109	259	5,027	5,074	-	3	19	160	160
Connecticut	1	5	18	326	280	44	43	204	1,941	2,072	-	0	7	47	43
Maine ${ }^{\text {¢ }}$	4	3	10	176	174	2	2	8	112	116	-	0	4	13	18
Massachusetts	-	10	29	521	567	26	51	128	2,424	2,185	-	2	6	74	73
New Hampshire	-	0	3	24	21	2	2	6	133	176	-	0	2	16	12
Rhode Island ${ }^{\text {§ }}$	2	0	15	78	102	4	8	16	368	459	-	0	10	7	6
Vermont ${ }^{\text {® }}$	1	3	9	152	175	-	1	4	49	66	-	0	1	3	8
Mid. Atlantic	25	56	127	2,661	3,217	369	702	1,537	32,634	30,127	6	10	27	404	427
New Jersey	-	7	11	256	436	-	114	159	5,142	4,973	-	1	5	56	76
New York (Upstate)	15	23	108	1,055	1,154	192	116	1,035	6,238	5,615	6	2	15	120	135
New York City	3	15	25	708	868	131	199	349	9,114	9,354	-	2	6	85	78
Pennsylvania	7	14	29	642	759	46	240	586	12,140	10,185	-	3	10	143	138
E.N. Central	22	47	80	2,233	2,576	303	1,266	2,591	61,232	62,873	3	6	15	262	342
Illinois	-	13	30	613	643	179	355	499	16,347	18,200	-	2	6	76	104
Indiana	N	0	0	N	N	41	164	307	8,003	7,917	-	1	7	54	72
Michigan	-	11	20	504	644	12	280	747	13,031	13,369	-	0	5	24	24
Ohio	13	15	37	744	744	48	345	1,570	18,049	17,068	3	2	5	94	79
Wisconsin	9	7	20	372	545	23	126	206	5,802	6,319	-	0	2	14	63
W.N. Central	8	21	553	1,287	1,654	70	377	514	17,002	17,587	1	3	24	121	144
lowa	1	5	23	275	272	12	38	60	1,716	1,735	-	0	1	1	2
Kansas	-	3	11	171	183	-	43	86	1,980	2,004	-	0	2	9	17
Minnesota	-	0	514	176	479	-	66	86	2,894	2,945	-	0	17	56	74
Missouri	2	7	22	401	506	57	196	266	8,962	9,141	-	1	5	35	34
Nebraska ${ }^{\text {§ }}$	2	2	8	146	106	-	25	57	1,140	1,284	-	0	2	15	9
North Dakota	3	0	16	28	19	-	2	5	80	139	1	0	2	5	8
South Dakota	-	1	6	90	89	1	5	11	230	339	-	0	0	-	-
S. Atlantic	23	57	106	2,600	2,518	800	1,545	3,209	70,714	79,651	4	11	34	511	507
Delaware	-	1	6	39	38	27	26	43	1,187	1,336	-	0	3	8	1
District of Columbia	-	0	7	34	57	37	47	71	2,126	1,670	-	0	1	3	7
Florida	14	24	47	1,159	1,019	277	478	717	21,437	21,822	4	3	8	147	154
Georgia	-	10	42	566	592	-	289	2,068	9,316	16,268	-	2	7	107	105
Maryland ${ }^{\text {s }}$	1	4	18	230	220	41	115	227	5,495	6,492	-	1	6	74	71
North Carolina	-	0	0	-	-	310	282	675	12,954	15,680	-	0	9	51	51
South Carolina ${ }^{\text {§ }}$	2	2	8	99	101	40	202	1,361	11,774	9,580	-	1	4	43	35
Virginia§	6	9	23	427	459	66	124	220	5,592	5,936	-	1	22	53	64
West Virginia	-	0	21	46	32	2	18	37	833	867	-	0	6	25	19
E.S. Central	2	10	23	494	412	204	553	813	25,502	28,232	-	2	9	109	103
Alabama ${ }^{\text {¢ }}$	-	5	11	233	194	13	155	242	6,747	9,730	-	0	3	23	21
Kentucky	N	0	0	N	N	56	57	268	2,993	2,866	-	0	1	2	5
Mississippi	N	0	0	N	N	38	147	310	6,977	6,833	-	0	2	9	12
Tennessee ${ }^{\text {§ }}$	2	5	16	261	218	97	180	261	8,785	8,803	-	2	6	75	65
W.S. Central	2	6	55	346	329	249	982	1,201	45,680	45,850	3	2	34	91	78
Arkansas ${ }^{\text {8 }}$	-	2	13	105	128	23	78	120	3,667	3,875	-	0	2	8	8
Louisiana	-	1	10	110	83	64	221	384	10,030	9,855	-	0	2	6	20
Oklahoma	2	3	42	131	118	67	96	235	4,440	4,303	3	1	29	69	43
Texas§	N	0	0	N	N	95	593	747	27,543	27,817	-	0	3	8	7
Mountain	30	31	68	1,618	1,551	54	243	346	10,702	14,024	2	4	12	225	187
Arizona	1	3	11	183	151	18	102	175	4,096	5,215	1	1	6	80	77
Colorado	8	10	26	527	505	16	47	93	2,183	3,393	-	1	4	52	45
Idaho§	19	3	12	177	176	2	4	19	239	178	1	0	1	7	6
Montana ${ }^{\text {§ }}$	1	2	8	102	98	-	1	7	59	181	-	0	1	2	-
Nevada ${ }^{\text {§ }}$	-	1	8	89	105	-	43	87	1,781	2,557	-	0	2	9	14
New Mexicos ${ }^{\text {¢ }}$	-	2	5	98	75	9	31	63	1,550	1,596	-	1	4	37	28
Utah	-	6	32	403	405	8	17	35	723	788	-	0	3	33	14
Wyoming ${ }^{\text {§ }}$	1	1	4	39	36	1	1	5	71	116	-	0	1	5	3
Pacific	20	61	558	2,962	2,544	234	697	876	32,050	37,107	-	2	16	107	101
Alaska	-	1	5	69	104	2	10	27	440	554	-	0	3	13	10
California	14	43	93	2,005	2,025	213	602	734	27,843	30,569	-	0	10	34	29
Hawaii	-	0	4	6	47	-	12	24	572	839	-	0	1	1	19
Oregon§	-	9	17	413	368	11	23	63	993	1,307	-	1	6	57	43
Washington	6	8	449	469	-	8	46	142	2,202	3,838	-	0	5	2	-
American Samoa	U	0	0	U	U	U	0	2	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	-	2	13	112	95	-	0	0	-	1
Puerto Rico	-	4	15	165	235	-	5	23	284	275	-	0	1	2	3
U.S. Virgin Islands	U	0	0	U	U	U	1	3	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
Incidence data for reporting year 2007 are provisional.
Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A				B									
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{gathered} \text { Cum } \\ 2006 \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	15	51	201	2,466	3,156	30	77	405	3,525	3,981	14	43	106	2,101	2,510
New England	-	2	6	109	170	-	1	5	67	108	2	2	13	117	167
Connecticut	-	0	3	25	37	-	0	5	28	46	2	0	5	38	49
Maine ${ }^{\text {§ }}$	-	0	1	3	8	-	0	2	12	22	-	0	,	7	9
Massachusetts	-	1	4	49	81	-	0	1	4	19	-	0	3	21	66
New Hampshire	-	0	3	12	22	-	0	1	5	9	-	0	2	8	13
Rhode Island ${ }^{\text {§ }}$	-	0	2	12	14	-	0	3	13	9	-	0	6	34	22
Vermont ${ }^{\text {® }}$	-	0	1	8	8	-	0	1	5	3	-	0	2	9	8
Mid. Atlantic	2	8	19	377	360	-	8	21	395	477	6	12	37	660	908
New Jersey	-	2	6	94	103	-	1	8	79	153	-	1	11	77	113
New York (Upstate)	1	1	11	68	83	-	2	13	82	58	4	4	22	208	306
New York City	-	3	8	137	112	-	2	6	84	109	-	2	10	106	177
Pennsylvania	1	1	5	78	62	-	3	8	150	157	2	5	21	269	312
E.N. Central	1	5	13	263	327	7	9	23	389	451	2	8	27	475	557
Illinois	-	2	5	92	98	-	2	6	101	122	-	2	12	86	116
Indiana	-	0	7	29	24	6	0	21	53	52	1	1	7	50	46
Michigan	-	1	5	75	115	-	2	8	97	130	-	3	10	138	138
Ohio	1	1	4	60	49	1	2	7	118	114	1	3	17	191	213
Wisconsin	-	0	3	7	41	-	0	3	20	33	-	0	2	10	44
W.N. Central	-	2	18	154	123	2	2	15	119	132	1	2	9	91	79
lowa	-	1	4	42	12	-	0	3	21	19	-	0	1	9	11
Kansas	-	0	1	6	26	-	0	2	9	11	-	0	1	3	9
Minnesota	-	0	17	62	17	-	0	13	18	18	1	0	6	26	24
Missouri	-	0	2	25	42	2	1	5	56	61	-	1	3	37	21
Nebraska§	-	0	2	13	17	-	0	1	10	18	-	0	2	12	9
North Dakota	-	0	3	-	-	-	0	1	-	-	-	0	1	-	-
South Dakota	-	0	1	6	9	-	0	1	5	5	-	0	1	4	5
S. Atlantic	4	10	21	459	510	7	18	56	866	1,102	2	7	25	350	434
Delaware	-	0	1	7	13	-	0	2	15	46	-	0	2	8	12
District of Columbia	-	0	5	14	8	-	0	2	1	7	-	0	2	1	30
Florida	1	3	7	141	196	6	7	14	312	375	1	2	10	138	143
Georgia	1	1	4	65	53	-	2	7	111	187	-	0	2	21	34
Maryland ${ }^{\text {® }}$	2	1	5	72	59	-	2	6	102	139	1	1	4	69	99
North Carolina	-	0	9	57	94	-	0	16	120	147	-	1	4	42	34
South Carolina ${ }^{\text {s }}$	-	0	4	17	23	1	1	5	55	85	-	0	2	17	6
Virginias	-	1	5	78	58	-	3	8	111	67	-	1	4	41	61
West Virginia	-	0	2	8	6	-	0	23	39	49	-	0	4	13	15
E.S. Central	-	2	5	90	117	-	7	14	315	302	-	2	6	88	101
Alabama ${ }^{\text {s }}$	-	0	3	16	13	-	2	6	109	91	-	0	1	9	9
Kentucky	-	0	2	19	31	-	1	7	67	67	-	1	3	45	44
Mississippi	-	0	4	8	9	-	0	8	25	13	-	0	1	-	4
Tennessee§	-	1	5	47	64	-	3	8	114	131	-	1	4	34	44
W.S. Central	-	4	43	212	352	3	17	169	768	827	1	2	16	103	70
Arkansas§	-	0	2	10	45	-	1	7	59	70	-	0	3	8	4
Louisiana	-	0	3	28	32	-	1	6	71	52	-	0	1	3	10
Oklahoma	-	0	8	11	9	3	1	38	118	69	-	0	6	5	7
Texas§	-	3	39	163	266	-	12	135	520	636	1	2	13	87	49
Mountain	2	5	15	230	254	1	3	7	155	128	-	2	7	104	116
Arizona	-	3	11	162	156	-	1	4	52	U	-	0	5	39	35
Colorado	-	0	3	21	37	-	0	3	30	34	-	0	2	21	25
Idaho ${ }^{\text {§ }}$	2	0	2	8	9	-	0	1	12	13	-	0	1	6	11
Montana ${ }^{\text {§ }}$	-	0	2	9	11	-	0	3	-	2	-	0	1	3	6
Nevadas	-	0	2	9	11	-	1	3	29	35	-	0	2	7	10
New Mexico§	-	0	2	11	14	-	0	2	10	22	-	0	2	8	5
Utah	-	0	2	7	14	-	0	4	19	22	-	0	3	17	24
Wyoming ${ }^{\text {® }}$	-	0	1	3	2	1	0	1	3	-	-	0	1	3	-
Pacific	6	12	92	572	943	10	10	106	451	454	-	2	11	113	78
Alaska	-	0	1	4	1	1	0	1	8	8	-	0	0	-	1
California	6	10	40	497	892	9	7	31	338	361	-	1	11	85	77
Hawaii	-	0	0	-	12	-	0	1	-	7	-	0	0	-	-
Oregon§	-	1	2	27	38	-	1	4	56	78	-	0	1	9	-
Washington	-	0	52	44	-	-	1	74	49	-	-	0	3	19	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	1	10	45	61	-	1	9	44	60	-	0	2	3	1
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional
${ }_{\$}$ Data for acute hepatitis C, viral are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serogroups				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{gathered} \text { Cum } \\ 2006 \end{gathered}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	136	264	1,253	18,718	18,027	11	19	105	975	1,291	4	20	87	904	1,005
New England	27	40	300	3,371	4,293	1	1	5	51	51	-	1	3	38	49
Connecticut	12	13	214	1,613	1,651	1	0	3	2	10	-	0	1	6	10
Maine ${ }^{\text {§ }}$	12	4	61	459	281	-	0	2	8	4	-	0	1	7	8
Massachusetts	-	2	27	211	1,426	-	0	3	29	26	-	0	2	19	22
New Hampshire	-	7	86	795	603	-	0	4	8	9	-	0	1	1	4
Rhode Island ${ }^{\text {§ }}$	2	0	74	162	235	-	0	1	-	1	-	0	1	2	2
Vermont ${ }^{\text {8 }}$	1	2	13	131	97	-	0	2	4	1	-	0	1	3	3
Mid. Atlantic	64	113	627	9,291	9,187	-	4	14	237	341	-	3	8	122	152
New Jersey	-	27	146	1,958	2,353	-	0	2	-	85	-	0	2	13	19
New York (Upstate)	55	55	426	3,095	3,434	-	1	5	59	45	-	1	3	35	34
New York City	-	1	25	185	293	-	3	7	142	165	-	0	4	26	57
Pennsylvania	9	40	309	4,053	3,107	-	1	4	36	46	-	1	5	48	42
E.N. Central	-	8	160	1,391	1,675	-	2	6	97	154	2	3	9	135	159
Illinois	-	0	12	112	109	-	0	6	41	80	-	1	3	42	41
Indiana	-	0	7	41	21	-	0	2	9	11	1	0	4	26	23
Michigan	-	0	5	53	54	-	0	2	16	18	-	0	3	25	26
Ohio	-	0	3	18	42	-	0	2	22	27	1	1	2	33	46
Wisconsin	-	7	147	1,167	1,449	-	0	2	9	18	-	0	3	9	23
W.N. Central	19	5	195	602	717	8	0	12	45	58	-	1	5	60	59
lowa	-	1	11	110	95	-	0	1	3	2	-	0	3	14	18
Kansas	-	0	2	9	4	-	0	1	3	7	-	0	1	2	4
Minnesota	19	1	188	442	601	8	0	11	24	37	-	0	3	18	13
Missouri	-	0	6	31	5	-	0	1	6	6	-	0	3	16	14
Nebraska§	-	0	1	7	11	-	0	1	6	4	-	0	2	5	6
North Dakota	-	0	7	3	-	-	0	1	2	1	-	0	3	2	1
South Dakota	-	0	0	-	1	-	0	1	1	1	-	0	1	3	3
S. Atlantic	25	67	177	3,783	1,986	2	4	13	225	313	-	3	11	150	178
Delaware	4	12	34	658	453	-	0	1	4	5	-	0	1	1	4
District of Columbia	-	0	7	13	56	-	0	1	3	5	-	0	1	-	2
Florida	1	1	11	78	27	-	1	7	52	53	-	1	7	58	66
Georgia	-	0	1	3	8	1	0	5	32	84	-	0	5	24	15
Maryland ${ }^{\text {® }}$	13	30	113	2,119	1,113	1	1	5	55	74	-	0	2	20	14
North Carolina	-	0	8	43	29	-	0	4	20	28	-	0	4	18	30
South Carolina ${ }^{\text {® }}$	-	0	3	24	18	-	0	1	6	9	-	0	2	14	20
Virginias	7	13	61	778	268	-	1	5	51	53	-	0	2	13	18
West Virginia	-	0	14	67	14	-	0	1	2	2	-	0	2	2	9
E.S. Central	-	,	5	50	34	-	0	3	31	24	-	1	4	46	40
Alabama ${ }^{\text {® }}$	-	0	3	12	10	-	0	1	5	9	-	0	2	9	5
Kentucky	-	0	2	5	7	-	0	1	8	4	-	0	2	11	11
Mississippi	-	0	1	1	3	-	0	1	2	6	-	0	4	10	5
Tennessee ${ }^{\text {® }}$	-	0	4	32	14	-	0	2	16	5	-	0	2	16	19
W.S. Central	-	1	6	64	24	-	1	29	76	94	-	2	15	89	87
Arkansas ${ }^{\text {® }}$	-	0	1	1	-	-	0	1	2	4	-	0	2	9	10
Louisiana	-	0	1	2	1	-	0	2	14	8	-	0	4	25	34
Oklahoma	-	0	0	-	-	-	0	3	5	7	-	0	4	16	11
Texas ${ }^{\text {¢ }}$	-	1	6	61	23	-	1	25	55	75	-	1	11	39	32
Mountain	-	1	4	38	28	-	1	6	58	72	2	1	4	59	66
Arizona	-	0	1	2	10	-	0	3	12	23	-	0	2	12	15
Colorado	-	0	1	2	-	-	0	2	23	20	-	0	2	21	20
Idaho ${ }^{\text {§ }}$	-	0	2	8	6	-	0	2	3	1	2	0	1	5	4
Montanas	-	0	2	4	-	-	0	1	3	2	-	0	1	2	5
Nevada ${ }^{\text {8 }}$	-	0	2	8	3	-	0	1	2	4	-	0	1	4	6
New Mexico§	-	0	1	4	3	-	0	1	4	5	-	0	1	2	6
Utah	-	0	2	7	5	-	0	3	11	17	-	0	2	11	6
Wyoming ${ }^{\text {§ }}$	-	0	1	3	1	-	0	0	-	-	-	0	1	2	4
Pacific	1	2	16	128	83	-	3	45	155	184	-	4	48	205	215
Alaska	-	0	1	8	3	-	0	1	2	23	-	0	1	1	4
California	1	2	9	112	74	-	2	7	112	142	-	3	10	153	165
Hawaii	N	0	0	N	N	-	0	0	-	8	-	0	1	-	9
Oregon§	-	0	1	5	6	-	0	3	16	11	-	0	3	30	37
Washington	-	0	8	3	-	-	0	43	25	-	-	0	43	21	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	-	-
Guam	-	0	0	-	-	U	0	0	-	-		0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	3	2	-	0	1	6	6
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.
: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional.
${ }_{\S}$ Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{gathered} \text { Cum } \\ 2007 \end{gathered}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	49	171	1,479	7,809	12,834	14	100	187	5,015	5,158	2	32	211	1,835	1,996
New England	-	27	77	1,184	1,670	1	11	22	531	451	-	0	10	5	11
Connecticut	-	1	5	59	113	-	4	10	208	195	-	0	0	-	-
Maine ${ }^{\dagger}$	-	1	13	74	136	-	2	5	79	117	-	0	1	1	N
Massachusetts	-	22	39	928	1,062	-	0	0	-	N	-	0	1	4	10
New Hampshire	-	1	6	52	207	-	1	4	51	45	-	0	0	-	1
Rhode Island ${ }^{\dagger}$	-	0	31	24	50	-	0	4	37	30	-	0	9	-	-
Vermont ${ }^{\dagger}$	-	0	9	47	102	1	3	13	156	64	-	0	0	-	-
Mid. Atlantic	4	22	155	1,025	1,689	-	25	56	1,321	500	-	1	6	60	85
New Jersey	-	3	11	139	273	N	0	0	N	N	-	0	2	9	38
New York (Upstate)	4	11	146	510	768	-	11	20	482	N	-	0	1	3	-
New York City	-	2	6	105	98	-	1	5	42	36	-	0	3	26	23
Pennsylvania	-	6	15	271	550	-	15	44	797	464	-	0	3	22	24
E.N. Central	2	28	79	1,235	2,069	-	4	48	380	161	-	1	4	41	63
Illinois	-	3	23	133	528	-	1	15	113	46	-	0	3	24	26
Indiana	-	0	45	52	213	-	0	1	12	11	-	0	2	4	6
Michigan	2	6	17	257	571	-	1	27	179	46	-	0	1	3	4
Ohio	-	12	54	594	548	-	0	11	76	58	-	0	2	10	26
Wisconsin	-	3	24	199	209	N	0	0	N	N	-	0	0	-	1
W.N. Central	6	13	151	659	1,167	-	5	13	245	293	-	5	33	382	192
lowa	-	2	16	124	300	-	0	3	31	57	-	0	4	14	5
Kansas	-	3	12	122	280	-	2	7	101	73	-	0	1	1	1
Minnesota	-	0	119	210	161	-	0	5	32	38	-	0	1	1	3
Missouri	3	1	9	76	290	-	0	3	39	64	-	4	27	348	158
Nebraska ${ }^{\dagger}$	3	1	12	63	91	-	0	0	-	-	-	0	2	14	25
North Dakota	-	0	18	8	25	-	0	6	21	24	-	0	0	-	-
South Dakota	-	1	7	56	20	-	0	2	21	37	-	0	1	4	-
S. Atlantic	3	16	163	845	1,017	9	40	76	1,906	2,150	-	14	112	887	1,124
Delaware	-	0	2	11	3	-	0	0	-	-	-	0	2	14	21
District of Columbia	-	0	1	2	6	-	0	0	-	-	-	0	1	1	1
Florida	-	4	18	198	194	-	0	29	109	176	-	0	4	21	15
Georgia	-	0	4	27	95	4	3	34	250	251	-	0	5	35	52
Maryland ${ }^{\dagger}$	1	2	8	109	135	-	7	18	327	390	-	1	7	64	78
North Carolina	-	4	112	288	177	5	9	19	452	490	-	4	96	563	815
South Carolina ${ }^{\dagger}$	-	2	8	67	174	-	0	11	46	164	-	1	7	60	38
Virginia ${ }^{\dagger}$	2	2	11	113	190	-	13	31	646	574	-	2	11	124	101
West Virginia	-	0	19	30	43	-	0	11	76	105	-	0	3	5	3
E.S. Central	-	6	32	384	329	-	3	9	140	233	1	4	16	242	358
Alabama ${ }^{\text {a }}$	-	1	18	79	84	-	0	2	-	79	1	1	9	83	85
Kentucky	-	0	4	22	57	-	0	3	18	28	-	0	2	5	3
Mississippi	-	1	29	209	35	-	0	1	1	4	-	0	2	14	9
Tennessee ${ }^{\dagger}$	-	1	7	74	153	-	2	7	121	122	-	2	10	140	261
W.S. Central	17	19	226	868	805	2	1	23	76	925	1	1	168	177	115
Arkansas ${ }^{+}$	-	1	17	133	90	2	0	2	31	31	-	0	53	92	51
Louisiana	-	0	1	15	24	-	0	1	-	6	-	0	1	2	5
Oklahoma	15	0	36	21	19	-	0	22	45	60	1	0	108	48	29
Texas ${ }^{\dagger}$	2	16	174	699	672	-	0	14	-	828	-	1	7	35	30
Mountain	12	21	61	1,023	2,344	1	3	14	210	210	-	0	4	33	46
Arizona	-	4	13	188	484	-	2	12	145	137	-	0	1	7	11
Colorado	6	6	14	277	685	-	0	0	-	-	-	0	2	4	4
Idaho ${ }^{\text { }}$	4	0	5	38	85	-	0	0	-	24	-	0	1	4	14
Montana ${ }^{\dagger}$	2	0	7	40	114	1	0	3	19	15	-	0	1	1	2
Nevada ${ }^{+}$	-	0	5	12	71	-	0	1	2	5	-	0	0	-	-
New Mexico ${ }^{\dagger}$	-	1	7	66	130	-	0	2	10	10	-	0	1	4	8
Utah	-	7	47	380	700	-	0	2	16	11	-	0	1	1	-
Wyoming ${ }^{\dagger}$	-	0	4	22	75	-	0	4	18	8	-	0	2	12	7
Pacific	5	11	547	586	1,744	1	4	10	206	235	-	0	3	8	2
Alaska	-	0	8	50	89	-	0	6	39	16	N	0	0	N	N
California	-	3	167	157	1,471	1	3	8	155	194	-	0	3	6	-
Hawaii	-	0	1	4	85	N	0	0	N	N	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	2	14	110	99	-	0	3	12	25	-	0	1	2	2
Washington	5	3	377	265	-	-	0	0	-	-	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	U	0	1	-	63	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	3	-	0	5	37	75	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
Incidence data for reporting year 2007 are provisional
Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	398	848	2,338	39,704	39,901	39	84	336	4,097	3,687	212	348	1,287	15,378	12,815
New England	3	37	408	2,045	2,125	1	4	75	278	270	-	4	45	228	260
Connecticut	-	0	393	393	503	-	0	69	69	75	-	0	42	42	67
Maine ${ }^{\text {§ }}$	-	3	14	129	122	-	0	4	38	46	-	0	5	14	4
Massachusetts	-	23	57	1,198	1,139	-	2	10	130	97	-	3	8	144	162
New Hampshire	-	3	10	148	207	-	0	4	21	25	-	0	1	5	8
Rhode Island ${ }^{\text {s }}$	2	2	20	100	83	-	0	2	6	8	-	0	9	20	13
Vermont ${ }^{\text {§ }}$	1	2	5	77	71	1	0	3	14	19	-	0	1	3	6
Mid. Atlantic	17	101	184	5,018	4,966	1	8	63	415	456	2	12	47	662	828
New Jersey	-	16	36	723	1,025	-	1	20	48	133	-	2	10	116	281
New York (Upstate)	11	27	112	1,321	1,203	1	3	15	191	154	,	3	42	148	207
New York City	3	24	51	1,248	1,172	-	1	5	44	42	1	5	11	245	256
Pennsylvania	3	33	69	1,726	1,566	-	3	47	132	127	-	1	21	153	84
E.N. Central	31	102	252	5,104	5,166	4	9	34	587	635	66	32	131	2,051	1,310
Illinois	-	31	186	1,590	1,468	-	1	10	85	101	-	11	32	474	602
Indiana	5	15	54	660	795	3	1	13	98	82	17	2	13	146	155
Michigan	4	18	41	834	914	1	1	8	89	87	-	1	7	67	145
Ohio	20	27	65	1,235	1,148	-	3	9	151	176	48	16	104	1,154	174
Wisconsin	2	16	50	785	841	-	3	10	164	189	1	3	13	210	234
W.N. Central	7	50	103	2,569	2,435	4	13	45	734	606	9	34	156	1,687	1,599
lowa	-	9	19	433	426	-	3	38	170	116	-	2	14	86	108
Kansas	-	7	20	368	336	-	1	4	53	23	-	0	3	25	132
Minnesota	4	13	44	635	626	1	4	17	240	183	-	5	24	222	201
Missouri	1	15	31	698	700	1	2	12	137	153	7	22	72	1,206	613
Nebraska§	2	5	12	244	185	2	1	6	84	75	1	0	7	25	118
North Dakota	-	0	23	43	30	-	0	12	4	6	1	0	127	8	94
South Dakota	-	3	11	148	132	-	0	5	46	50	-	1	30	115	333
S. Atlantic	230	222	431	10,891	10,500	14	14	37	661	577	46	88	177	4,171	3,131
Delaware	2	2	8	131	145	1	0	3	15	13	-	0	2	10	11
District of Columbia	-	0	4	16	59	-	0	1	1	3	-	0	5	4	16
Florida	115	85	181	4,413	4,318	1	3	13	145	81	14	41	75	2,046	1,423
Georgia	17	35	88	1,938	1,688	1	2	9	98	79	22	29	95	1,529	1,214
Maryland ${ }^{\text {§ }}$	4	15	43	819	717	1	2	6	88	116	2	2	7	102	127
North Carolina	78	26	110	1,466	1,521	7	1	24	131	104	-	0	14	94	151
South Carolina ${ }^{\text {s }}$	9	18	51	995	977	2	0	3	23	13	5	2	20	168	77
Virginias	5	20	38	934	941	1	3	9	142	156	-	3	11	151	108
West Virginia	-	4	31	179	134	-	0	5	18	12	3	0	36	67	4
E.S. Central	14	59	141	2,944	2,604	2	4	26	297	283	19	38	174	2,522	755
Alabama ${ }^{\text {s }}$	5	16	78	858	716	-	1	19	62	29	3	12	35	638	279
Kentucky	4	10	22	526	419	1	2	12	115	93	5	4	35	463	230
Mississippi	2	13	101	807	747	-	0	1	5	10	11	11	110	1,163	99
Tennessee§	3	17	34	753	722	1	1	10	115	151	-	4	27	258	147
W.S. Central	16	82	595	3,940	4,796	-	3	73	152	226	40	40	655	1,870	1,788
Arkansas ${ }^{\text {§ }}$	8	13	51	778	849	-	0	3	34	46	1	2	10	85	112
Louisiana	-	17	39	793	1,044	-	0	2	3	17	-	9	22	434	240
Oklahoma	8	9	103	597	462	-	0	8	17	43	1	2	63	120	124
Texas ${ }^{\text {§ }}$	-	40	470	1,772	2,441	-	2	68	98	120	38	25	580	1,231	1,312
Mountain	30	50	90	2,416	2,393	4	9	42	517	513	16	18	47	887	1,366
Arizona	8	18	44	921	804	2	2	8	105	102	12	9	33	528	665
Colorado	12	11	24	531	564	1	1	17	145	104	2	2	6	113	223
Idahos	9	3	9	137	162	1	2	16	123	98	1	0	2	12	15
Montana ${ }^{\text {s }}$	1	2	6	97	121	-	0	0	-	-	1	0	7	23	54
Nevadas	-	3	10	148	209	-	0	3	18	31	-	0	9	47	134
New Mexicos	-	5	13	243	244	-	0	3	34	46	-	2	6	98	171
Utah	-	5	18	273	245	-	1	9	92	112	-	1	5	34	65
Wyoming ${ }^{\text {§ }}$	-	1	4	66	44	-	0	1	-	20	-	0	19	32	39
Pacific	50	108	890	4,777	4,916	9	8	164	456	121	14	28	256	1,300	1,778
Alaska	2	1	5	74	70	N	0	0	N	N	-	0	2	7	7
California	39	85	260	3,800	4,209	9	4	33	244	N	13	24	84	1,086	1,611
Hawaii	-	0	9	16	242	-	0	1	4	18	-	0	0	-	45
Oregon§	-	7	16	285	393	-	1	11	80	103	-	1	6	72	115
Washington	9	11	625	602	2	-	1	162	128	-	1	2	170	135	-
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	N	0	0	N	N	-	0	0	-	-
Puerto Rico	-	11	66	446	617	-	0	0	-	-	-	0	4	18	38
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

[^9]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional

Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Streptococcal disease, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
		Med	Max				Med	Max		
United States	27	97	261	4,286	4,743	25	29	108	1,398	1,210
New England	-	5	28	349	319	-	2	11	110	116
Connecticut	-	0	23	114	84	-	0	6	15	33
Maine ${ }^{\text {® }}$	-	0	3	25	17	-	0	1	3	-
Massachusetts	-	3	12	155	161	-	1	6	72	67
New Hampshire	-	0	4	33	35	-	0	2	10	9
Rhode Island ${ }^{\text {® }}$	-	0	12	6	8	-	0	2	8	7
Vermont ${ }^{\S}$	-	0	2	16	14	-	0	1	2	-
Mid. Atlantic	3	16	41	796	857	2	4	37	232	176
New Jersey	-	2	10	114	138	-	1	4	31	58
New York (Upstate)	3	5	27	261	273	2	2	15	96	89
New York City	-	4	13	187	151	-	1	35	105	29
Pennsylvania	-	5	11	234	295	N	0	0	N	N
E.N. Central	3	16	34	726	898	1	4	14	191	319
Illinois	-	4	13	202	273	-	1	5	39	90
Indiana	-	2	12	108	106	-	0	10	18	47
Michigan	1	4	10	179	188	-	1	4	65	71
Ohio	2	4	14	206	219	1	1	7	56	68
Wisconsin	-	0	5	31	112	-	0	2	13	43
W.N. Central	1	5	32	303	319	2	2	8	112	103
lowa	-	0	0	-	-	-	0	0	-	-
Kansas	-	0	3	30	51	-	0	1	3	12
Minnesota	-	0	29	149	143	1	1	6	71	64
Missouri	1	2	6	73	74	-	0	2	22	14
Nebraskas	-	0	3	23	29	1	0	2	15	10
North Dakota	-	0	3	18	12	-	0	2	1	3
South Dakota	-	0	2	10	10	-	0	0	-	-
S. Atlantic	8	22	52	1,130	1,081	1	5	14	249	78
Delaware	-	0	1	10	10	-	0	0	-	-
District of Columbia	-	0	3	8	15	-	0	1	-	1
Florida	3	6	16	290	272	-	1	5	61	-
Georgia	1	5	13	229	238	-	0	5	44	-
Maryland ${ }^{\text {® }}$	2	4	10	194	197	1	1	5	58	65
North Carolina	1	1	22	151	148	-	0	0	-	-
South Carolina ${ }^{\text {§ }}$	1	1	7	86	57	-	1	4	48	-
Virginia ${ }^{\text {§ }}$	-	2	11	136	118	-	0	4	31	-
West Virginia	-	0	3	26	26	-	0	4	7	12
E.S. Central	-	4	13	189	189	-	2	6	82	17
Alabamas	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	3	35	41	N	0	0	N	N
Mississippi	N	0	0	N	N	-	0	2	3	17
Tennessee§	-	3	13	154	148	-	1	6	79	-
W.S. Central	2	6	90	275	352	12	4	43	213	196
Arkansas§	-	0	2	17	24	1	0	2	11	20
Louisiana	-	0	4	16	16	-	0	4	29	23
Oklahoma	1	1	23	65	94	4	1	13	52	51
Texas§	1	3	64	177	218	7	2	27	121	102
Mountain	10	10	22	487	607	6	4	12	182	180
Arizona	1	4	11	186	313	5	2	7	106	97
Colorado	7	2	8	139	110	1	1	3	44	51
Idaho ${ }^{\text {§ }}$	1	0	2	17	8	-	0	1	2	3
Montana ${ }^{\text {s }}$	N	0	0	N	N	N	0	0	N	N
Nevadas	-	0	1	2	-	N	0	1	1	2
New Mexicos	1	1	4	56	113	-	0	4	22	27
Utah	-	2	7	82	59	-	0	2	7	-
Wyoming ${ }^{\text {§ }}$	-	0	1	5	4	-	0	0	-	-
Pacific	-	1	4	31	121	1	0	2	27	25
Alaska	-	0	3	29	N	1	0	2	27	N
California	N	0	0	N	N	N	0	0	N	N
Hawaii	-	0	4	2	121	-	0	1	-	25
Oregon ${ }^{\text {§ }}$	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U
Guam	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	N	0	0	N	N
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U

[^10]TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	All ages					Age <5 years									
	Previous Current 52 weeks 			$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$
	week	Med	Max				Med	Max				Med	Max		
United States	30	46	256	2,058	2,144	9	8	35	406	378	61	204	310	9,422	8,582
New England	-	2	12	89	120	-	0	3	11	5	4	5	14	240	187
Connecticut	-	1	5	50	91	-	0	2	4	-	2	0	10	32	48
Maine ${ }^{\text {® }}$	-	0	2	9	7	-	0	2	2	1	-	0	2	9	8
Massachusetts	-	0	0	-	-	-	0	0	-	-	1	3	8	144	106
New Hampshire	-	0	0	-	-	-	0	0	-	-	-	0	3	26	11
Rhode Island ${ }^{\text {® }}$	-	0	4	15	11	-	0	1	3	1	1	0	5	27	12
Vermont ${ }^{\text {§ }}$	-	0	2	15	11	-	0	1	2	3	-	0	1	2	2
Mid. Atlantic	-	2	9	111	141	1	0	5	24	22	9	29	45	1,364	1,039
New Jersey	-	0	0	-	-	-	0	0	-	-	-	4	8	188	158
New York (Upstate)	-	1	5	37	47	1	0	4	8	9	-	3	14	123	134
New York City	-	0	0	-	-	-	0	0	-	-	8	18	35	826	504
Pennsylvania	-	1	6	74	94	-	0	2	16	13	1	5	10	227	243
E.N. Central	7	10	40	500	449	2	2	8	98	76	7	15	25	709	805
Illinois	-	0	8	54	23	-	0	5	30	6	-	7	14	324	388
Indiana	-	3	31	124	125	-	0	5	23	21	-	1	6	53	87
Michigan	-	0	1	2	16	-	0	1	1	2	-	2	9	103	104
Ohio	7	5	38	320	285	2	1	5	44	47	7	4	9	179	164
Wisconsin	N	0	0	N	N	-	0	0	-	-	-	1	4	50	62
W.N. Central	3	2	124	125	89	-	0	15	10	13	1	7	14	312	260
lowa	-	0	0	-	-	-	0	0	-	-	-	0	2	15	18
Kansas	-	0	11	64	-	-	0	2	6	-	-	0	2	20	24
Minnesota	-	0	123	-	51	-	0	15	-	10	-	1	4	62	45
Missouri	3	1	5	51	36	-	0	0	-	3	1	4	11	206	153
Nebraska ${ }^{\text {§ }}$	-	0	1	2	1	-	0	0	-	-	-	0	1	2	7
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	0	-	1
South Dakota	-	0	3	8	1	-	0	1	4	-	-	0	3	7	12
S. Atlantic	18	20	59	906	1,021	6	4	15	195	188	22	50	180	2,251	1,930
Delaware	-	0	1	8	-	-	0	1	2	-	-	0	3	15	17
District of Columbia	-	0	1	5	24	-	0	0	-	2	1	3	12	159	105
Florida	13	11	29	523	538	6	2	8	114	115	16	17	44	861	660
Georgia	5	7	17	313	356	-	1	10	71	71	-	8	153	352	362
Maryland ${ }^{\text {® }}$	-	0	1	1	-	-	0	0	-	-	3	6	15	278	271
North Carolina	-	0	0	-	-	-	0	0	-	-	2	5	23	293	271
South Carolina ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	-	2	11	87	61
Virginias	N	0	0	N	N	-	0	0	-	-	-	4	16	200	174
West Virginia	-	1	17	56	103	-	0	1	8	-	-	0	1	6	9
E.S. Central	2	3	9	145	166	-	1	3	33	29	3	18	31	801	643
Alabama ${ }^{\text {® }}$	N	0	0	N	N	-	0	0	-	-	-	7	17	317	284
Kentucky	-	0	2	21	32	-	0	1	3	6	-	1	7	54	63
Mississippi	-	0	2	-	23	-	0	0	-	-	-	2	9	97	68
Tennessee ${ }^{\text {® }}$	2	2	8	124	111	-	0	3	30	23	3	7	15	333	228
W.S. Central	-	2	12	126	74	-	0	3	17	9	4	35	56	1,659	1,414
Arkansas ${ }^{\text {® }}$	-	0	1	3	10	-	0	0	-	2	-	2	10	114	74
Louisiana	-	1	4	55	64	-	0	2	7	7	-	9	23	417	288
Oklahoma	-	0	10	68	-	-	0	2	10	-	-	1	4	55	64
Texas ${ }^{\text {¢ }}$	-	0	0	-	-	-	0	0	-	-	4	21	39	1,073	988
Mountain	-	1	6	56	84	-	0	3	18	36	5	7	27	343	449
Arizona	-	0	0	-	-	-	0	0	-	-	4	3	22	153	174
Colorado	-	0	0	-	-	-	0	0	-	-	-	1	5	36	62
Idaho§	N	0	0	N	N	-	0	0	-	-	-	0	1	1	3
Montana ${ }^{\text {§ }}$	-	0	0	-	-	-	0	0	-	-	-	0	2	3	1
Nevada ${ }^{\text {8 }}$	-	0	3	18	17	-	0	2	5	3	-	2	6	87	123
New Mexicos	-	0	0	-	-	-	0	0	-	-	1	1	7	44	68
Utah	-	0	6	24	35	-	0	3	11	23	-	0	2	16	18
Wyoming ${ }^{\text {§ }}$	-	0	2	14	32	-	0	1	2	10	-	0	1	3	-
Pacific	-	0	0	-	-	-	0	0	-	-	6	39	59	1,743	1,855
Alaska	-	0	0	-	N	-	0	0	-	-	-	0	1	7	11
California	N	0	0	N	N	-	0	0	-	-	2	36	56	1,587	1,649
Hawaii	-	0	0	-	-	-	0	0	-	-	-	0	2	7	17
Oregon§	N	0	0	N	N	-	0	0	-	-	-	0	6	15	19
Washington	N	0	0	N	N	-	0	0	-	-	4	2	12	127	159
American Samoa	U	0	0	U	U	U	0	1	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	N	0	0	N	N		0	0				0	0	-	
Puerto Rico	N	0	0	N	N	-	0	0	-	-	-	3	10	146	132
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2007 are provisional
\dagger Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 24, 2007, and November 25, 2006 (47th Week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
						Neuroinvasive					Nonneuroinvasive ${ }^{\text {§ }}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2006 \end{aligned}$	Current week		$\begin{aligned} & \text { ious } \\ & \text { eeks } \end{aligned}$	Cum	Cum	Current		$\begin{aligned} & \text { ous } \\ & \text { eks } \end{aligned}$	Cum	Cum
		Med	Max				Med	Max	2007	2006	week	Med	Max	2007	2006
United States	251	767	2,813	30,436	40,748	-	1	134	1,110	1,492	-	2	292	2,249	2,769
New England	9	15	124	638	3,823	-	0	2	7	9	-	0	2	5	3
Connecticut	-	0	76	2	1,463	-	0	2	4	7	-	0	1	1	2
Maine ${ }^{\text {¹ }}$	-	0	6	-	217	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	1,141	-	0	2	3	2	-	0	2	3	1
New Hampshire	-	7	14	299	368	-	0	0	-	-	-	0	0		-
Rhode Island ${ }^{\text {¹ }}$	-	0	0	-	-	-	0	0	-	-	-	0	1	1	-
Vermont ${ }^{\text {] }}$	9	6	66	337	634	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	-	90	175	3,362	4,595	-	0	3	18	26	-	0	1	6	12
New Jersey	N	0	0	N	N	-	0	1	1	2	-	0	0	-	3
New York (Upstate)	N	0	0	N	N	-	0	0	-	8	-	0	0	-	4
New York City	-	0	0			-	0	3	12	8	-	0	1	2	4
Pennsylvania	-	90	175	3,362	4,595	-	0	1	5	8	-	0	1	4	1
E.N. Central	75	189	568	8,570	13,404	-	0	18	104	244	-	0	11	62	175
Illinois	-	3	11	152	129	-	0	13	60	127	-	0	8	36	88
Indiana	N	0	0	N	N	-	0	4	13	27	-	0	2	10	53
Michigan	4	82	258	3,492	4,390	-	0	5	13	43	-	0	0	-	12
Ohio	71	81	449	4,088	7,936	-	0	4	13	36	-	0	3	10	12
Wisconsin	-	16	80	838	949	-	0	2	5	11	-	0	2	6	10
W.N. Central	13	29	136	1,453	1,645	-	0	40	242	224	-	0	116	710	484
lowa	N	0	0	N	N	-	0	4	11	22	-	0	3	15	15
Kansas	-	8	52	491	300	-	0	3	13	17	-	0	7	26	13
Minnesota	-	0	0	-	-	-	0	9	45	31	-	0	12	54	34
Missouri	13	14	78	814	1,212	-	0	9	58	51	-	0	2	14	11
Nebraska"	N	0	0	N	N	-	0	5	18	45	-	0	15	126	219
North Dakota	-	0	60	84	45	-	0	11	49	20	-	0	48	316	117
South Dakota	-	1	15	64	88	-	0	9	48	38	-	0	32	159	75
S. Atlantic	14	95	239	4,388	4,140	-	0	12	40	18	-	0	6	35	14
Delaware	-	1	4	39	63	-	0	1	1	-	-	0	0	-	-
District of Columbia	-	0	8	14	45	-	0	0	-	-	-	0	0	-	2
Florida	9	25	76	1,134	N	-	0	1	3	3	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	8	23	2	-	0	5	26	6
Maryland"	N	0	0	N	N	-	0	2	6	10	-	0	2	4	1
North Carolina		0	0		-	-	0	1	3	1	-	0	1	2	-
South Carolina ${ }^{\text {¹ }}$	3	22	72	968	1,074	-	0	2	2	1	-	0	1	2	-
Virginia ${ }^{\text {a }}$	-	20	190	1,200	1,580	-	0	1	2	-	-	0	1	1	5
West Virginia	2	22	50	1,033	1,378	-	0	0	-	1	-	0	0	-	-
E.S. Central	13	9	571	552	28	-	0	11	67	118	-	0	14	95	99
Alabama ${ }^{\text {a }}$	13	9	571	549	26	-	0	2	16	8	-	0	1	7	-
Kentucky	N	0	0	N	N	-	0	1	4	5	-	0	0	-	1
Mississippi	-	0	2	3	2	-	0	7	42	89	-	0	12	83	92
Tennessee ${ }^{\text {] }}$	N	0	0	N	N	-	0	1	5	16	-	0	2	5	6
W.S. Central	112	158	1,640	9,033	10,540	-	0	28	207	373	-	0	13	90	234
Arkansas ${ }^{\text {® }}$	-	10	105	605	941	-	0	5	13	24	-	0	2	7	5
Louisiana	-	2	11	105	194	-	0	5	25	91	-	0	3	11	87
Oklahoma	-	0	0	-	N	-	0	11	52	27	-	0	7	42	21
Texas"	112	149	1,534	8,323	9,405	-	0	16	117	231	-	0	5	30	121
Mountain	15	53	131	2,405	2,573	-	0	36	266	392	-	1	140	1,004	1,486
Arizona	-	0	0	-		-	0	7	43	67	-	0	10	46	81
Colorado	8	21	62	979	1,361	-	0	17	96	66	-	0	65	459	279
Idaho ${ }^{\text {¹ }}$	N	0	0	N	N	-	0	2	8	139	-	0	19	101	857
Montana ${ }^{\text {T }}$	6	6	40	375	N	-	0	10	37	12	-	0	30	163	22
Nevada"	-	0	1	1	10	-	0	1	1	34	-	0	3	10	90
New Mexicon	1	5	37	332	354	-	0	8	38	3	-	0	6	22	5
Utah	-	12	73	684	786	-	0	8	28	56	-	0	7	38	102
Wyoming ${ }^{\text {I }}$	-	0	9	34	62	-	0	4	15	15	-	0	33	165	50
Pacific	-	0	9	35	-	-	0	18	159	88	-	0	23	242	262
Alaska	-	0	9	35	N	-	0	0	-	-	-	0	0	-	-
California	-	0	0		N	-	0	17	152	81	-	0	21	223	197
Hawaii	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
Oregon"	N	0	0	N	N	-	0	3	7	7	-	0	4	19	62
Washington	N	0	0	N	N	-	0	0	-	-	-	0	0	-	3
American Samoa	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U
C.N.M.I.	U	-	-	U	U	U	-	-	U	U	U	-	-	U	U
Guam	-	4	24	230	257	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	10	30	467	544	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	U	0	0	U	U	U	0	0	U	U	U	0	0	U	U

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
$\stackrel{*}{\dagger}$ Incidence data for reporting year 2007 are provisional.
\dagger Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data
§ for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenza-- associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.

Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending November 24, 2007 (47th Week)

	All causes, by age (years)								All causes, by age (years)						
Reporting Area	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	≥ 65	45-64	25-44	1-24	<1	P\& ${ }^{\dagger}$ Total	Reporting Area	All Ages	≥ 65	45-64	25-44	1-24	<1	$\mathbf{P} \mathbf{I I}^{\dagger}$ Total
New England	469	338	92	22	5	12	33	S. Atlantic	871	536	208	91	19	17	44
Boston, MA	149	92	39	8	4	6	11	Atlanta, GA	125	76	26	17	5	1	3
Bridgeport, CT	38	26	10	1	-	1	3	Baltimore, MD	146	84	42	16	2	2	8
Cambridge, MA	12	7	4	1	-	-	-	Charlotte, NC	69	56	7	4	-	2	8
Fall River, MA	10	10	-	-	-	-	-	Jacksonville, FL	110	69	32	6	1	2	7
Hartford, CT	42	37	3	1	-	1	3	Miami, FL	82	45	22	10	5	-	6
Lowell, MA	19	15	3	1	-	-	2	Norfolk, VA	44	30	5	4	-	5	-
Lynn, MA	8	3	2	3	-	-	-	Richmond, VA	24	17	4	3	-	-	-
New Bedford, MA	12	8	4	-	-	-	1	Savannah, GA	23	13	7	2	1	-	1
New Haven, CT	51	37	8	3	-	3	6	St. Petersburg, FL	26	16	8	1	1	-	3
Providence, RI	20	14	6	-	-	-	-	Tampa, FL	107	68	23	13	1	2	6
Somerville, MA	2	2	-	-	-	-	-	Washington, D.C.	100	52	31	11	3	3	1
Springfield, MA	34	31	1	2	-	-	5	Wilmington, DE	15	10	1	4	-	-	1
Waterbury, CT	24	19	3	1	1	1	2		589		128		13	13	
Worcester, MA	48	37	9	1	1	-		Birmingham, AL	589 114	393 76	128 27	42 7	13 2	13 2	11
Mid. Atlantic	1,662	1,213	304	85	27	30	82	Chattanooga, TN	50	28	13	7	1	1	4
Albany, NY	32	26	3	1	-	2	2	Knoxville, TN	66	49	12	2	2	1	4
Allentown, PA	24	20	4	-	-	-	1	Lexington, KY	78	51	15	8	1	3	5
Buffalo, NY	83	54	13	9	1	6	7	Memphis, TN	115	78	24	7	4	2	12
Camden, NJ	21	16	2	1	1	1	2	Mobile, AL	33	21	9	1	1	1	1
Elizabeth, NJ	10	7	3	-	-	-	-	Montgomery, AL	25	15	6	3	1	-	1
Erie, PA	42	33	5	2		1	1	Nashville, TN	108	75	22	7	1	3	3
Jersey City, NJ	19 888	13 645	4 171	1	1	8	1	W.S. Central	1,017	639	259	74	22	23	46
New York City, NY	888	645	171	48	13	8	35	Austin, TX	1, 70	43	15	6	3	3	8
Newark, NJ	10	6	2	1	-	1	-	Baton Rouge, LA	51	29	16	4	2	3	8
Paterson, NJ	18	11	6	1	-	-	3	Corpus Christi, TX	44	27	13	4	-	-	
Philadelphia, PA	192	134	39	7	6	6	12	Dallas, TX	95	50	29	11	3	2	3
Pittsburgh, PA^{\S}	17	12	1	2	-	2	3	El Paso, TX	105	71	24	7	1	2	3
Reading, PA	33	22	8	3	-	-	3	Fort Worth, TX	74	55	19	-	-	-	3
Rochester, NY	91	68	17	3	3	-	7	Houston, TX	248	135	77	28	5	3	11
Schenectady, NY	27	21	4	2	-		-	Little Rock, AR	43	27	9	3	2	2	1
Scranton, PA	15	11	3	-	1	-	7	New Orleans, LA ${ }^{\text {¹ }}$	U	U	U	U	U	U	U
Syracuse, NY	78	61	14	1	-	2	7		154	100	37	8	4		10
Trenton, NJ	27	23	1	2	-	1	-	San Antonio, TX	39	32	5	1	1	5	10 1
Utica, NY	19	16	2	1	-	-	1	Tulsa, OK	94	70	15	2	1	6	2
Yonkers, NY	16	14	2	-	-		1	Tusa, OK							
E.N. Central	1,471	944	390	95	23	19	106	Mountain	814	534	187	50	25	17	39
Akron, OH	41	26	10	4	-	1	-	Albuquerque, NM Boise ID	67	42	16	5 3	3	1	5
Canton, OH	36	29	6	1	-	-	6	Colorado Springs, CO	81	61	13	3 2	2	2	3
Chicago, IL	180	110	51	16	2	1	13	Denver, CO	82	51	20	7	3	1	4
Cincinnati, OH	57 171	31 123	19	2	4	1	9	Las Vegas, NV	168	109	43	8	7	1	11
Cleveland, OH	171	123	39	8	1	2	10	Ogden, UT	12	6	4	1	-	1	-
Columbus, OH	198	132	48	13	3	2	12	Phoenix, AZ	127	78	32	8	6	2	5
Dayton, OH	85	50	25	7		2	6	Pueblo, CO	20	16	4	-	-	-	1
Detroit, MI	98	46	39	8	2	3	9	Salt Lake City, UT	93	58	21	9	3	2	4
Evansville, IN	33	23	8	2	-	-	6	Tucson, AZ	100	69	18	7	1	5	5
Fort Wayne, IN	59	44	15	-	-	-	3	Tucson, AZ	100	69	18	7	1	5	5
Gary, IN	9	7	1	1	-	-	-	Pacific	1,209	832	253	66	32	25	90
Grand Rapids, MI	53	35	13	1	2	2	5	Berkeley, CA	9	4	2	1	-	2	1
Indianapolis, IN	146	79	42	14	7	4	13	Fresno, CA	57	36	17	2	1	1	2
Lansing, MI	40	27	9	3	-	1	2	Glendale, CA	23	16	4	3	-	-	4
Milwaukee, WI	50	30	13	5	1	1	3	Honolulu, HI	47	39	4	-	3	1	4
Peoria, IL	24	17	7	-	-	-	2	Long Beach, CA	43	29	10	3	1	-	4
Rockford, IL	47	32	11	3	-	1	-	Los Angeles, CA	195	130	42	16	3	4	21
South Bend, IN	30	18	10	2	-	-	-	Pasadena, CA	17	16	1	-	-	-	-
Toledo, OH	69	48	18	3	-	-	5	Portland, OR	116	70	34	5	2	5	5
Youngstown, OH	45	37	6	2	-	-	2	Sacramento, CA	127	90	23	6	3	5	7
W.N. Central	443	277	108	20	15	23	28	San Diego, CA	101	61	27	7	5	1	11
Des Moines, IA	78	60	14	1	3		4	San Francisco, CA	89	62	16	6	3	1	10
Duluth, MN	20	16	4	-	-	-	2	San Jose, CA	156	120	24	5	3	4	9
Kansas City, KS	9	7	2	-	-	-	-	Santa Cruz, CA	15	13	18	2	6	1	1
Kansas City, MO	50	33	10	1	-	6	2	Seattle, WA Spokane, WA	65	35 40	18	5	6 1	-	5
Lincoln, NE	32	20	8	3	1	-	4	Tacoma, WA	97	71	20	5	1	-	
Minneapolis, MN	44	25	13	2	-	4	5	Tacoma, WA	97	71	20	5	1	-	2
Omaha, NE	52	33	12	1	2	4	4	Total	8,545**	5,706	1,929	545	181	179	509
St. Louis, MO	94	42	25	10	8	9	5								
St. Paul, MN	37	24	11	1	1	-	1								
Wichita, KS	27	17	9	1	-	-	1								

[^11]FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals November 24, 2007, with historical data

* Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

[^12]The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr$t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/ publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to www.mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: INSIDE
 1237 Progress in Global Measles Control and Mortality Reduction, 2000-2006
 1242 QuickStats

[^1]: *Priority countries were selected on the basis of their contribution to the global measles disease burden: Afghanistan, Angola, Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, India, Indonesia, Kenya, Lao People's Democratic Republic, Liberia, Madagascar, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, Papua New Guinea, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Timor-Leste, Togo, Uganda, United Republic of Tanzania, Vietnam, Yemen, and Zambia.

[^2]: ${ }^{\dagger}$ Any immunization activity implemented in addition to the routine immunization schedule. Measles SIAs are usually implemented as "catch-up" or "follow-up" mass immunization campaigns. A catch-up campaign includes a one-time initial vaccination conducted to achieve high population immunity rapidly and thereby interrupt chains of measles virus transmission. In countries aiming to reduce measles-associated mortality, an initial nationwide catch-up SIA usually targets all children aged 9 months- 14 years. Follow-up campaigns generally are conducted nationwide every 2-4 years and target all children born since the previous campaign, usually those aged $9-59$ months. Follow-up campaigns aim to eliminate any measles susceptibility that has built up in recent birth cohorts because of 1) suboptimal routine coverage with the first dose of measles vaccine and 2) a failure to develop an immune response after the first measles vaccination, which is expected in up to 15% of infants vaccinated at age 9 months.

[^3]: ${ }^{\$}$ Case-based surveillance includes investigation of every suspected measles case and routine reporting of detailed epidemiologic and laboratory data for each confirmed measles case.

[^4]: *WHO/UNICEF estimates available at http://www.who.int/vaccines/globalsummary/immunization/countryprofileselect.cfm.
 ${ }_{\S}^{\dagger}$ Based on Monte Carlo simulations that account for uncertainty in key input variables (e.g., vaccination coverage and case-fatality ratios).
 ${ }^{\S}$ Estimates are not sufficiently precise at low incidence levels.

[^5]: ${ }^{9}$ Additional information available at http://www.who.int/vaccines/global summary/immunization/countryprofileselect.cfm.

[^6]: ** Based on Monte Carlo simulations (3) that account for uncertainty in key input variables (e.g., vaccination coverage and case-fatality ratio).

[^7]: * Uncertainty bounds. Based on Monte Carlo simulations that account for uncertainty in key input variables (e.g., vaccination coverage and casefatality ratios).

[^8]: $\overline{\dagger \dagger}$ Additional information available at http://www.measlesinitiative.org/index3.asp.
 \$s Additional information available at http://www.gavialliance.org.
 Is Additional information available at http://www.iff-immunisation.org.

[^9]: C.N.M.I.: Commonwealth of Northern Mariana Islands

[^10]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

 U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

 * Incidence data for reporting year 2007 are provisional.
 \dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available \& (NNDSS event code 11717).
 § Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

[^11]: U: Unavailable. -:No reported cases.

 * Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $\geq 100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 \dagger Pneumonia and influenza.
 § Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 ${ }^{7}$ Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
 ** Total includes unknown ages.

[^12]: Notifiable Disease Data Team and 122 Cities Mortality Data Team
 Patsy A. Hall
 Deborah A. Adams Rosaline Dhara
 Willie J. Anderson Carol Worsham
 Lenee Blanton Pearl C. Sharp

