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Preface

Public health surveillance continues to broaden in scope and
intensity. Public health professionals responsible for conduct-
ing such surveillance must keep pace with evolving methodolo-
gies, models, business rules, policies, roles, and procedures. The
third annual Syndromic Surveillance Conference was held in
Boston, Massachusetts, during November 3–4, 2004. The con-
ference was attended by 440 persons representing the public
health, academic, and private-sector communities from 10 coun-
tries and provided a forum for scientific discourse and interac-
tion regarding multiple aspects of public health surveillance.
The conference was sponsored by the Alfred P. Sloan Founda-
tion, CDC, Tufts Health Care Institute, and the U.S. Depart-
ment of Homeland Security and organized by a Scientific
Program Planning Committee; members of the committee are
listed at http://www.syndromic.org/syndromicconference/2004/
course_book/TAB_2.pdf.

During the conference, 134 presentations were given,
including 18 at plenary sessions, 60 oral presentations, and
56 poster presentations. The entire list of presentations is avail-
able at http://www.syndromic.org/syndromicconference/
2004/course_book/TAB_1.pdf.

After the conference, an editorial committee was formed,
consisting of members of the planning committee. The board
conducted a peer-review process to select abstracts and manu-
scripts for publication. A total of 36 abstracts and 45 manu-
scripts were submitted. Each submission was evaluated, scored
according to preset criteria by at least two reviewers, and dis-
cussed by members of the committee. Time and resource limi-
tations precluded inclusion of all submissions for publication.
The manuscripts and abstracts contained in this supplement
represent a sampling of the relevant topics and perspectives
for this complex subject area. The manuscripts are catego-
rized into five content areas: 1) overview, policy, and systems;
2) data sources; 3) analytic methods; 4) simulation and other
evaluation approaches; and 5) practice and experience.

During the conference, a session was held to discuss the
possible formation of a professional society to advance the
field of disease surveillance. This nonprofit entity will be in-
corporated to advance the science of surveillance. Identified
proposed functions include serving as the institutional home
of the annual conference, maintaining and expanding a
website, and coordinating work groups to advance specific
scientific projects. Interest in this new society reflects the im-
portance of this field and the requirement for communica-
tion in operational surveillance. A more formalized social basis
for focus in the field and adaptive business rules might permit
1) increased integration among the needed scientific cultures
and disciplines; 2) maturation of approaches to surveillance
methods, technology, standards, and evaluation; 3) increased
interaction and more productive partnerships between the
respective public health level roles; and 4) outreach to inte-
grate perspectives and operational realities for public health
that include not only infectious disease and biologic terror-
ism preparedness and response but also counterterrorism and
national security concerns. Finally, such a society might pro-
vide a forum for consolidation of a much-needed professional
peer group and network for surveillance system operators and
data monitors. More discussion of this topic will take place at
the 2005 Syndromic Surveillance Conference, which will be
held in Seattle, Washington, during September 13–15, 2005.

The program committee, editorial committee, and the edi-
torial staff of MMWR all deserve recognition for their work in
organizing the conference and preparing these proceedings.
Special thanks are given to Haobo Ma, MD, MS, BioSense
Program, National Center for Public Health Informatics,
CDC, who coordinated the preparation of these reports.

— Henry R. Rolka, Chair, Editorial Committee
Chief Scientist/Statistician
National Center for Public Health Informatics, CDC

http://www.syndromic.org/syndromicconference/2004/course_book/TAB_2.pdf
http://www.syndromic.org/syndromicconference/2004/course_book/TAB_2.pdf
http://www.syndromic.org/syndromicconference/2004/course_book/TAB_1.pdf
http://www.syndromic.org/syndromicconference/2004/course_book/TAB_1.pdf
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Abstract

This report discusses CDC’s role in the early detection of threats to public health, including linkage of detection to other
preparedness functions, and provides an update on recent progress in improving these capabilities. CDC’s role has been
fivefold: 1) identifying and adopting information system standards; 2) providing funding; 3) defining critical surveillance
functionalities; 4) accelerating Internet-based surveillance systems and electronic reporting of laboratory results; and 5) imple-
menting BioSense, a secure, Internet-accessible, national early detection system that includes syndromic surveillance. Ongoing
iterative efforts and consultation are needed to ensure future progress.

Introduction
The U.S. public health system is responsible for the prompt

detection and investigation of, and response to, threats to the
population’s health, whether caused by a known organism, a
previously uncharacterized disease, or a covert or overt terror-
ist event. Accomplishing these functions requires a coordi-
nated effort of local, state, and federal public health entities,
working with multiple partners, including clinical care deliv-
ery, public policy, first responders, the public, and law
enforcement. Information systems to support these complex
activities by partners in multiple organizations and areas must
be interoperable, incorporating information system standards
to facilitate sustainable, real-time delivery of important data
and to make alerts and information available to the public health
partners that verify, investigate, and respond to outbreaks.

Preparedness both requires and benefits from the active
collaboration of federal, state, and local public health partners.
Data for the early detection functions that are part of these
interoperable information systems are obtained from multiple
sources, including traditional clinical care delivery sites
and clinical laboratories as well as less traditional health-
monitoring data sources (e.g., nurse call centers, over-the-counter
retail sales data, work and school absenteeism data, veterinary
health data, and information from environmental sensing
devices). This report discusses CDC’s role in early detection,
including linkage of detection to other preparedness functions,
and provides an update on recent progress.

CDC’s Role in Early Detection Systems
CDC has played a key role in identifying and adopting

national standards for data and system architecture to achieve

the needed interoperable systems. The Public Health Infor-
mation Network (PHIN) defines standards for technology,
data, vocabulary, and information security to enable the con-
sistent exchange of health, disease tracking, and response data
among public health partners, protect the security of these
data, and ensure the network’s reliability in times of national
crisis. PHIN addresses five major functional areas: detection
and monitoring, data analysis, knowledge management, alert-
ing, and response (1).

CDC also participates actively in key national standards
development organizations to ensure that public health needs
are considered as these national standards evolve. In 2004,
CDC worked with Health Level 7, the leading international
standards development organization that addresses clinical and
administrative standards for health, to provide input on pub-
lic health functions that should be considered as part of the
recently balloted draft standard for trial use for electronic health
records (EHRs). CDC also continues to participate in
national consortia (e.g., Connecting for Health) to accelerate
use of EHRs by providers (2). The more rapidly providers
adopt standards-based, interoperable EHRs, the more readily
a broader range of clinical data for early detection can be avail-
able electronically from more providers in both ambulatory
and hospital settings.

Provision of funding for preparedness systems and personnel
is also a key federal role. Since Fiscal Year 2002, CDC and the
Health Resources and Services Administration (HRSA) have
provided $1.1–1.4 billion dollars annually in funding to state
and local health departments to enhance preparedness activi-
ties. The CDC and HRSA funding guidance to state health
departments requires states to use PHIN standards when they
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invest preparedness funding in developing or modifying infor-
mation systems (3).

The funding guidance also identifies specific functions that
states must support, including enhanced surveillance and early
detection capacity. Enhanced surveillance requires strength-
ening personnel and systems needed for surveillance, as well
as strategic decisions about what approach to syndromic sur-
veillance is appropriate for the specific local or state circum-
stances. This report discusses CDC contributions to this core
state and local responsibility, first in the context of disease-
specific surveillance and then in the context of systems that
include surveillance of syndromes and prediagnostic data
sources.

To enhance disease-specific surveillance, CDC is working with
partners to implement the surveillance component of PHIN,
the National Electronic Disease Surveillance System (NEDSS)
(4). Disease-specific surveillance is relevant to early detection
in multiple ways: 1) it might complement telephone notifica-
tions of unusual events; 2) it might detect outbreaks of which
public health authorities were otherwise unaware; and 3) it can
provide complementary information, and potentially infrastruc-
ture, to support syndromic surveillance activities. States can
either use NEDSS standards to develop or modify state surveil-
lance systems or implement the NEDSS Base System, a highly
configurable software program developed by CDC and its part-
ners to enhance surveillance at the state and local level (4).
NEDSS incorporates multiple approaches to improve the time-
liness and completeness of disease-specific surveillance systems
that enable clinicians, laboratories, and local health
department investigators to use the Internet to enter data into a
database at the health department. This approach makes infor-
mation on a reported case available at the state or local health
department without the delays of data entry or mailing a form.
As of April 2005, a total of 27 states* were using surveillance
systems that utilize Internet-based data entry.

NEDSS standards also support automatic electronic labo-
ratory result (ELR) reporting from a clinical diagnostic labo-
ratory information system to state and local health departments
for positive test results (i.e., those that identify a notifiable
disease or condition). Communicable disease surveillance
focuses on laboratory reports because a high proportion of
notifiable diseases can be identified on the basis of laboratory
test results. ELR has been well documented to increase the
number of cases reported to public health two- to threefold,
as well as to dramatically increase the timeliness of reports (5).

As of March 2005, a total of 26 states† were receiving ELR
reports for certain conditions (e.g., hepatitis and meningitis)
included in communicable disease surveillance.

NEDSS also supports electronic transmission of surveillance
data about cases from states to CDC. Although all states cur-
rently perform this function through either the National Elec-
tronic Telecommunications System for Surveillance (NETSS)
or NEDSS, the NEDSS notification format enhances surveil-
lance by providing more complete information about each
reported case and sending notifications as soon as the state
approves the notification, rather than in a weekly batch.

CDC has developed BioSense, a secure early detection sys-
tem accessible through the Internet that includes surveillance
of syndromes. BioSense enables local and state health depart-
ments to view syndromic data relevant to their areas from
multiple sentinel national data sources (e.g., Veterans Admin-
istration hospitals and military treatment facilities). This
application has been described in detail elsewhere (6). BioSense
accomplishes two key federal roles. First, it provides a single
location for a state or local health department to monitor,
instead of trying to identify signals from multiple Internet
sites that use different data sources and different approaches
to analysis and alerting. This approach also combines analysis
of syndromic data with specimens collected in the same area
through BioWatch, which places environmental air samplers
in key locations (7). Second, BioSense provides a means of
coordinating data requests and changes in analytic approaches
with national data sources, which should be more efficient
than attempting bilateral approaches between these sources
and the 50 states or the thousands of local health departments.
Realizing this efficiency requires a process for ongoing col-
laboration among all participants. BioSense also can function
as a platform for evaluating utility of data sources, syndrome
categorization, and analytic algorithms, in addition to pro-
viding an opportunity for collaborations to address key
research questions.

CDC’s involvement in syndromic surveillance at state and
local health departments is a complex and evolving area. As
states and local health departments consider whether to
develop or enhance syndromic surveillance capacity within
their health departments, what has been learned to date
regarding the usefulness (or lack thereof ) of various data
sources should be incorporated into their plan. Assessing what
level of population coverage for that area is already provided
in national platforms (e.g., BioSense) is also appropriate. Prag-
matic considerations include the availability of information

* Alaska, Arizona, Colorado, Delaware, Florida, Georgia, Idaho, Illinois,
Kansas, Kentucky, Louisiana, Michigan, Nebraska, Nevada, New Jersey,
New York, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, South
Carolina, Tennessee, Texas, Vermont, Virginia, and West Virginia.

† Alaska, Arizona, Colorado, Delaware, Florida, Georgia, Hawaii, Illinois,
Indiana, Iowa, Kansas, Kentucky, Louisiana, Massachusetts, Michigan,
Minnesota, Nebraska, New Hampshire, New Jersey, New York, North
Dakota, Oklahoma, Oregon, Pennsylvania, Texas, and Wisconsin.
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technology resources needed to add and maintain additional
data sources and the public health resources needed to inves-
tigate inevitable false alarms. Because it includes information
from all states and all cities in which BioWatch environmen-
tal collectors are in use, BioSense can provide syndromic sur-
veillance information for local health departments that do not
have that capacity. The public health resources needed to
investigate inevitable false alarms are also a concern with
BioSense. However, local jurisdictions can work with CDC
to determine levels of sensitivity and specificity that are
appropriate for their areas.

CDC is planning to implement provision of data from
regional and national data sources to the relevant jurisdiction.
The availability of these data, whether from BioSense or from
state and local systems, will provide opportunities for inte-
grating surveillance systems; this integration will make increas-
ingly moot the distinction between disease-specific systems
and early detection systems that include syndromic or
prediagnostic data.

Using PHIN standards for BioSense and for local and state
information systems will facilitate interoperability across sys-
tems. CDC also is providing technical assistance and specific
software tools for use by state, local, and federal partners to
accomplish needed cross-cutting functions. For example, the
PHIN Messaging System is software for standards-based,
secure bi-directional transport of messages between institu-
tions (8). Interoperability also requires adherence to detailed
national data standards, including defined controlled vocabu-
laries. CDC is facilitating this process with the PHIN
Vocabulary Access and Distribution System, which includes
Internet-accessible standard reference tables (9). Implement-
ing interoperable systems also requires a detailed level of speci-
fications beyond the agreed upon, high-level standard. CDC
has worked collaboratively with partners to provide that level
of detail (e.g., through message implementation guides [10]
that specify message format, including data content).

Conclusion
Substantial progress has occurred in the early detection area

from the partnership among local, state, and federal public
health entities. In 2005, BioSense received a substantial
increase in funding, which should accelerate its ability to pro-
vide a wider range of data sources; partners are participating
in a working group to help define the highest priority data
sources. Accelerated progress depends on making prepared-
ness systems interoperable and avoiding an isolated focus on
early detection alone. This imperative underscores the com-
plexity of the task, requiring concrete progress at the state and
local level in implementing a PHIN-compatible surveillance,

alerting, and response infrastructure, as well as accelerated
progress by CDC in providing the needed specifications and
tools. All partners are aware of the urgency, but also the diffi-
culty, of accomplishing these public health objectives; contin-
ued consultation and iterative efforts are needed to ensure
further progress. Finally, with the recognition that systems
will continue to evolve, plans for evaluation and subsequent
modification should be incorporated into the ongoing work.
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Abstract

BioSense is a CDC initiative to support enhanced early detection, quantification, and localization of possible biologic terror-
ism attacks and other events of public health concern on a national level. The goals of the BioSense initiative are to advance
early detection by providing the standards, infrastructure, and data acquisition for near real-time reporting, analytic evalua-
tion and implementation, and early event detection support for state and local public health officials. BioSense collects and
analyzes Department of Defense and Department of Veterans Affairs ambulatory clinical diagnoses and procedures and
Laboratory Corporation of America laboratory-test orders. The application summarizes and presents analytical results and
data visualizations by source, day, and syndrome for each ZIP code, state, and metropolitan area through maps, graphs, and
tables. An initial proof of a concept evaluation project was conducted before the system was made available to state and local
users in April 2004. User recruitment involved identifying and training BioSense administrators and users from state and
local health departments. User support has been an essential component of the implementation and enhancement process.
CDC initiated the BioIntelligence Center (BIC) in June 2004 to conduct internal monitoring of BioSense national data
daily. BIC staff have supported state and local system monitoring, conducted data anomaly inquiries, and communicated
with state and local public health officials. Substantial investments will be made in providing regional, state, and local data
for early event detection and situational awareness, test beds for data and algorithm evaluation, detection algorithm develop-
ment, and data management technologies, while maintaining the focus on state and local public health needs.

anomaly investigations. Although the BioSense Initiative
involves broader activities in the public health context, this
report is primarily focuses on surveillance use of the BioSense
application.

The BioSense Application

Overview
The purpose of the BioSense application is to provide early

event detection and situational awareness critical for biologic
terrorism surveillance and routine public health event man-
agement. BioSense uses near-real time reporting of health data,
performing analysis and data visualization techniques on di-
agnostic and pre-diagnostic electronic data sources and pro-
viding the results to state and local public health departments
for use in detecting and characterizing events of potential
public health importance. BioSense summarizes and presents
analytical results and data visualizations by source, day, and
syndrome for each state and metropolitan area (MRA) through

The BioSense Initiative
BioSense is a CDC initiative to support enhanced early

detection and situational awareness for possible biologic ter-
rorism attacks and other events of public health concern on a
national level. It is the primary early event detection component
of CDC’s Public Health Information Network (1). BioSense
Initiative goals include the advancement of analytics for pre-
diagnostic and diagnostic data; collaboration with state, local,
and regional systems to provide data in near-real time; increased
sharing of approaches and technology among federal, state, and
local levels of public health; and the promotion of national stan-
dards and specifications to ensure integration with other public
health systems (2).

The BioSense software application and the BioIntelligence
Center (BIC) are two key components of CDC’s BioSense
Initiative. The BioSense application is an Internet-based soft-
ware system for collecting, analyzing, and visualizing data
reported to BioSense. Since June 2004, BIC has conducted
monitoring and investigation of BioSense national data daily
and supports state and local system monitoring and data
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maps, graphs, and tables. States and MRA jurisdictions are
defined by a set of ZIP codes.

Data Sources
BioSense has implemented three national data sources:

Department of Defense (DoD) Military Treatment Facilities,
Department of Veterans Affairs (VA) treatment facilities, and
Laboratory Corporation of American (LabCorp®) test orders.
Approximately 700 DoD and 1,100 VA medical facilities
report data to BioSense (3,4). LabCorp operates a nationwide
network of 31 primary testing locations and more than 1,100
patient service centers (5). Data are received and analyzed daily
and historical data are available; DoD data have been collected
since May 2003; VA, December 2003; and LabCorp, June 2004.
Since October 2004, the average number of daily records
received for DoD has been 98,000; VA, 151,800; and LabCorp,
137,600. Both DoD and VA provide ambulatory-care data in
the form of International Classification of Diseases, Ninth Revi-
sion, Clinical Modification (ICD-9-CM) diagnosis codes and
current procedural terminology (CPT®) medical procedure
codes. LabCorp provides test orders and ICD-9-CM codes
associated with the reason for the orders. All data sources
include additional information with each record (e.g., patient
age, sex, ZIP code of residence, and facility identifier and ZIP
code). Experts from different agencies participated in mapping
each data source to 11 syndrome categories: botulism-like, fever,
gastrointestinal, hemorrhagic illness, localized cutaneous lesion,
lymphadenitis, neurologic, rash, respiratory, severe illness and
death, and specific infection (6,7).

Statistical Analysis
The calculations for analytics that appear in BioSense are

pre-generated daily. Small area regression and testing (SMART)
is an adaptation of a generalized linear mixed modeling
(GLMM) technique (8). The SMART model takes into
account multiple comparisons and includes parameters for
ZIP code, day of the week, holiday, and day after a holiday.
The model also uses sine and cosine terms for seasonal cyclic
variation. Parameters are calculated weekly for each date-
source-syndrome-ZIP code combination. Predicted values are
generated by the model, and the observed data counts for each
combination are compared with these predicted values daily
under the assumption of a Poisson distribution of events. Sig-
nificant differences between the observed and predicted val-
ues are indicated in the application.

The second analytical technique is an adaptation of a
cumulative sum (CUSUM) approach that is used in stand-
alone drop-in surveillance (9). It is used as a short-term sur-
veillance technique to indicate recent data changes through

the comparison of moving averages. Days that have variation
higher than two standard deviations from the moving aver-
ages are indicated in the application. Because of high variabil-
ity within the data, individual CUSUM values are calculated
for each date-source-syndrome combination at the state or
MRA level, rather than for individual ZIP codes.

BioSense Home Page
The BioSense application home page provides analytical

results to users approved to access data for their jurisdiction
(Figure 1). These results indicate data anomalies that might
require further investigation. On the left side of the home
page, options are listed for changing the region being viewed,
data transmission notes regarding the national data sources,
and the Sentinel Infection Alerts section, which displays records
of ICD-9 codes received that CDC has designated as poten-
tial biologic terrorism agents (10). In the center of the home
page, the syndrome “punch cards” provide the jurisdictional
analytical results for each syndrome across all data sources.
For this display, elevated SMART or CUSUM scores for a
state or MRA are indicated in the punch cards. There are
elevated CUSUM scores for several syndromes (fever, lym-
phadenitis, neurological, and specific infection) (Figure 1). If
a particular punch card is selected, detailed analytical infor-
mation for that syndrome is presented in graphs, maps, and
tables. Beneath the punch cards, the jurisdictional map por-
trays spatial results for analytics, and the time shift feature
allows the user to determine temporal patterns. The table to
the right of the map provides data source and ZIP code counts,
with counts highlighted if associated with an elevated CUSUM
or SMART score. The percentage of records received (table at
the bottom of the BioSense home page) displays data receipt
status, by data source, as a percentage equal to the number of
records received out of the number expected to be received.
The expected number is based on a historical day of week
average. Low percentages indicate that full data delivery might
not have occurred, whereas percentages substantially >100%
indicate that 1) data might have been duplicated in the trans-
mission process, 2) a recent increase in the number of facili-
ties reporting data occurred, or 3) a genuine increase occurred
in the number of clinic visits or laboratory tests ordered.

Health Indicator Pages
The Health Indicator pages provide access to the data visu-

alization components for the purpose of evaluating data pat-
terns across sources, geographically, and temporally. The
syndrome consolidated line graphs present data for each source
on one graph so the user can determine patterns across sources
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FIGURE 1. BioSense home page*

* Demonstration data.
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FIGURE 2. Health indicators gastrointestinal syndrome consolidated line graph*

* Demonstration data. Data transformed using standard deviation.

for each syndrome (Figure 2). Selecting a syndrome consoli-
dated graph allows the user to view data for that syndrome in
graphic, spatial, and tabular presentations. The line graph
presentation permits users to compare jurisdictional and
national data patterns for each data source (although state
and local users do not have access to detailed national data)
(Figure 3). The patterns in the VA ambulatory-care diagnosis
count data for Atlanta closely mirror the national data
(Figure 3). The map presentation illustrates data by ZIP
code for each source (Figure 4). The user can view
detailed information regarding individual ambulatory-care
visits and laboratory-test orders within the tabular presenta-
tion (Figure 5). Different data selection and display options
provide flexibility when viewing the visualizations, including
the option to evaluate data patterns at the ZIP code level,
view up to 1 year of data, and examine data for certain age
and sex combinations.

BioSense Application
Implementation

Initial CDC Evaluation
The BioSense application initial design, data acquisition,

and system development involved several challenges. These
challenges included the nontraditional nature of the surveil-
lance system, the use of novel data sources, and the lack of
pre-defined user requirements. Therefore, an initial “proof of
concept” evaluation project was conducted in November 2003
before the system was made available to state and local users.
This evaluation involved incorporating known embedded sig-
nals into BioSense data to determine if these data aberrations
could be distinguished in the application. Such signals were

identifiable in the application based on the results of the proof
of concept evaluation. Evaluators provided feedback, which
resulted in modifications to the initial system design that made
it more useful.

Implementation for State and Local
Public Health Officials

Before BioSense was ready to release to state and local pub-
lic health users in April 2004, state and local public health
leaders identified appropriate BioSense administrators within
each state and MRA. These administrators were program
officials responsible for granting access to the application and
appropriate state, metropolitan area, and ZIP code level data
and were the points of contact for data aberrations observed
in BioSense. State level users were granted access to view
BioSense data for their state as well as any metropolitan areas
within their state, whereas users at the local level were granted
access only to MRA level data. Local users whose jurisdiction
did not fall within a BioSense MRA were granted access to
state or ZIP code level data, if the state administrator granted
approval. BioSense administrators were identified for 49 states
and approximately 30 major MRAs, and during April–
December 2004, approximately 300 users were approved to
access BioSense through the Secure Data Network.

As a critical information system, BioSense leverages security
services and protections for key CDC information systems. The
services and protections provided by security mechanisms (e.g.,
Secure Data Network [SDN]) are inclusive of user identity man-
agement and authentication as well as authorization controls to
ensure appropriate access to BioSense data. In addition, the
security measures used by BioSense facilitate compliance with
different federal laws and regulations, including: Privacy Act of

1974, Health Insurance Portability and
Accountability Act of 1996 (HIPAA), Fed-
eral Information Security Management Act
of 2002 (FISMA), E-Government Act of
2002, and Homeland Security Presidential
Directive (HSPD) -12.

In-depth training regarding the numer-
ous system functionalities, analytics, and
data visualizations was initiated. Training
sessions were conducted on a bimonthly
basis and an interactive telephone bridge
and web-based presentation (webinars) was
used. The webinars provided a general over-
view of the BioSense system and its
functionalities, the tools users needed to
begin monitoring data, a forum for address-
ing questions, and information regarding
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FIGURE 3. Health indicators gastrointestinal syndrome line graph presentation

new system functionalities and data sources. During June–
December 2004, approximately 250 BioSense users partici-
pated in one of 14 training sessions.

In addition to training, user support played two major roles:
1) the provision of requested information and assistance to
state and local public health officials and 2) the opportunity
to obtain user feedback for incorporation into system devel-
opment and enhancement. Through the BioSense help email
address and the technical help desk phone line, hundreds of
questions were routed to the appropriate BioSense team mem-
ber for response. In an example of a state BioSense adminis-
trator request, historical influenza season respiratory syndrome
data was provided for establishing baseline patterns and track-

ing influenza season patterns for 2004–2005. In response to
local user requests, customized BioSense MRA jurisdictions
have been created. During the G-8 summit in June 2004, the
Brunswick, Georgia, Savannah, Georgia, and Coastal Caro-
lina, South Carolina MRA regions were created to improve
surveillance during that important convention. Other
requested MRA regions that were created included Pierce
County, Washington, and Research Triangle, North Carolina.

BioIntelligence Center
CDC initiated BIC in June 2004 to support state and local

early event detection capabilities. The BIC functions were to
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FIGURE 5. Health indicators gastrointestinal syndrome tabular presentation of jurisdictional Department of Veterans Affairs ambulatory-
care diagnoses*

* Demonstration data.

FIGURE 4. Health indicators gastrointestinal syndrome map presentation of jurisdictional Department of Veterans Affairs
ambulatory-care diagnosis counts*

* Demonstration data.
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FIGURE 6. BioSense monitoring time, by state and local
public health officials, December 2004
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conduct daily monitoring and investigation of BioSense
national data, support state and local system monitoring and
data anomaly investigations, engage in communication with
state and local public health officials in all relevant data
anomaly investigations, and develop standard operating pro-
cedures for data evaluation. Daily monitoring included inves-
tigating, analyzing, and tracking data aberrations (11). BIC
monitors also played an active role in system troubleshooting
and in generating ideas for system enhancements. Examples
included improved labeling of data visualizations, increased
capability to navigate between pages, and descriptions pro-
vided of ICD-9-CM codes associated with individual patient
visits.

BIC has actively tracked system use since its inception
(Figure 6). Because BioSense monitoring by state and local
public health officials varied, the BIC activities ensured that
all state and MRA data were being evaluated regularly.

BIC has provided state and local public health officials with
surveillance support for major events (e.g., political conven-
tions and presidential debates) and day-to-day evaluation of
data to assist users to better understand monitoring methods
and data aberrations. Communication with state and local
BioSense users regarding data aberrations of potential con-
cern has been a mutual learning process as CDC and state
and local users work to characterize the data in BioSense.

User-requested BIC reports provided a summary of juris-
dictional data activity within BioSense. Monitors examined
the available data and determined if particular situations might
require further monitoring or investigation. An example of
such a situation included increased syndrome activity for a

particular ZIP code or set of adjacent ZIP codes over subse-
quent days, with epidemiologic patterns related to the disease
diagnoses or patient age and sex (11). Reports regarding diag-
noses of diseases presented in the Sentinel Infection Alerts
were communicated to state and local public health officials
upon request. Because BIC monitors reviewed data for a set
of jurisdictions daily, they were familiar with data activity for
that particular area of the country. State and local officials
were able to contact BIC monitors and receive responses to
questions, feedback, and requests for assistance.

Data-Related Concerns
BIC has encountered multiple data-related concerns since

it was established. The data include duplicate or updated
records. Appropriate de-duplication methods were used to
remove these records that had been previously transmitted.
The data were opportunistic and noisy. For the empirical pro-
cess for analysis, no sampling design existed; therefore, the
potential for confounding between reporting volume and event
intensity existed.

Data lag between the time of the patient encounter and the
time when the related data were accessible in the application
was a key issue and varied among data sources and reporting
facilities within the same data source. Incomplete data were
available for generation of the analytical results and for evalu-
ating data patterns, although data lag has improved. During
January–June 2004, the average number of days between the
patient clinical encounter and the availability of this informa-
tion in the BioSense application decreased and stabilized
(Figure 7). The percentage of records received table was pre-
sented to illustrate that unusual analytical results might occur
because of issues related to data transmission and lag rather
than because of true health activity (Figure 1). Data lag had
implications for inaccuracies in producing analytical results,

FIGURE 7. Average days from patient visit date to date
available in the BioSense application, by patient visit date,
January–June 2004



18 MMWR August 26, 2005

FIGURE 10. Average number of weekly patient visits —
Department of Veterans Affairs ambulatory-care diagnoses
and procedure data, January–November 2004

Average weekly visits,
by patient ZIP code

<25
26–50
51–150
151–500
501–1,380

and methods to adjust for the potential inaccuracies in the
algorithmic outputs will be evaluated.

Data coverage was also an issue. Certain data sources were
limited in their representation of the health status of the gen-
eral population. VA patients were primarily older, whereas
DoD included both service personnel and their dependents;
both VA and DoD data represented subsets of the popula-
tion. The data were national; however, geographic coverage
varied by data source. The analysis, visualization, and report-
ing (AVR) ZIP code for the DoD data was the medical facil-
ity ZIP code (rather than ZIP code of patient residence)
because DoD personnel might be stationed a substantial dis-
tance from their home residence. Therefore, the DoD data
provided excellent coverage, but only for the ZIP codes where
medical facilities were located (Figure 8). LabCorp data were
analyzed and presented by the patient residence ZIP code when
available. When this ZIP code was not available, either the
medical facility or laboratory testing facility ZIP codes were
used. LabCorp data coverage was more complete in the east-
ern United States and in metropolitan areas (Figure 9). The
VA analysis, visualization, and reporting ZIP code was the
patient residence ZIP code, so coverage was broader than for
DoD. A higher number of patient visits usually occurred in
the eastern United States and in areas of high population den-
sity (Figure 10).

Conclusion and Future Directions
In using BioSense, one lesson learned was that public health

officials tended to prefer varied analytic approaches and data
sources. BioSense implementation provided insight into the

usefulness of analytical techniques in guiding users to
potentially important health activity. As a result, frequent train-
ing and data aberration monitoring support were required.
Detailed information regarding the data loading performance,
analytics, data sources, syndrome mappings, application
functionalities, and data selection and display options were
provided. Communicating with state and local system users
as well as continuing training and user support were essential
as the system was developed. Characterization of data aberra-

FIGURE 8. Average number of weekly patient visits —
Department of Defense ambulatory-care diagnoses and
procedure data, January–November 2004
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FIGURE 9. Average number of weekly laboratory-test orders —
Laboratory Corporation of America laboratory-test order data,
January–November 2004
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tions has involved collaboration among members of BIC and
state and local public health officials and has been a mutual
learning experience.

As implementation of the BioSense Initiative continues,
substantial investments will be made in 1) regional, state, and
local data sources for early event detection and situational
awareness, 2) test beds for data source and algorithm evalua-
tion, 3) algorithm development and advancement, and 4) data
management technologies. Key considerations in providing
data for early event detection and situational awareness will
include adherence to Public Health Information Network Pre-
paredness requirements and standards as well as use in local,
state, and national public health systems (12). The use of test
beds for data and algorithm evaluation will allow for rigorous
evaluation of the use of investigational data sources, detection
algorithms, and approaches. Algorithm development and
advancement will include an emphasis on implementation in
a standard technical environment and the importance of mul-
tiple data source integration for increased sensitivity and speci-
ficity. Implementation of a spatio-temporal scanning statistic
is being planned (13). User-defined analytical thresholds and
syndrome categories will also be explored. Data management
approaches will include probabilistic, population-based pro-
files of health events or outbreaks, and text parsing. Natural
language processing, data mapping capabilities for chief com-
plaints and other data sources, and pre-analysis data process-
ing and smoothing will also be explored.

The focus on state and local public health needs will be
maintained. The framework is being developed for a working
group that will foster relationships and communication among
local, state, and federal public health officials, and facilitate
information exchange regarding data sources, analytics, moni-
toring practices, and other aspects of early event detection
and situational awareness. The creation of additional user-
requested customized MRAs and the incorporation of state
and local level data will enable state and local users to better
monitor the health status of their jurisdictions. BIC will con-
tribute toward developing standard operating procedures for
early event detection and anomaly investigation, notification
of specific events of concern, and collaboration with state and
local public health officials in monitoring BioSense data. The
BioSense Initiative will continue to better prepare the public
health community for biologic terrorism–related and other
surveillance challenges in the 21st century.
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Abstract

Introduction: The process to initiate a comprehensive and inexpensive statewide hospital emergency department-based syndromic
surveillance system (HEDSS) in Connecticut can serve as a template for others.

Objectives: With limited financial resources, the Connecticut Department of Public Health (CDPH) determined the
requirements necessary to establish and routinely conduct hospital emergency department (HED)-based syndromic surveillance.

Methods: A statewide survey assessed ability and willingness of Connecticut hospitals to participate in HED syndromic
surveillance. The New York City HED-based system protocol and analysis programs, available without financial charge, were
modified for use in Connecticut. This system is based on hospitals sending daily standardized files of chief complaint data
through encrypted e-mail or an FTP protocol to CDPH with subsequent categorization into syndromes using a SAS program.
Anticipating regional surveillance needs during the Republican National Convention in New York City (RNC), CDPH
initiated HEDSS in August 2004.

Results: Most Connecticut HEDs were willing and able to participate on a voluntary basis. Beginning in July 2004, hospital
recruitment began. By the time of the RNC, 11 of 32 Connecticut hospitals participated in HEDSS. Since then, an addi-
tional six HEDs have joined.

Conclusion: Establishing a voluntary statewide HEDSS was possible using an existing, readily available protocol with
minimum financial resources and consensus from a statewide workgroup over a several-month time period.

involved), financial sustainability (if possible, no ongoing soft-
ware maintenance or licensing costs), simplicity of operation
(no sustained outside consultant help needed), and minimum
daily personnel costs (5 day per week operation under most
circumstances).

Methods

Consensus-Building and Readiness
Assessment

A sequential consensus-building process was used to deter-
mine interest and readiness of hospital EDs to participate and
to select a system with the desired characteristics. To deter-
mine interest and readiness, the Connecticut Department of
Public Health (CDPH) met bimonthly for 8 months
(November 2003–June 2004) with representatives from the
state’s hospitals to assess ED data collection status and deter-
mine the best method of instituting statewide hospital ED-
based syndromic surveillance. For biologic terrorism planning

Introduction
Many public health jurisdictions have implemented emer-

gency department (ED) chief-complaint-based syndromic sur-
veillance systems as part of their effort at public health
preparedness (1). In Connecticut, a hospital admissions
syndromic surveillance system (HASS) had been implemented
(2) but not an outpatient emergency department system.
After observing the experience of others to determine the util-
ity and appropriate level of investment, during 2004, the
decision was made to develop a prospective hospital ED chief
complaint-based syndromic surveillance system. The goal was
to have readily available data to monitor and prospectively
detect unusual disease activity at times of heightened public
health alert (e.g., during the Republican National Conven-
tion [RNC] in New York City), and to investigate and moni-
tor possible outbreaks, including influenza, as detected through
other surveillance initiatives. The criteria for the system
included voluntary participation, potential for automated
transmission from participating EDs (no sustained labor
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purposes, Connecticut is divided into two hospital regions,
from which representatives at the central hospitals in each re-
gion (i.e., Centers of Excellence) regularly meet with CDPH
to conduct centralized planning for all hospitals. The
workgroup consisted of administrative, medical, and infor-
mation technology experts from the Centers of Excellence and
representatives of CDPH and the Connecticut Hospital As-
sociation. An interest and technologic readiness survey was
developed and a survey of all hospital EDs conducted during
February 2004.

During workgroup meetings, it was decided to use an exist-
ing ED-based syndromic surveillance system rather than to
design one de novo. Speakers from four existing systems were
invited to present their systems to the workgroup. They
included the New York City (NYC) syndromic surveillance
system (3), the Harvard University National Bioterrorism
Syndromic Surveillance Demonstration Program system (4),
the Department of Defense system (ESSENCE) (5) and the
University of Pittsburgh system (RODS) (6). Subsequently, a
group decision was made as to which system to implement in
Connecticut.

HEDSS Implementation and Operation
In July 2004, anticipating regional surveillance needs dur-

ing the RNC, CDPH resurveyed the state’s hospitals to deter-
mine their ability to participate in a voluntary ED syndromic
surveillance effort by the end of August in time for the RNC.
Initially, hospitals that began participation before the end of
August 2004 were also promised $2,000 to cover relevant IT
expenses to develop the ED data file for export and to write
the electronic program for its creation and transmission on a
daily basis. Later, the compensation period was extended to
the end of September 2004. HEDSS was then initiated dur-
ing late August 2004.

The HEDSS system is based on the New York City ED
syndromic surveillance system protocol (3). To implement the
system, a standardized file format was requested from partici-
pating hospitals for daily data transmission of ED visit data
(Table). The file contains the hospital of origin; the time and

date that each patient was seen in the ED; the age, sex, and
home ZIP code of the patients; and chief-complaint
information. Each day, participating hospitals send a file con-
taining this information for each patient ED visit for the pre-
ceding 24-hour period. All participants use a secure method
of data transmission including encrypted password-protected
e-mail (two hospitals), daily e-mail notification allowing
CDPH access to the hospital’s password-protected secure FTP
website (one hospital), and posting the file directly to the Con-
necticut secure FTP website (14 hospitals). Participating hos-
pitals send CDPH unique daily data files and do not access
each other’s files.

The files are downloaded daily from the state website to an
epidemiologist’s desktop for merging and analysis. FileZilla
shareware, available free from SourceForge.net (http://filezilla.
sourceforge.net) is used as a viewer for this purpose. FileZilla
is an FTP/SFTP client for Windows and can act as a site man-
ager with the potential to perform multiple simultaneous trans-
fers, Secure Sockets Layer (SSL) and Kerberos Generic Security
Services (GSS) authentication/encryption with speed and a
simple interface.

Chief-complaint data are transformed into syndromes for
analysis using SAS code components developed by the New York
City Department of Health and Mental Hygiene (NYCDOHMH).
These were available free from NYCDOHMH and were modi-
fied for use by available staff. Daily analysis (using SAS macro
codes developed by NYCDOHMH) generates tables for syn-
drome totals; syndrome by hospital; chief-complaint text; a line
list; and syndromes indicative of anthrax, botulism, plague, and
smallpox.

Results
The initial readiness survey indicated that 97% of the state’s

32 acute-care hospitals collected ED chief complaint data,
and 90% entered this data into an electronic database, most
(97%) within 24 hours. In comparison, 53% entered a patient’s
discharge diagnosis into a database within 72 hours. A total
of 77% of all hospitals could produce electronic extracts of

TABLE. Standardized file format for participation in the hospital emergency department syndromic surveillance (HEDSS)
network — Connecticut
Field name Description Format Mask Length Start End

Hospital name Unique label Character xxxx 15 1 15
Date Arrival date Character mm/dd/yyyy 10 16 25
Time Arrival time Character hh:mm 5 26 30
Age Age in years Character 999 3 31 33
Sex ‘M’ ‘F’ or ‘U’ Character 1 34 34
ZIP Pt home ZIP code Character 99999 5 35 39
Chief complaint Free-text Character 200 40 239

Do not truncate

http://filezilla.sourceforge.net
http://filezilla.sourceforge.net
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ED chief-complaint data, 86% were willing to share
deidentified data, and 76% would participate in an ED
syndromic surveillance system. Ultimately, the system that was
selected for adaptation in Connecticut was the NYC system.
It was chosen for several reasons. First, using it would enable
Connecticut to be fully compatible with New York in terms
of definition of syndromes and exchange of information. Con-
necticut is part of the NYC metropolitan area with at least
100,000 commuters to the city daily. In addition, the cost for
implementation and maintenance was very low. The system is
simple for hospitals to participate in, the SAS program used
for analysis was free and readily able to be adapted to Con-
necticut needs, and NYCDOHMH staff were available to share
their experiences with implementation. All implementation
work was done with available staff at CDPH.

Despite short notice during the summer, by the time of the RNC,
11 of 32 Connecticut hospitals were participating in HEDSS.
A daily surveillance summary was sent to NYCDOHMH and in
turn, a NYC metro-area syndromic surveillance report,
including status reports from Connecticut, New York, New
Jersey, NYC, and New Jersey counties, was provided daily by
NYCDOHMH to all participating NYC metropolitan health
agencies. Currently, 17 hospitals participate in the HEDSS.

Historically, if nonresidents have a reportable illness and
are identified in a Connecticut hospital, this is reported to
CDPH and in turn, the case is reported to the neighboring
jurisdiction. If a syndromic disease alert occurred in hospitals
within adjoining jurisdictions, communication of this infor-
mation would be made to the pertinent health authorities.
CDPH does not report Connecticut-specific patient data to
out-of-state health authorities, nor do out-of-state health
authorities report their residents’ patient-identifiable data to
CDPH.

The full utility of the HEDSS is being evaluated. The meth-
odology used to evaluate the HEDSS efficacy includes:

• Comparisons of historic disease syndrome events with
HASS. Those syndromes mutually reported (e.g., respi-
ratory illness, fever, and rash illness) from daily HEDSS
analysis are compared with biweekly HASS analysis.
HEDSS analysis is completed within 48–72 hours after
the event occurrence versus weekly for HASS. Therefore,
HEDSS presents more recent data trends and, if accu-
rate, widespread disease occurrences should later be
reflected in HASS and through community-reported
disease.

• Comparisons with other area-wide hospital syndromic
disease events. For example, during the RNC, daily
syndromic disease trends and significant events were shared
by the respective health agencies between Connecticut,
NYC, New York state and neighboring New York coun-

ties, and New Jersey. Large disease events (e.g., an influ-
enza outbreak) should be reflected in syndromic surveil-
lance reporting of shared illness within neighboring health
jurisdictions.

• The state’s total burden of ED visits and disease syndromes,
to include those hospitals not participating in HEDSS, is
unknown. However, the 17 hospitals in HEDDS are
located in seven of the eight Connecticut counties and
comprise approximately 65% of the number of staffed
hospital beds statewide. Six of these hospitals are located
in the two counties (Litchfield and Fairfield) adjoining
New York and comprise approximately 70% of the staffed
beds in those counties. As more hospitals participate in
HEDSS, data will reflect whether the State’s ED visits
and disease syndromes are reflected in similar proportions.

• Disease trend analysis will continue to be conducted for
counties or other geographic areas by examining ZIP code
information (spatial trends), and for ED visit time (hourly)
or successive days (temporal trends).

Discussion
An important factor for success of HEDSS was the com-

mitment for statewide hospital participation. The CDPH-
Hospital workgroup helped establish the interest and
requirements for syndromic surveillance in Connecticut by
mutual agreement through regular meetings over an 8-month
period.

Although HEDSS is simple conceptually, generation of com-
patible datasets from different entities for merging is difficult.
The most difficult facet of obtaining successful data transmis-
sion by each participating hospital to CDPH was ensuring
that comprehensive data specifications were met for individual
hospital ED datasets. This effort was successful once the
responsible hospital IT staff or hospital IT contractor fully
understood HEDSS data requirements and agreed to
participate. It was often necessary for the hospital IT staff/
contractor to identify a responsible person within their
organization to perform the initial data formatting for the hospital’s
chief-complaint data to ensure that the data were automatically
sent daily to CDPH and to have an established contact person
should lapses in formatting or data transmission occur.

The full utility of HEDDS is still to be determined. The
program is being assessed to monitor the onset and level of
activity of influenza, and results are being compared with those
obtained from the HASS. No direct patient identification in-
formation is collected by HEDDS (i.e., patient name, social
security number, or hospital identification number). How-
ever, follow-up on individual case reports can be done with a
phone call to the hospital ED to obtain case-specific data.
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The time of the patient visit to the ED and the patient’s age
and sex make it easy for the hospital to identify the person.
HEDSS might be useful to identify individual cases of disease
syndromes of interest during investigation of possible out-
breaks.

Every report of adult onset chickenpox is followed by a
CDPH case investigation, including cases identified by
HEDSS. Pediatric cases of chicken pox also are examined to
determine if they have been reported to CDPH through other
reporting mechanisms. Given the 48–72 hour time lag from
case presentation in the ED to CDPH analysis, complete case-
specific information is obtained within 49–96 hours after a
patient was seen at the hospital ED.

Conclusion
Establishing a voluntary statewide hospital ED syndromic

surveillance system is possible using an existing readily
available protocol with minimum financial resources over a
several-month time period. Connecticut has a statewide hos-
pital ED surveillance network that includes approximately
50% of all acute care hospitals and 65% of the state’s hospital
capacity. The success in implementing HEDSS is due, in part,
to the consensus building that occurred between CDPH and
the state’s hospitals. HEDSS can be established by any state,
large city, or county that wants to have hospital ED-based
syndromic surveillance with a minimum investment and IT
support.
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Abstract

Introduction: Laboratory test orders constitute an early outbreak data source. CDC receives laboratory order data in HL7
format from the Laboratory Corporation of America (LabCorp) and plans to use the data in the BioSense Early Event
Detection and Situation Awareness System.

Methods: These LabCorp data contain information on tests ordered and include the type of test ordered and the Interna-
tional Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)-coded reasons for the order. A
consensus panel was formed to group test orders on the basis of expert opinion into eight standard syndrome categories to
provide an additional data source for early outbreak detection. A laboratory order taxonomy was developed and used in the
mapping consolidation phase. The five main classes of this taxonomy are miscellaneous functional tests, fluid screening tests,
system-specific tests, tests for specific infections (by primary manifestation), and tests for specific noninfectious diseases.

Results: Summary of numbers of laboratory order codes in each syndrome category are fever (53), respiratory (53), gastrointesti-
nal (27), neurological (35), rash (37), lymphadenitis (20), localized cutaneous lesion (11), and specific infection (63).

Conclusion: With the daily use of laboratory order data in BioSense, the actual distribution of laboratory order codes in
syndrome groups can be evaluated, allowing modification of the mapping.

CDC’s BioSense program receives laboratory order data from
LabCorp, which operates a nationwide network of 31
primary testing locations, and approximately 1,100 patient
service centers. It tests more than 340,000 specimens daily

Methods

Laboratory Order Data
CDC receives a daily transmission of HL7 laboratory

orders from LabCorp. Data files are sent to CDC from
LabCorp using the Public Health Information Network Mes-
saging System (PHINMS) with digital certificates and encryp-
tion. Immediately upon receipt, HL7 messages are mapped
to XML format and stored in a data warehouse.

The laboratory order data contain patient age, sex, ZIP code,
timestamp information and LabCorp propriety codes and
corresponding LOINC codes for each laboratory test ordered.
Each laboratory message might have more than one labora-
tory order placed in one patient encounter. Each laboratory
order has one or more subcomponents. For example, a hepa-

Introduction
Laboratory test orders constitute an early outbreak data

source because test ordering occurs earlier in patients’ health
service than laboratory test results or final diagnoses. Three
basis exists for using laboratory order data for early outbreak
detection. First, laboratory orders reflect the physician’s
assessment of the patient’s condition and intent to confirm or
differentiate diagnoses. Second, when laboratory order data
feeds directly from national laboratories are used, it can pro-
vide good population coverage. Finally, laboratory orders in
large hospitals or national laboratories are transmitted in the
standard Health Level 7 (HL7) format electronically, which
provides timely data collection and helps ensure data quality.
Use of HL7 is increasingly important when constructing
automated early outbreak detection systems to handle large data
volume. In addition, standard laboratory terminology such as
the Logical Observation Identifiers, Names, and Codes (LOINC)
has been well adopted for laboratory orders in commercial labs
(1). Using LOINC codes in laboratory order data improves
interoperability and scalability for the detection system.
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titis B laboratory order will include various antibodies and
antigens as its subcomponents. In addition, International Clas-
sification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) codes are used as reasons for laboratory orders.
CDC BioSense does not receive laboratory order results asso-
ciated with each order.

All data received are anonymous and cannot be traced back
to the patient. Use of patient ZIP codes and year of birth are
not sufficient for patient identification in the large popula-
tion areas surveyed.

Consensus Panel
When the laboratory order data are identified, laboratory

order codes are mapped into syndrome groups. The objective
for the mapping was to provide useful information for early
event detection.

A consensus panel of 19 persons was organized with exper-
tise in surveillance, infectious diseases, and medical informatics
to perform the mapping. Participants included representatives
from the Council of State and Territorial Epidemiologists, the
Department of Homeland Security, Harvard Medical School,
the Johns Hopkins University Applied Physics Laboratory,
Stanford Medical Informatics, the Walter Reed Army Insti-
tute of Research, the New York City Department of Hygiene
and Mental Health, and CDC. The expertise of domain
experts was used to ensure the validity and reliability of the
mapping result.

Mapping Procedures
The 11 syndrome groups used in BioSense have been

defined by a multiagency working group. The syndromes
included fever, respiratory, gastrointestinal, lymphadenitis,
specific infection, localized cutaneous lesion, rash, neurologic,
botulism-like, hemorrhagic illness, and severe illness or
death potentially caused by infectious disease. Detailed
syndrome definitions are available on the CDC Emergency
Preparedness and Response website (http://www.bt.cdc.gov/
surveillance/syndromedef ). For the laboratory test mapping,
the working group determined that laboratory order codes
for botulism-like illness, hemorrhagic illnesses, and severe ill-
ness or death do not exist; LabCorp data feeds and these syn-
dromes were not included in the mapping.

Domain experts determined the mapping, which was per-
formed in stages. At each stage, a subset of the panel worked
on the mapping problem, and the rest of the panel reviewed
the results and arrived at a consensus. Four group members
volunteered for the first round of mapping. They mapped each
laboratory order to one or more syndromes using a simple
mapping form. For example, a laboratory order with the name

of influenza A and B antibodies, quantitative can be mapped
to respiratory syndrome group. After receiving the four sets of
results, three panel members consolidated the results. During
these processes, other panel members provided input and
advice.

The syndrome mapping of each laboratory order code was
combined and represented as numbers. The number in com-
bined results reflected the number of experts’ selections in that
syndrome group for a specific laboratory order code.

To reduce variations in the mapping results, the following
constraints were enforced on the mapping:

• Mapping results are consistent within the same LabCorp
laboratory order panel or profile group.

• Mapping results are consistent with LabCorp’s online
documentation of its use and specimen.

• Laboratory order codes classified in the same disease or
pathogen group in a laboratory order code taxonomy are
mapped in the same way.

Laboratory Order Code Taxonomy
A taxonomy of laboratory order codes was created. The five

top-level classes of this taxonomy are miscellaneous functional
tests (e.g., Coombs test and HLA screening), fluid screening
tests (e.g., antibody identification and cultures), system-
specific tests (e.g., tests for respiratory or gastrointestinal sys-
tems), tests for specific infections by primary manifestation
(e.g., Cytomegalovirus or Lyme disease), and tests for specific
noninfectious diseases (e.g., Lupus test).

This taxonomy provides a mechanism for classifying labo-
ratory order codes systematically and for identifying agree-
ment in mappings. Grouping laboratory orders for the same
disease or pathogen enabled easy determination of the con-
vergence and variations in the mapping results.

Implementation
After grouping laboratory order codes and identifying varia-

tions, additional constraints were placed on the mapping to
facilitate laboratory order surveillance in a production system.

• Two or more experts agreed on syndrome mapping. The
consensus panel reviewed and approved the results.

• Mapping was consistent in three ways as specified
previously.

• Specific considerations included that the fever syndrome
category could be selected only if three experts agreed
because fever syndrome is more general than the other
syndrome groups; the specific infection syndrome was
not selected if a laboratory order code could be mapped
to other syndromes.

http://www.bt.cdc.gov/surveillance/syndromedef
http://www.bt.cdc.gov/surveillance/syndromedef
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Data Management
CDC BioSense receives a large amount of laboratory order

data from LabCorp facilities. Many HL7 messages are
updates for the same laboratory order. Although all received
messages are maintained in the data warehouse, the most
recent message of the same laboratory order is flagged for use
in the BioSense web interface and for data analysis.

Results
The consensus panel’s first meeting was in May 2004. In

June, the simple mapping table was created in ACCESS, and
four experts volunteered to conduct the first round of map-
ping. Four mapping results were received and consolidated in
July. The final result was reported to the working group in
September 2004.

Of 309 laboratory order codes, 246 were mapped into eight
syndrome categories (Table 1). Some laboratory order codes
were mapped to more than one syndrome group. For example,
laboratory orders for tuberculosis were mapped as both fever
and respiratory syndrome groups. Gastrointestinal syndrome
group contains 27 laboratory order codes (Table 2). Respira-
tory syndrome group contains 53 LabCorp laboratory order
codes (Table 3).

In addition, of 309 laboratory order codes, 63 were regarded
by the working group as nonapplicable in the syndrome group-
ing. For example, bleeding and coagulation laboratory orders,
nonspecific orders (e.g., complete blood counts), and orders
for specific purposes (HLA typing) were determined
nonapplicable.

Laboratory order data have been used on the CDC BioSense
surveillance production system since November 2004. Both
internal CDC BioSense monitors and state and local BioSense
monitors can review the data daily for abnormal patterns. The
data management team in CDC BioSense has created
deduplicated data files in SAS format to facilitate data moni-
tors’ queries of records.

Discussion
Laboratory order data might provide information that can

facilitate early event detection. To reduce the number of cat-
egories under surveillance and enable the integration of labo-
ratory orders with other surveillance data sources in BioSense,
it is helpful to map laboratory order codes to syndromes
before analysis.

To fully cover the received laboratory order codes, mapping
was initiated with LabCorp’s local codes. LabCorp has mapped
most of its proprietary codes to LOINC codes. Results can be
converted to the LOINC-based mapping in the future. In the
mapping process, domain experts mapped LabCorp codes
directly to 11 syndromes. A laboratory order taxonomy was
applied in the consolidation phase, which helped reduce
inconsistencies. Taxonomy also provides finer granularity as
disease classifications for laboratory order codes. Disease-based
classification will provide flexibility in surveillance.

This mapping process has several limitations. First, only four
domain experts volunteered in the first round mapping. A
larger group of experts could help the mapping results con-
verge and reduce inconsistency. Second, some pathogens
infect various organ systems. The precise mapping for their
laboratory order codes could only be achieved when the speci-
men collected was also considered. For example, Haemophilus
influenzae could be a cause of meningitis as well as pneumo-

TABLE 1. Summary of mapping results
Syndrome group Order code count* Frequency (%)†

Fever 53 19.2
Respiratory 53 14.0
Gastrointestinal 27 12.5
Neurological 35  4.1
Rash 37 11.7
Lymphadenitis 20 3.0
Localized cutaneous lesion 11 3.7
Specific infection 63 31.9
* Some laboratory order codes mapped to more than one syndrome groups.
†Frequencies were calculated based on data from 2004.

TABLE 2. Laboratory order in gastrointestinal syndrome group
Laboratory order code Laboratory order name

180885 Helicobacter pylori, Culture
163683 H. pylori, IgM, IgG, IgA Ab
162289 H. pylori, IgG, Abs
180764 H. pylori, Stool Antigen
163170 H. pylori, IgA
163204 H. pylori, IgM Ab
086181 Clostridium difficile, Toxin A
180448 C. difficile, Toxin B/Cytotoxin
008045 C. difficile, Culture
180141 Campylobacter, Culture
180356 Enterohemorrhagic E. coli, Culture
187013 Adenovirus (40/41)/Rotavirus
185041 Adenovirus (40/41), Direct EIA
138307 Norovirus, RT-PCR
006866 Rotavirus Detection by EIA
008755 Cryptosporidium Smear, Stool
006874 Amebiasis Antibodies
183145 Cyclospora Smear, Stool
182204 Giardia lamblia, Direct, EIA
188110 Giardia, EIA; Ova/Parasites
008144 Stool Culture
182410 Stool Culture, Yersinia Only
182311 Stool Culture, Vibrio Only
008656 White Blood Cells (WBC), Stool
008607 Occult Blood, Stool
008623 Ova/Parasites Exam, Routine
016766 Fecal Reducing Substances
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nia. If the specimen was collected from cerebrospinal fluid,
this laboratory order could be mapped to the neurologic syn-
drome; for a sputum sample, it would be mapped to the res-
piratory syndrome.

LabCorp messages include both laboratory order codes and
ordering reasons in ICD-9-CM codes. The correlation
between laboratory orders and their order reasons should be
explored. Because ICD-9-CM code mapping has been defined,
the correlation might help improve laboratory order mapping.

With daily monitoring of laboratory order data in BioSense,
the actual use of laboratory order codes in syndrome groups
should be evaluated, allowing modification of mapping. Cer-
tain issues in the use of laboratory order data require further
study, such as avoiding redundancy when a series of labora-
tory orders, which can be grouped into the same syndrome
group, was ordered on the same patient by more than one
physician and defining an event when a patient received labo-
ratory orders during a continuous period.

Conclusion
To implement the laboratory order data, laboratory order

codes were mapped to syndrome groups by domain experts
a priori. In addition, a laboratory order taxonomy was created
to facilitate grouping laboratory order codes and identifying
inconsistencies. Finally the data management team created
deduplicated data for monitors’ use.
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TABLE 3. Laboratory order in respiratory syndrome group
Laboratory order code Laboratory order name

182675 AFB Culture/Smear, Broth, Suscep
182402 AFB Culture and Smear, Broth
008466 Organism ID, Mycobacteria
550087 Mycobacterium tuberculosis Detection, PCR
188540 M. tuberculosis, PCR/Culture
086876 Mycoplasma pneumoniae, Culture
138420 M. pneumoniae, PCR
163758 M. pneumoniae, IgG/IgM Abs
163741 M. pneumoniae, IgG Ab
163212 M. pneumoniae, IgM Ab
096065 Adenovirus Group Ab, Qn
138164 Adenovirus Detection by PCR
185033 Virus, Adenovirus by DFA
086173 Bordetella pertussis Smear, DFA
164384 B. pertussis, IgA Ab, Quant
164541 B. pertussis, IgG/M/A Ab, Quant
180224 B. pertussis, Nasophar Culture
138677 Bordetella, Para&Pertussis PCR
161745 B. pertussis, IgG Ab, Quant
163030 B. pertussis, IgG/IgM Ab, Quant
161752 B. pertussis, IgM Ab, Quant
008169 Beta-Hemolytic Strep, A Only
018788 Streptococcus pneumoniae, Ag
018804 Beta Strep (Group B) Antigen
008532 Chlamydia psittaci, Culture
138263 C. pneumoniae, PCR
018762 Haemophilus influenzae B Ag
138271 H. influenzae B IgG
182295 Influenza A Only by Direct EIA
186023 Viral Culture, Rapid, Influenza
096487 Influenza A/B Ab, Quant
186064 Influenza A & B, Immunoassay
096214 Parainfluenza Virus Antibody
086868 Legionella species, Culture
182246 L. pneumophila, Ur Ag
085506 L. pneumophila by DFA
188227 L. pneumophila/Culture
096131 RSV Ab, Quant
185017 Virus, RSV by DFA
014548 RSV by EIA
008342 Upper Respiratory Culture
180810 Lower Respiratory Culture
186015 Viral Culture, Rapid, Respirator
164608 Brucella abortus, IgG, EIA
164624 B. abortus, IgM, EIA
163709 Diphtheria Antitoxoid Ab
016774 Q Fever Antibodies, IgG
058503 Respiratory Infection Prof A
057877 Respiratory Infection Prof B
058669 Respiratory Infection Prof D
091454 Fungal Antibodies, Quant
164319 Histoplasma, Abs, Qn, DID
006742 Tularemia Agglutinins
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Abstract

Introduction: This study explored the utility and value of Medicaid prescription data for statewide syndromic surveillance.

Methods: Daily Medicaid claims forms are transmitted to the New York State Syndromic Surveillance Project as summary
counts by ZIP Code, age category, sex, and 18 medication groups. The CUSUM statistic is used to analyze the data daily at
the county level with a 7–10-day moving average baseline. The system was evaluated following an outbreak of pertussis in a
small institutional setting in a rural county by comparing the county’s CUSUM signals for prescriptions for macrolide antibi-
otics with the onset of the outbreak.

Results: A case of pertussis was suspected on July 21, 2004, and was reported to the New York State Department of Health on
July 22. Treatment and prophylaxis were initiated on July 22. CUSUM analysis flagged a county-wide increase in macrolide
antibiotics on the day of treatment/prophylaxis for the first case and contacts in the outbreak. The following week, approxi-
mately 300 contacts received prophylaxis (not all of whom were Medicaid clients), resulting in CUSUM signals during the
week (July 28 and 29).

Conclusion: Medicaid prescription data are routinely collected and readily available for syndromic surveillance. This data
source has shown potential value as an indicator of disease activity, as in this case study, in an area where a high concentration
of Medicaid recipients reside. However, for the surveillance system to be considered a useful early warning system, additional
study is required to determine the best methods for selecting from the automatically generated CUSUM signals those that
might be important for public health.

Introduction
The New York State (NYS) Medicaid Program provides

health-care coverage for 34% of the population in New York
City and 4%–20% of the populations in the 57 counties in the
rest of the state. Enrollees in the Medicaid Program receive
approximately 30% of prescriptions filled in NYS. Medicaid
activity is concentrated in New York City. However, except for
the most sparsely populated areas of upstate NYS, Medicaid
enrollees are widely distributed throughout urban, suburban,
and rural communities in the rest of the state.

Pharmaceutical data have long been used to monitor the public
health (1). Recent examples include over-the-counter (OTC)
drug sales at pharmacies and groceries (2–4) and prescriptions
for specific populations, such as members of the military (5).
This case study demonstrates the use of Medicaid records of
pharmaceutical activity for syndromic surveillance.

Methods
The New York State Department of Health (NYSDOH)

uses an electronic system (eMedNY) for Medicaid manage-
ment, with a subsystem for reimbursement of prescriptions
and OTC medications. The Syndromic Surveillance Project
office receives a daily dataset consisting of the number of pre-
scriptions filled in 18 drug categories (Table 1), aggregated by
the ZIP code of residence, age group, and sex of the patient.
Every day since March 2003, approximately 20,000 records
have been transmitted to the Syndromic Surveillance Project
office. Approximately 95% of records are for prescriptions filled
during the preceding 24–48 hours.

The CUSUM statistic, a measure of how much higher a
current observation is than a reference baseline, compares each
day’s volume with a short-term historic baseline (7–10-day
moving average as used in the CDC model) (6). Every day,
CUSUM-flagged observations are examined by state staff for
indications that they might represent an acute disease out-
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break. Staff consider the recent and long-term trends of the
daily observations in assessing each flagged observation by
comparison with previous highest levels or weekly, monthly,
or seasonal cycles in prescription activity.

This case study compares county-level CUSUM signals for
prescriptions for macrolide antibiotics with timing of events
in a pertussis outbreak in a rural county in July 2004.
In addition, for purposes of comparison, the number
of counties in upstate NYS with and without CUSUM
signals for high levels of macrolide antibiotic prescrip-
tions was compared with the number of each county’s
pertussis cases reported by local health departments
to NYSDOH’s Confidential Case Reports database.

Results
A case of pertussis was reported on July 22, 2004,

in a rural county of upstate NYS (county A).The next
day, the patient was treated, contacts were adminis-
tered prophylaxis with macrolide antibiotics, and the
Vaccine Preventable Disease Surveillance Officer at NYSDOH
was notified. Several persons administered the antibiotics were
residents of a group home for mentally retarded adults with
Medicaid health-care coverage. These prescriptions generated
a macrolide antibiotic CUSUM signal in the Medicaid data
for July 23 (n = 10). The following week, additional contacts
were administered prophylaxis, and signals were generated on
July 28 (n = 34) and 29 (n = 52) (Figure 1 and Table 2).
Overall, 13 persons in county A had a polymerase chain reac-
tion that was positive for Bordetella pertussis. During July 23–
30, according to the county health department, approximately

300 persons received prophylactic treatment with macrolides;
the Medicaid surveillance system detected 125 prescriptions
(the patients receiving treatment plus approximately one third
of all persons receiving prophylaxis treated).

The count of 10 prescriptions on July 23 was high for the
short term but not unusually high for the preceding year
(Figure 2). Staff did not identify the count of July 23 as
unusual for routine follow-up. The CUSUM signals of July
28 and 29 were immediately brought to the attention of epi-
demiology staff, who confirmed that a number of cases had
been identified and that an investigation was ongoing.

During July 2004, a total of 90 CUSUM signals for mac-
rolide antibiotics were generated in 37 of the 57 counties of
upstate NYS. Of the 90 signals, 54 (60%) were generated by
counts higher than a very small (<3) daily baseline average.
During the same month, outbreaks were identified and re-
ported through normal surveillance in 10 counties. The Med-
icaid prescription data generated CUSUM signals for five of
these 10 counties in July 2004, but those counties that did
have signals had a higher disease rate for the month than the
counties without signals (mean: 8.9 versus 3.5 cases per
100,000 population; p<0.0001), even though the percentage
of total population enrolled in Medicaid was lower in the coun-
ties with signals (mean: 11.7 versus 15.3; p<0.0001). For

FIGURE 1. Daily prescription counts — county A, New York, July 2004
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TABLE 2. Sequence of events in pertussis outbreak — county A,
New York, July 2004
Date Event

July 21 Pertussis (whooping cough) suspected in client of adult
group home.

July 22 Case is confirmed, and county and state departments of
health are notified.

July 23 Case is treated and contacts receive prophylaxis with
macrolide antibiotics.

Count of Medicaid prescriptions generated a CUSUM flag.

July 26–30 Prophylaxis administered to wider group of contacts in
group home and health-care workers.

July 28–29 CUSUM flags generated and recognized as unusually
high counts.

TABLE 1. Medicaid prescription drug categories included in
New York State’s syndromic surveillance system
Analgesics (narcotic)
Analgesics (nonnarcotic)
Antacids
Antiasthmatic medications
Antibiotics
Cephalosporins, first- and second-generation
Cephalosporins, third- and fourth-generation
Fluoroquinolones
Macrolide antibiotics
Penicillin G and ampicillins
Penicillinase-resistant, extended spectrum, and penicillin combinations
Tetracyclines

Antidiarrheal medications
Antihistamines
Cough, cold, and allergy medications
Electrolyte mixtures
Herpes agents
Influenza agents
Systemic and topical nasal products
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detecting county-level pertussis outbreaks during July 2004,
the Medicaid prescription data for macrolide antibiotics had
a sensitivity of 5/10 = 0.5 and a specificity of 15/47 = 0.32.

Discussion
NYS experience in using Medicaid pharmaceutical data con-

tributes to the experience with early detection surveillance
systems. In this case study, the surveillance system identified
an outbreak that had already been reported to NYSDOH;
therefore, its warning was not early. The value of this example
is in demonstrating that a subset of the CUSUM signals can
be linked to disease outbreaks (for pertussis in July 2004, sen-
sitivity = 50%). If the same number of Medicaid recipients in
county A had received macrolides without a specific cause
already having been identified, notification of the increase by
NYSDOH to the county local health department (LHD)
should have initiated investigations of the cause. The next
challenge is to discover the best methods for selecting from
the automatically generated signals those that are most likely
to be early or real-time indicators of disease activity. This sort
of alert could be useful for early detection of disease outbreaks
(natural or intentional) not yet recognized by public health
agencies. For example, NYSDOH notified LHD of an in-
crease in Medicaid prescriptions in the category “Influenza
Agents” in another rural NYS county in early spring 2005.
Investigation by LHD resulted in early notification of a small
outbreak.

Another benefit of Medicaid pharmaceutical data is the avail-
ability of the ZIP code of the patient’s residence. When county-
wide increases in prescriptions are noted, the distribution by
ZIP code of recent prescription claims might help in identify-
ing an outbreak. However, in the pertussis outbreak in county
A, the residences of persons receiving prophylaxis were spread
out over a wide area, and no clustering was found.

A limitation of the Medicaid prescription CUSUM
analyses is the generation of a large number of false-
positive signals for disease outbreaks (in July 2004,
32 signals for increased prescriptions for macrolide
antibiotics were not linked to any known outbreaks).
Furthermore, drugs for less specific uses might gener-
ate positive signals without being linked to increased
incidence of a particular disease. Users of the CUSUM
analyses need to determine the best methods for
selecting from the CUSUM signals those that might
be important for public health.

Evaluations of medication surveillance document a
wide range of conclusions on the usefulness of the
data, depending on such factors as study population

characteristics, type of medication, and disease outcome. For
example, a year-long comparison of prescriptions for antide-
pressants and anxiolytics with matched outpatient records from
a military health-care system serving 4.5 million persons
reported a sensitivity of 0.76 and a specificity of 0.94 for the
prescription data’s performance as an indicator of diagnosed
disorders (5); these measures are much higher than those
reported here (sensitivity = 0.5; specificity = 0.32). However,
a study of OTC medications among a large population (in six
urban areas in three states) reported a high correlation
between OTC electrolyte sales and hospitalization of children
aged <5 years with various respiratory and diarrheal diseases
(4). In comparison, use of sales volumes of OTC cough, cold,
and antidiarrheal medications in spatial analyses in New York
City has produced an average of two spatial signals per month
for each syndrome, but none has led to early detection of a
localized outbreak (3).

Among the possible alternatives to relying only on the daily
CUSUM analyses, the following are being evaluated: aggre-
gating county-level counts by week for comparison with other,
more traditional surveillance methods (e.g., weekly Medicaid
prescriptions for influenza agents versus weekly reports from
sentinel physicians of percent of patients seen with influenza-
like illness); use of the spatiotemporal scan statistic at the ZIP
code level to determine if clusters of elevated Medicaid pre-
scriptions are linked to disease occurrence (e.g., Medicaid pre-
scriptions for electrolyte mixtures indicate an increase in
incidence of reported shigellosis cases in children); and corre-
lation of statewide Medicaid prescriptions with the timing of
seasonal increases in infectious disease (e.g., the increase in
Medicaid prescriptions for influenza agents and the increase
in laboratory-confirmed influenza across the state). Develop-
ment of any analytic methods that identify prescription
increases linked to actual disease activity on the basis of these
studies will have to be evaluated for their usefulness to public

FIGURE 2. Daily prescription counts — county A, New York, March
2003–July 2004
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health surveillance. Examples of useful early or real-time
detection of disease include indications of an upsurge in
influenza-like illness in counties without reporting sentinel
physicians; detection of a clustering of increased prescriptions
in ZIP codes in adjacent counties when an increase in disease
is not noticeable at the county level; and confirmation of the
absence of unusual prescription activity when the possibility
of a biologic terrorism threat is being investigated.

Conclusion
Medicaid prescription data are routinely collected and can

be readily available for syndromic surveillance. This data source
has potential value as an indicator of disease activity. Certain
features of this outbreak were conducive to its detection
through Medicaid prescription data. First, the majority of cases
and a substantial proportion of contacts receiving prophy-
laxis were enrolled in Medicaid. Second, the number of
potential contacts was quite large, given the institutional set-
ting of the outbreak, resulting in many prophylactic treat-

ments that generated a CUSUM signal. Finally, pertussis treat-
ment and prophylaxis are usually done with macrolide antibi-
otics, although this class of drug also has other uses.
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Abstract

Objectives: This retrospective study evaluated the usefulness of a poison control center (PCC) data collection system in
Tucson, Arizona for early detection of foodborne disease outbreaks.

Methods: A search of a PCC database identified callers with gastrointestinal symptoms attributable to suspected foodborne
illnesses whose calls were received during January 1–March 31, 2000. For each foodborne illness–related call, PCC coding
was compared with a predefined diarrhea/gastroenteritis syndrome. PCC calls also were evaluated by using ZIP code, age, sex,
and date of symptom onset to determine if call classifications matched any laboratory-confirmed cases reported to a county
health department.

Results: An independent review generally agreed with the PCC’s classification of calls. When calls and cases were compared,
only one potential match was identified.

Conclusion: Although confirmatory diagnostic information was not available, PCC calls were not duplicative of cases
evaluated by the county health department, which suggests that they represent two independent data sets. PCC data might
provide a useful addition to surveillance data reported to public health agencies for the early detection of foodborne disease
outbreaks. These results will now be used to develop collaborative prospective surveillance systems.

Introduction
Increased concern for public safety and the risk of emerging

infectious diseases has prompted interest in the development
and implementation of syndromic surveillance systems. The
aim of these systems is to enhance traditional public health
surveillance systems by collecting and analyzing real-time (i.e.,
instantaneous) or near real-time data on symptoms from non-
traditional sources (e.g., pharmaceutical sales or school
absentee records) before laboratory confirmation of an illness
is received (1–3). By focusing on trends or unexpected pat-
terns in data, syndromic surveillance systems might assist pub-
lic health authorities in detecting outbreaks more rapidly than
can be performed by using traditional public health surveil-
lance systems (4,5). Public health departments are using
syndromic surveillance systems to monitor diarrheal disease
or influenza-like symptoms (through pharmaceutical sales
data) (6,7) and influenza-like illness (through emergency
medical services dispatch records) (8) and to detect outbreaks
of illnesses that might be infectious or related to a biologic
terror attack (through data on emergency department [ED]
and urgent care visits) (9,10).

Public health departments are responsible for detecting,
managing, and preventing foodborne disease outbreaks
(FBDOs). Foodborne diseases account annually for an esti-
mated 76 million illnesses, 325,000 hospitalizations, and 5,000
deaths in the United States (11,12). Traditional public health
FBDO surveillance systems collect data when ill persons seek
medical care. However, only an estimated 8% of persons with
gastroenteritis symptoms seek medical care, and only a
minority of those who do seek care undergo diagnostic test-
ing necessary to determine an etiology for their illness (13,14).
In addition, substantial delays can occur while awaiting labo-
ratory results. Because PCCs operate 24 hours a day, collect
real-time symptom data from callers who seek treatment
advice, and provide referral assistance before callers seek medi-
cal care, forming partnerships with PCCs might enhance pub-
lic health surveillance systems. A recent Institute of Medicine
report underscored the need to integrate PCC networks with
the public health system to improve surveillance systems (15).

Investigation of foodborne illnesses in Pima County (2000
population: 843,746), Arizona, is primarily the responsibility
of the Pima County Health Department (PCHD), which
operates a traditional public health FBDO surveillance
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system. All suspected and laboratory-confirmed cases of
foodborne illnesses reported to PCHD by health-care provid-
ers and all restaurant complaint calls received by PCHD are
investigated. The Arizona Poison and Drug Information Cen-
ter (APDIC) provides case-specific treatment and referral
information to callers who complain of foodborne illness.
APDIC evaluates complaints received independently of
PCHD. The goals of this study were to evaluate the ability of
APDIC’s data collection system to provide early detection of
FBDOs and to recommend ways to improve FBDO surveil-
lance efforts by integrating the two surveillance systems.

Methods

PCC Data Collection
APDIC is one of two PCCs operating in Arizona, serving

approximately 2 million persons statewide (excluding residents
of Maricopa County, who call the Banner PCC). Staffed by trained
pharmacists and certified by the American Association of Poison
Control Centers, APDIC receives 180–250 calls daily. In 2000,
of 68,433 calls received, approximately 31,000 involved expo-
sures, of which 783 (2.5%) involved suspected foodborne illness
or an illness related to food ingestion. An additional 38,433
information (nonexposure) calls were received, of which 202
(0.5%) were related to questions about foodborne illness or food
products. When a call is received, a PCC specialist records the
caller’s suspected exposure (e.g., food poisoning) and provides
consultation on the basis of the caller’s suspected exposure, age,
underlying medical history, and acuity and duration of reported
symptoms. The PCC specialist also enters call data, including an
assessment (i.e., exposure reason), into an electronic database
(Toxicall,® Computer Automation Systems, Inc., Aurora, Colo-
rado). For all exposure-related calls, the PCC specialist enters the
date and time the call was received; the caller’s sex, age, and ZIP
code; type of call (exposure or information); acuity of symptoms;
reason for exposure (as assessed by the PCC specialist); exposure
site, time, and route; clinical effects, therapies, and medical out-
come; and any multiple contacts. Because a caller might report
more than one ill person within a household, the PCC specialist
also assigns a case-record number and completes a medical his-
tory and disposition for each contact identified. To identify mul-
tiple contacts, the PCC specialist cross-references all case-record
numbers in each caller’s and contact’s case record. If the call is
anticipated to require PCC follow-up, the caller’s name and tele-
phone number are also recorded. The PCC specialist may elect
to record additional call information in the narrative section of
the database. To ensure quality control, every tenth record
received daily is reviewed for accuracy of data entry.

Call Confirmation and Comparison
to Syndrome Definition

All calls to APDIC concerning human exposure received
during January 1–March 31, 2000, were reviewed retrospec-
tively. Three factors were considered in constructing the syn-
drome definition: 1) APDIC lacks a uniform process for coding
suspected foodborne illnesses; 2) the PCC specialist codes calls
according to how callers report exposure history (i.e., chief
complaint); and 3) multiple syndromic definitions exist for
diarrhea/gastroenteritis. The syndrome definition used was
modified from that used by the Arizona Department of Health
Services for drop-in syndromic surveillance conducted dur-
ing the 2001 World Series in Arizona (i.e., vomiting, abdomi-
nal pain, or any other gastrointestinal [GI] distress) (16).
Foodborne illness was defined broadly as a syndrome or asso-
ciated symptoms recognized by a caller who reported inges-
tion of suspected contaminated food and any of the following
GI complaints: abdominal pain, nausea, vomiting, or diar-
rhea. The selected syndrome definition used in this study
included symptoms associated with, but not limited to,
foodborne illnesses. Callers with GI symptoms associated with
an underlying medical condition (e.g., irritable bowel syn-
drome, reaction to medication, or chemical exposure not
related to ingestion of contaminated food) were excluded.

A nurse reviewed call data records from APDIC’s electronic
database by following a protocol that identified all possible
calls with suspected foodborne illness, reviewed each identi-
fied caller’s record, and abstracted preselected variables from
each record. Within the protocol used, the search process
(Figure) involved a review of all Pima County calls by a nurse
to determine if coding of calls by PCC specialists conformed
to the syndrome definition. Standardized variables were col-
lected and entered into a database for analysis. Information
collected included each caller’s age, sex, and ZIP code; symp-
toms; presumed exposure history; exposure site, time, and
route; multiple contact(s); referral recommendation(s); and
APDIC coding of the caller’s suspected diagnosis. Sensitivity,
specificity, and positive predictive value (PPV) were calcu-
lated on the basis of APDIC coding of callers’ suspected
foodborne illness compared with the nurse reviewer’s assess-
ment of APDIC call data, using the syndrome definition.

Call Confirmation and Comparison
to Laboratory-Confirmed Cases

PCHD provided data on cases of laboratory-confirmed ill-
nesses during January 1–March 31, 2000. Variables collected
on laboratory-confirmed illnesses included the caller’s sex, age,
and ZIP code; the date a laboratory confirmed the results; the
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FIGURE. Search process used to abstract foodborne illness complaint calls and
outcomes from the Arizona Poison and Drug Information Center database — Pima
County, Arizona, January 1–March 31, 2000

Major category
searched: unintentional

food poisoning

All exposure calls
(n = 2,922)

Gastrointestinal symptoms
(n = 370)

Ingestion calls
(n = 307)

Noningestion calls
(n = 63)

Unintentional food poisoning
(n = 51)

Nonfood related
(n = 256)

Consistent with case definition
(n = 50)

Probable food allergy
(n = 1)

TABLE 1. Description of Pima County Health Department laboratory-confirmed foodborne illnesses — Pima County, Arizona, January 1–
March 31, 2000

No. of No. of confirmed Average interval
Laboratory-confirmed confirmed cases with between symptom
  foodborne illness cases symptom onset date onset date to laboratory Incubation period*

Campylobacteriosis 21 12 6 2–5 days
Giardiasis 4 3 12 3–25 days
Hepatitis A 22 11 6 15–50 days
Shigellosis 9 5 8 12–96 hrs
Salmonellosis 21 8 5 12–36 hrs

Total 77 39

* SOURCE: Heymann D, ed. Control of communicable diseases manual. 18th ed. Washington, DC: American Public Health Association; 2004.

date of onset of symptoms; and the date PCHD was notified
of the confirmed report. To determine whether APDIC
foodborne illness complaint calls also were reported to and
evaluated by PCHD, an attempt was made to match calls to
PCHD laboratory-confirmed cases by using date of onset of
symptoms, ZIP code, age, and sex. Onset of symptoms was
considered a critical variable because it most likely represented
the date a person would have called APDIC. However, for
49% of PCHD cases, the onset of symptoms date was
unavailable. The unavailability rate varied (range: 25%–62%)
for each microorganism identified through laboratory confir-
mation (Table 1). For those laboratory-confirmed PCHD cases
for which the date of the patient’s onset of symptoms was

unavailable, an onset date was estimated
for each type of foodborne illness (i.e.,
campylobacter, giardiasis, hepatitis A,
shigellosis, and salmonellosis) by using
the average interval from date of onset
of symptoms to the laboratory-
confirmed date for cases for which the
patient’s symptom onset date was
known. The average interval, ±3 days,
was used to look for matches to APDIC
calls by ZIP code, age, and sex. Differ-
ences in age, sex, and incubation
period were evaluated by using chi-
square analyses. Data were analyzed by
using SPSS (Chicago, Illinois) and Stata
8.0 (College Station, Texas).

The study analysis focused on Pima
County callers to APDIC and
laboratory-confirmed PCHD cases.
This study was conducted in accordance
with the Health Insurance Portability
and Accountability Act, which requires
that a minimum of identifiable data be
used to ensure patient privacy, and data
that would identify callers and cases

were not collected. This study underwent human subjects
review and was approved by The University of Arizona Insti-
tutional Review Board.

Results

APDIC Call Description
During January 1–March 31, 2000, APDIC received 6,768

calls reporting human exposure; 2,922 (43.2%) were from
Pima County residents. The database search process and out-
come were limited to Pima County callers (Figure). Of 370
calls reporting human exposure with recorded GI symptoms,
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TABLE 2. Number and percentage of Arizona Poison and Drug
Information Center (APDIC) callers whose symptoms were
consistent with the syndrome definition for foodborne illness
and of persons with Pima County Health Department (PCHD)
laboratory-confirmed cases of foodborne illness, by age and
sex — Pima County, Arizona, January 1–March 31, 2000

PCHD
APDIC laboratory-
callers confirmed cases

Characteristic No. (%) No. (%)
Age group (yrs)

<5 3 (6) 17 (22)
5–14 6 (12) 14 (18)

15–24 6 (12) 10 (13)
25–64 18 (36) 25 (33)

>65 3 (6) 8 (10)
Other* 14 (28) 3 (4)

Sex
Female 28 (56) 45 (58)
Male 22 (44) 32 (42)

Total 50 (100) 77 (100)

* The exact age of 14 callers (28%) was unknown because of overlapping
age categories used in the Toxicall® database, which listed 13 persons
as age >20 years and one person as age >60 years.

TABLE 3. Number of calls coded as unintentional food poisoning*
by Arizona Poison and Drug Information Center (APDIC) staff,
compared with nurse reviewer’s assessment of call data — Pima
County, Arizona, January 1–March 31, 2000

Consistent with syndrome definition
Total

Yes No

Yes 50 1 51

No 8† 248 256

Total 58 249 307

* With gastrointestinal symptoms and ingestion.
† Five calls were recorded as “unintentional general” (i.e., unintentional

exposure) yet were consistent with the syndrome definition; two calls
were consistent with the syndrome definition, although symptoms might
not have been caused by the postulated beverage; and one call
recorded as “unintentional occupational” (unintentional workplace
exposure or injury) was consistent with a foodborne illness.

APDIC staff
coded as

unintentional
food

poisoning

307 (83%) were ingestion related; 51 (14%) calls were
recorded as unintentional food poisoning, of which 50 were
consistent with the syndrome definition. Twenty-nine (58%)
persons whose reported symptoms were consistent with the
syndrome definition called APDIC <24 hours of suspected
reported exposure, and seven (14%) persons called >24 hours
after suspected reported exposure. For 14 (28%) callers,
exposure history was undetermined. Sixteen (32%) callers
reported an exposure outside the home, and 19 (38%)
involved more than one person. Only two (4%) callers were
referred to a health-care facility or ED for immediate medical
evaluation. Adults accounted for the highest number of symp-
tomatic calls, with 18 (36%) known to be aged >25–64 years.
Six (12%) calls were received from adults reporting illness
among persons aged 15–24 years, six (12%) reporting illness
among children aged 5–14 years, and three (6%) reporting
illness among children aged <5 years (Table 2).

Sensitivity, Specificity, and PPV
Sensitivity, specificity, and PPV were calculated for APDIC’s

coding of each call, and compared with the nurse reviewer’s
assessment of the call data (Table 3). Of the 256 calls involving
GI symptoms and ingestion but coded by APDIC as nonfood-
related, eight (3%) likely represented potential cases of food-
borne illness. Including these eight calls, sensitivity of the search
strategy and APDIC coding for foodborne illness was 86%
(50/58). Only one false-positive call was identified, which yielded
a specificity of 99.6% (248/249). The symptoms and exposure
reported from this caller were more consistent with a probable

food allergy. Of 51 calls identified by the search strategy, 50
(98%) were consistent with the syndrome definition, provid-
ing a PPV of 98% (50/51).

APDIC Calls Compared
to PCHD-Confirmed Cases

A total of 77 laboratory-confirmed cases were reported to
PCHD. Only one of the APDIC calls was a potential match
to a confirmed PCHD case. For this potential match, both
the APDIC call and PCHD case had the same date of symp-
tom onset, date of call, ZIP code, and sex; however, the caller’s
age was different by 1 year. No significant differences in age
or sex were noted between callers and cases in the APDIC and
PCHD databases. However, the incubation period for the 77
laboratory-confirmed cases (>2 days for 47 [61%] and <24
hours for 30 [39%] cases) was statistically different (p<0.001)
from the incubation period for the APDIC calls (<24 hours
for 29 [58%] calls).

Discussion
PCCs provide a new source of real-time data that might

help improve surveillance for FBDOs, which are character-
ized by illness attributable to a common food or water source
among two or more persons (12). During the 3-month study
period, APDIC received 51 calls regarding foodborne illness,
of which 50 were consistent with the diarrhea/gastroenteritis
syndrome definition used. Although the majority of calls rep-
resented single occurrences of illness, 19 (38%) calls involved
more than one person and thus might have been representa-
tive of outbreaks. Only one potential match was identified as
a PCHD laboratory-confirmed illness, indicating that the
APDIC data collection system is not duplicative of cases



Vol. 54 / Supplement MMWR 39

reported to and evaluated by PCHD during the same period.
Although clinical validation studies are needed to determine
the exact etiology of these illnesses, APDIC might help PCHD
identify FBDOs earlier through detection of new cases of
foodborne illness.

Although APDIC has multiple coding categories that PCC
specialists can use to code suspected cases of foodborne ill-
nesses, the defined search strategy identified calls regarding
potential foodborne illness reported to and classified by
APDIC with high specificity and reasonable sensitivity. If only
callers with GI symptoms and a history of ingestion were con-
sidered, a high degree of agreement existed between the syn-
drome definition and coding by the PCC specialist for those
calls classified as unintentional food poisoning. The entire
database was searched for GI symptoms and ingestion, and
all cases of potential foodborne illness were reviewed, thus
ensuring that all cases of misclassification were identified.

Because PCCs report data regarding symptoms, not diag-
noses, the syndrome definition used to evaluate calls for
foodborne illness was critical. Studies have not compared the
accuracy of callers’ chief complaints compared with that of PCC
specialists’ assessment for foodborne illness. However, a recent
study that evaluated the accuracy of using ED patients’ chief
complaints classified ED visits into syndromes and identified
agreement for GI syndrome (17). Other research on ED visits
has determined that International Classification of Diseases (ICD)
codes are more accurate than a patient’s chief complaint, possi-
bly because they are based on a physician’s diagnosis (18). In
constructing the GI syndrome definition, consideration was
given to multiple definitions discussed in the literature. The
syndrome definition used was consistent with that used by
ADHS for drop-in surveillance; however, other definitions have
been used (9). A limitation of the syndrome definition used is
that it included symptoms associated with, but not limited to,
foodborne illness. For outbreak detection to be improved, a
standard syndrome-based definition should be developed for
APDIC to collect and code call data consistent with an estab-
lished syndrome-based definition.

Conclusion
Comparing the incubation period noted for the majority of

APDIC callers (<24 hours) with that for persons whose cases
were identified by PCHD suggests that the two data sets are
identifying persons from different populations. Preformed
toxins are typically associated with gastroenteritis after a short
incubation period (usually 2–4 hours) (19). Chemical con-
taminants also produce similar symptoms <30 minutes after
ingestion (12). In contrast, bacterial pathogens, including

Shigella and Salmonella, might be associated with longer
incubation periods (range: 12–36 hours for Salmonella and
12–96 hours for Shigella) (19). Another possibility is that callers
inaccurately identified their previous meal as the source of
their illness. Because the etiologic source of the callers’
reported illnesses could not be validated, this matter remains
unresolved, underscoring the necessity for external validation
of sources.

This study is subject to multiple limitations. Demographic
and clinical data are missing from both the APDIC and PCHD
databases. Not all suspected exposures could be confirmed
through laboratory testing, and the study period was brief.
Symptom onset dates were not available for 49% of PCHD
laboratory-confirmed cases. In an attempt to compensate,
onset dates were calculated on the basis of the average interval
from the date of symptom onset to the laboratory confirma-
tion date. This was done separately by type of PCHD case
(e.g., campylobacter and hepatitis A). One reason why APDIC
calls could not be matched to PCHD cases might be that
natural variation was lost because of use of a group mean,
underscoring the need for more complete data in future stud-
ies. Consistent with other foodborne surveillance studies, the
illness reported might have been acquired not through what
the caller identified as previously consumed contaminated food
but instead through an earlier contaminated food source, con-
taminated water, person-to-person contact, or direct contact
with animals (20).

Despite these limitations, this study demonstrates a poten-
tial role for PCC foodborne illness call data and public health
agencies’ foodborne illness surveillance systems. The two sys-
tems detect GI syndromes and could potentially overlap if
both the PCC and the public health department used a well-
designed, specific syndromic screen and maintained data
regarding the frequency and severity of foodborne illnesses
(i.e., for detection of FBDOs). PCCs provide 24-hour cover-
age with trained PCC specialists who might enhance health
department surveillance, particularly during the evenings and
on weekends. However, successful integration of these sys-
tems requires external clinical validation of PCC foodborne
illness calls.

On the basis of this analysis, prospective surveillance of
APDIC’s real-time foodborne illness complaint calls will be
implemented. Callers to APDIC whose illnesses are consis-
tent with the syndrome definition and who pose the highest
transmission risk (e.g., food handlers, child-care providers or
attendees, and callers with an increase in severity of symp-
toms) will, upon informed consent, be referred to PCHD for
evaluation of their symptoms. Similarly, an independent nurse
reviewer will conduct follow-up regarding consenting callers
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whose symptoms are consistent with the syndrome definition
but who are not referred to PCHD to determine the extent of
their illness and any medical treatment received. This pro-
spective surveillance will allow for a clinical validation of call-
ers’ illnesses by determining sensitivity, specificity, and PPV
by using a laboratory test as a standard on those calls referred
to PCHD.

Additional studies are needed to assess the effectiveness of a
prospective, integrated approach to foodborne illness surveil-
lance. Fundamental to success of these efforts is public aware-
ness of what types of illnesses should be reported and where
they should be reported, the development of standardized
definitions of syndromic illnesses, and consistent coding of
calls by PCC specialists. Studies are needed to determine
whether a temporal relationship exists between APDIC calls
and PCHD cases; if such a relation is demonstrated, prospec-
tive monitoring of increases in APDIC calls might be predic-
tive of increases in the number of foodborne illness cases.

PCCs might improve public health syndromic surveillance
for foodborne illnesses because they capture early, real-time
symptom data from the broadest possible range of sources
(i.e., callers with mild to severe illness). Once clinical evalua-
tion has confirmed callers’ foodborne illnesses, then comput-
erized PCC databases could be linked and programmed with
detection algorithms to alert public health officials of increases
in cases or geographic clustering of cases. The PCHD surveil-
lance system is limited in its ability to capture real-time
foodborne illness symptom data. APDIC might provide a use-
ful addition to the PCHD’s syndromic surveillance system
and might assist in early detection of FBDOs.
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Abstract

Introduction: Over-the-counter (OTC) medications are frequently used during the initial phase of illness, and increases in
their sales might serve as an early indicator of communitywide disease outbreaks. Since August 2002, the New York City
(NYC) Department of Health and Mental Hygiene (DOHMH) has tracked OTC medication sales to enhance detection of
natural and intentional infectious disease outbreaks.

Objectives: This report describes the surveillance system and presents results from retrospective analyses and a comparison
between citywide trends in OTC medication sales and emergency department (ED) visits.

Methods: Sales data transmitted daily to DOHMH are categorized into two groups: influenza-like illness (ILI), which
includes cough and influenza medications, and gastrointestinal illness (GI), which includes major brand and generic
antidiarrheals. Cyclical, linear regression models were used to identify significant (p<0.05) increases in the daily ratio of ILI
to analgesics sales (analgesics are used as a denominator in the absence of total sales). Daily and weekly average ratios of GI to
analgesic sales were analyzed. Citywide trends in OTC ILI and GI medication sales were compared with ED visits for fever/
influenza and diarrhea syndromes.

Results: Citywide ILI drug sales were highest during annual influenza epidemics and elevated during spring and fall allergy
seasons, similar to trends in the ED fever/influenza syndrome. ILI sales did not consistently provide earlier warning than the
ED system of communitywide influenza. GI drug sales increased during the fall and peaked during early winter and after the
blackout of August 2003. Unlike ED diarrheal visits, GI medication sales did not substantially increase during late winter
(February–March).

Conclusion: Citywide OTC medication sales can provide indications of communitywide illness, including annual influenza
epidemics. Antidiarrheal medication sales were more sensitive to increases in GI caused by norovirus and influenza than
illness caused by rotavirus. OTC medication sales can be considered as an adjunct syndromic surveillance system but might
not be as sensitive as ED systems.

Introduction
Over-the-counter (OTC) medications are commonly taken

before or instead of seeking medical care (1–3). OTC medi-
cation sales, therefore, might be an early indicator of
communitywide illness. One of the first signs of a large water-
borne cryptosporidiosis outbreak in Milwaukee in 1993 was
newspaper reports that local pharmacies had sold out of
antidiarrheal medications (4,5). A retrospective report con-
firmed that increases in sales of Immodium® (McNeil Con-
sumer and Specialty Pharmaceuticals, Fort Washington,
Pennsylvania), Pepto Bismol® (Proctor and Gamble, Cincin-
nati, Ohio), and Kaopectate® (Pfizer, New York, New York)
were the earliest indicators of widespread illness, suggesting

that prospective monitoring of OTC medication sales might
have resulted in earlier detection of the outbreak (4). In
England, increases in electronic-point-of-sale pharmacy sales
occurred 2 weeks before an increase in emergency department
(ED) visits during the winter (6), and correlations between
OTC antinausea and antidiarrhea medication sales and ED
admissions have been reported (7).

New York City (NYC) began monitoring OTC medication
sales in 1996 as part of its waterborne disease surveillance pro-
gram. Aggregate, weekly counts of OTC antidiarrheal medi-
cations sold were transmitted from one large pharmacy chain
to the Department of Environmental Protection and reviewed
weekly (8). In 2000, the New York City Department of Health
and Mental Hygiene (DOHMH) asked pharmaceutical
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retailers to establish daily, automatic data transmission to
improve timeliness and expand the system to cover medica-
tions for influenza-like illness (ILI). This report describes the
methods developed during the first 32 months of operation,
presents results from a retrospective analysis of data from that
period, and compares citywide trends in OTC medication sales
with comparable syndromes from the DOHMH ED
syndromic surveillance system (9).

Materials and Methods
Since August 2002, OTC medication sales data have been

transmitted daily by file transfer protocol (FTP) from a cen-
tral pharmacy database. Each daily file contains information
on the previous day’s sales of the following medications: cold
drugs, analgesics, vapor rubs (for colds), vitamins, stomach
aids, and first aid materials. Data elements include the num-
ber of units sold, drug name, department and subdepartment,
store location, whether or not the item was on promotion,
and the number of units in stock (an indication of whether
the item was available for sale that day). Data are checked for
completeness, duplicate records, and other errors before
being appended to an archive for analysis. Baseline data were
obtained beginning in August 2001.

Because of the multiple possible names and formulations
for each drug and because new items are frequently intro-
duced into the market, a simple and flexible method was sought
to categorize drugs into syndrome groups. For the ILI cat-
egory, the estimated 400 drug names in the cold subdepart-
ment, which accounted for 47% of the total drug sales reported
to DOHMH, were examined. To identify the subset of these
drug names that was most closely associated with influenza
activity, the ratio was calculated of sales during peak influenza
season (November 2001–January 2002) to nonpeak season
(August 2001–October 2001). These periods were based on
the number of positive influenza isolates identified by the
World Health Organization (WHO) sentinel laboratories serv-
ing NYC (Figure 1). A review of the 50 drugs with the highest
ratios suggested that selecting any drug with text strings “flu”
or “tussin” in the name would capture most influenza-
associated sales. Drugs not included in the ILI category
because their sales were not highly correlated with influenza
activity included 1) multicold symptom relievers (e.g., Alka
Seltzer Plus® [Bayer, Morristown, New Jersey] and Nyquil®

[Proctor and Gamble, Cincinnati, Ohio]); 2) decongestants
(e.g., Sudafed® [Pfizer, New York, New York]); 3) analgesic
brand name cold products (e.g., Tylenol Cold® [McNeil Con-
sumer and Specialty Pharmaceuticals, Fort Washington, Penn-
sylvania]), and 4) chest rubs (e.g., Vicks Vaporub® [Proctor
and Gamble, Cincinnati, Ohio]).

For citywide temporal ILI analysis, the outcome was the
daily ratio of ILI drug sales to sales of analgesics. When the
ratio was used, rather than just the number of ILI sales, noise
was reduced in the data by partially controlling for variation
in total OTC medication sales volume as a result of store hours,
consumer behavior, and other unmeasured factors. Analge-
sics were chosen as the denominator, because total sales data
were not available. Analgesics sales were relatively stable
throughout the year and accounted for approximately 26%
of sales reported to DOHMH. The analgesic category included
the following brand names and their generic equivalents:
Advil® (Wyeth Consumer Healthcare, Madison, New Jersey);
Aleve® (Bayer, Morristown, New Jersey); Bayer® (Bayer,
Morristown, New Jersey); Bufferin® (Bristol-Myers, New York,
New York); Ecotrin® (GlaxoSmithKline, Brentford,
Middlesex, UK); Excedrin® (Bristol-Myers, New York, New
York); Motrin® (McNeil Consumer and Specialty Pharma-
ceuticals, Fort Washington, Pennsylvania); and Nuprin®

(Bristol-Myers, New York, New York).
In this report, prospective, daily analyses of the citywide

ratio of ILI to analgesics sales for each day during August 1,
2002–March 31, 2005, were mimicked. A cyclical linear
regression model computed the difference between the
expected and the observed ratios. The model was based on
the classic Serfling influenza model as applied previously to
NYC ambulance dispatch data (10,11). For each daily analy-
sis, the most recent 7 days of data were censored to ensure
that recent increases or decreases in sales would not affect the
model. Terms in the model included sine and cosine to cap-
ture seasonal cycles, day-of-week (dummy variables with Sun-
day as reference), holidays, postholidays, promotional sales
(the proportion of total sales that were on promotion), and
the weekly number of positive influenza A and B isolates iden-
tified by NYC’s three WHO influenza reference laboratories.
Influenza isolate data were censored for the previous 14 days
to ensure that recent increases could be attributed to
communitywide influenza outbreaks when needed. Holidays
were categorized into major winter holidays (Thanksgiving,
Christmas, and New Year’s Day) and other national holidays
(Martin Luther King Day, President’s Day, Memorial Day,
Independence Day, and Labor Day). If a holiday was on a
weekend, the official government work holiday (Friday or
Monday) was coded as a holiday. Days after holidays were
coded as postholidays. The model also included a measure of
recent increases in allergy medication sales to partially control
for increases in ILI drug sales associated with the spring and
fall allergy seasons. The measure found to be most useful was
a z-score recalculated daily as z = (mean daily sales during
previous week) – (mean daily sales during the period 4–10
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weeks before date being analyzed)/(standard deviation of daily
sales during the period 4 to 10 weeks before date being ana-
lyzed).

The model-adjusted ratio and confidence limits generated
from each daily analysis were plotted (Figure 1). A signal was
defined as any observation that exceeded the 95% upper
confidence limit of the model. These results were compared
with trends in the day-of-week adjusted ratio of ED fever/
influenza-like syndrome (Figure 2) (9). To characterize the
relative timing of influenza-associated trends in the ED and
OTC medication time series, the ED time series was limited
to influenza season (October–April), and the correlation
was examined between 1) the weekly average ratio of OTC
ILI to analgesics and 2) the weekly average ratio of fever/
influenza-like syndrome visits to other syndrome visits (for
various lag periods ranging from -14 days to +14 days).

For the antidiarrheal GI category, common antidiarrheal
drugs were identified, including Immodium®, pink bismuth
formulas, Kaopectate, Maalox® (Novartis, Basel, Switzerland),

and generic antidiarrheals (12). Immodium accounted for the
highest volume (51%) of sales in this category. Kaopectate
was removed from the GI category because its weekly sales
indicated low correlation with weekly sales of Immodium dur-
ing peak diarrhea season (November 2002–February 2003;
Spearman correlation coefficient r2 = 0.46). The ratio of OTC
GI sales to analgesics sales and 7-day moving average have
been plotted (Figure 3) along with the ratio of ED diarrhea
syndrome to other ED visits (9).

Results
During the reporting period, August 1, 2002–March 31,

2005, the mean daily total sales reported to DOHMH was
34,883 (standard deviation [SD] = 9,475). Mean daily sales for
ILI, GI, and analgesics were 2,383 (SD = 1,229); 1,132 (SD =
231); and 6,638 (SD = 1,249), respectively. A total of 99% of
sales were reported to DOHMH by the next calendar day.

FIGURE 1. Citywide trends and signals in the adjusted ratio of influenza-like illness to analgesic over-the-counter (OTC) drug
sales and positive isolates of influenza A and B — New York City, August 1, 2001–March 31, 2005*

* Temporal signals p<0.01 and 95% confidence intervals from daily linear regression. The OTC ratio is adjusted for day of week, major national winter
holidays, and the day after these holidays (Thanksgiving, Christmas, New Years, and Martin Luther King observance day).
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Citywide trends in the ratio of ILI to analgesic sales fol-
lowed a consistent cyclical pattern with highs in the winter
and lows in the summer (Figure 1). Within these annual cycles,
observed increases were associated with epidemic influenza
and the spring and fall allergy seasons. A series of 31 signals
over 38 days occurred during the 2003–04 peak influenza
season. Similarly, 48 signals occurred over 57 days during the
2004–05 peak influenza season. Ten additional signals occurred
during April–June 2003 (Figure 1).

ILI trends were compared with ED visits classified under
the fever/influenza-like syndrome (Figure 2). Overall, the

weekly ratio of ILI to analgesics sales was
highly correlated with the weekly ratio
fever/influenza-like syndrome visits to
other syndrome visits (r2 = 0.60;
p<0.001). Slightly lower correlations
were identified by moving the OTC
time series forward and backward in
time by 7 and 14 days in relation to the
ED fever/influenza time series (14 days
before, r2 = 0.55; 7 days before, r2 =
0.59; 7 days after, r2 = 0.54; and 14
days after, r2 = 0.44). The arrival of
communitywide influenza for the
2004–05 season was signaled by ED
fever/influenza surveillance in late No-
vember 2004, whereas the first series of
OTC signals began 6 days later. During
the 2003–04 peak influenza season, the
ILI ratio doubled and the ED fever-
influenza ratio tripled. The series of con-
secutive ED signals associated with this
increase began 2–3 weeks earlier than
the first ILI signals (Figure 2). No over-
lapping signals occurred during the mild
2002–03 influenza season (Figure 2).

Trends in the ratio of GI sales to
analgesic sales are plotted against the
ratio of ED GI visits to other visits
(Figure 3). The weekly ratio of GI to
analgesics sales was a substantially lower
correlation with the weekly ratio ED GI
to other visits (r2 = 0.24; p<0.005).
Increases in both systems were detected
in late autumn (coinciding with docu-
mented institutional norovirus out-
breaks and suspected communitywide
norovirus activity), during peak influ-
enza, and during the blackout in
August 2003. Although the most sig-

nificant increases in ED GI visits occurred annually during
late winter (February–March), no corresponding increase in
GI sales was observed. Increases during the summer in GI
sales were not accompanied by increases in ED GI visits.

Discussion
In the first 32 months of OTC surveillance in NYC, the

system served as an adjunct to other indications of citywide
illness. Sustained, statistically significant increases in ILI drug

FIGURE 2. Citywide trends and signals in over-the-counter (OTC) influenza-like illness
category and emergency department (ED) fever/influenza category — New York City,
August 1, 2002–March 31, 2005*

* The OTC ratio is adjusted for day of week and major national winter holidays and the day after
these holidays (Thanksgiving, Christmas, New Years, and Martin Luther King observance day). The
emergency department ratio is adjusted for day of week.
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sales were observed during annual influenza epidemics, and
increases in GI drug sales occurred during fall norovirus sea-
son and immediately after the August 2003 blackout. No lo-
calized disease outbreaks were detected with the system in any
syndrome. In addition, although the purchase of OTC medi-
cations is hypothesized to occur earlier in the course of illness
than visits to a health provider, a consistent pattern was not
observed when OTC sales were compared with ED visits.

Multiple factors might contribute toward the challenges of
OTC syndromic surveillance. The high rate of background
sales unrelated to illness, which might include consumer
“stockpiling” of OTC medicines, obscures purchases for acute
illness. Differences in store hours and local consumer behav-
ior add to the variance in sales, posing challenges to data mod-
eling and spatial analysis to detect local clustering in OTC
sales. Drugs comprise multiple formulations, and new drugs
enter the market regularly, making syndrome categorization
difficult. Perhaps the most challenging problem of routine
OTC surveillance is how to respond to signals. No informa-
tion is available concerning the person purchasing the medi-
cation, and direct investigation is not possible either with
individual pharmacies or consumers.

Despite these challenges in multiple syndromic surveillance
systems, in the United States, OTC sales data are used. The
Electronic Surveillance for the Early Notification of
Community-based Epidemics (ESSENCE II) project is based
on an electronic medical chart system that captures both medi-

cal visits and OTC and prescription sales
(13). A key advantage of the system is
that it links OTC sales, prescription sales,
and medical visit information in one sys-
tem, allowing for patient-level follow-up.
Drugs were categorized into syndromes
by correlating discharge diagnoses with
drugs purchased or prescribed. A limita-
tion of the system is that it is restricted
to military personnel and their families.
Another system, the National Retail Data
Monitor (NRDM) operated by the Uni-
versity of Pittsburgh, receives data daily
from >15,000 retail stores nationwide
(14,15). Drugs are grouped into 18 cat-
egories (e.g., antidiarrhea, antifever, and
cold relief) and can be viewed through a
website interface by public health
authorities for aberrations in sales within
their region. NRDM has detected both
communitywide influenza and at least

one localized GI outbreak, which was identified based on
increases in electrolyte sales, which NYC does not track (16).

Conclusion
OTC syndromic surveillance might be useful as an early

indicator of disease outbreaks. To date in NYC, however, the
system has served primarily to corroborate large-scale illness
trends detected in other syndromic disease outbreak systems.
Future possible enhancements include obtaining the total
number of transactions, by store by day, for use as a denomi-
nator to better control for unmeasured consumer behavior.
In addition, to improve coverage, the feasibility of integrating
local systems with data received from the NRDM system is
being evaluated (14). DOHMH has requested to expand the
list of drugs to include pediatric formulations, including elec-
trolyte products; the current ILI and GI categories focus on
adult formulations. The use of OTC surveillance for disease
outbreak detection in NYC should be increased as these
improvements are implemented.
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Abstract

Objectives: This report describes a study to explore the possibility of using data on sales of over-the-counter (OTC) medica-
tions as part of a routine syndromic surveillance system aimed at early detection of infections of public health concern. A
retrospective evaluation was conducted of sales of OTC medications used to treat the common cold. This report discusses the
correlation of these data to influenza activity in Japan during the 2003–04 influenza season and evaluates the potential of
using such data to predict influenza epidemics.

Methods: Data from approximately 1,100 pharmacies throughout Japan collected during November 2003–April 2004 were
analyzed. OTC sales data were compared with influenza incidence data (one weekly and two daily data sets) to determine
correlations and predictability. Adjusted R-square was used as an index of goodness-of-fit in the estimation. Data reflecting
daily influenza activity were obtained from the National Surveillance of Daily Influenza Outpatients and the Mailing List–
Based Influenza Epidemic Database. National sentinel surveillance data for influenza from approximately 5,000 sites
nationwide also were analyzed.

Results: Although a correlation was demonstrated between sales of OTC medications used to treat the common cold and
concurrent influenza activity, analysis of sales data alone was not sufficient to determine influenza activity in advance even
when sales promotion effects were excluded from the analysis.

Conclusion: Because visiting a health-care provider costs more than purchasing OTC medications, the hypothesis was formed
that an ill person will purchase OTC medications first and visit a physician only if the condition does not resolve or worsens. The
results of this study do not provide any clear evidence to support this hypothesis. For this reason, OTC sales do not appear to be a
good candidate for a national real-time detection system for influenza epidemics in Japan.

Introduction
In 2000, the first syndromic surveillance prototype in Japan

was initiated by the Japanese Ministry of Health, Labour, and
Welfare (MHLW) in the Kyushu area during the G-8 summit
meeting to assist in the early detection of an act of biologic
terrorism or an unusual cluster of tropical diseases imported by
travelers from tropical areas (1). This limited-scale surveillance
involved 17 medical institutes in two prefectures for <1 month.
Data for the surveillance system were reported through facsimile
transmissions for five syndromic categories (i.e., respiratory,
gastrointestinal, neurological, cutaneous-mucous membrane-
bleeding, and nonspecific). The second (and the first nation-
wide) syndromic surveillance system was implemented during
May 20–July 14, 2002, in connection with the Japan-Korea
2002 World Cup soccer games. The Internet-based surveillance,
which was conducted by MHLW and the Infectious Disease
Surveillance Center of the National Institute of Infectious Dis-

eases (NIID), grouped hospitalized patients by symptoms into
the same five syndromic categories used in 2000. Both ad hoc
syndromic surveillance systems operated during high-profile
events and were conducted successfully, and their data were
matched with those diseases with the same clinical features that
were collected later by routine national surveillance. For example,
this second ad hoc syndromic surveillance detected a cluster of
viral meningitis and a regional outbreak of measles successfully,
thereby illustrating the potential of these data in assisting with
early detection of disease. However, further improvements are
required to detect pandemic influenza or a possible biologic
terrorist attack in time to minimize its consequences.

The goal of the early detection syndromic surveillance
system is to conduct routine (not ad hoc) surveillance that
complements existing surveillance systems and to detect
increases in the number of patients before they report to
hospitals with severe conditions. Data concerning sales of
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over-the-counter (OTC) medications, emergency department
(ED) visits, ambulance calls, and other factors were assessed
as tentative candidates for early detection of disease outbreaks
(2,3). Because no routine syndromic surveillance for respira-
tory syndrome had been conducted previously in Japan, the
effectiveness of OTC surveillance in early detection was com-
pared with multiple influenza surveillance systems that were
already in place. This report presents interim findings from
the OTC sales surveillance.

Methods

Data Source
Commercially available data collecting reported daily sales of

OTC medications in all forms (e.g., tablets, powder, granules,
and syrup) used to treat the common cold from 1,100 pharma-
cies throughout Japan were obtained. So-called combination
or general common-cold medications were chosen for exami-
nation because use of such medications has long been accepted
in Japanese society as the first and most common treatment for
influenza-like illness (ILI). These medications usually consist
of a combination of antipyretic analgesics (e.g., acetaminophen
or ibuprofen), antitussives (e.g., dihydrocodeine phosphate or
noscapine), expectorants (e.g., bromohexine hydrochloride,
guaifenesin, or potassium guaiacolsulfonate), exogenous enzyme
(e.g., lysozyme chloride), bronchodilator (e.g., dl-methylephedrine
hydrochloride), antihistaminics (e.g., carbinoxamine maleate
or mequitazine), vitamins (e.g., vitamin B1, B2, or vitamin C),
and others (e.g., herbal medicines or caffeine). The category
also includes combined herbal medicines that are licensed for
common cold treatment.

Data were collected by a private marketing company from
randomly chosen pharmacies covering approximately 2.0%
of the 50,000 pharmacies in Japan. The influenza season was
defined as November–April. Sales data collected during
November 2003–April 2004 were subjected to retrospective
analysis to examine the suitability of OTC sales surveillance
for early detection of unexpected rare events. OTC sales data
were compared with reliable sentinel surveillance data for
influenza collected during November 2003–April 2004 by the
National Epidemiological Surveillance of Infectious Diseases
(NESID) and with data on influenza activity collected daily
by two other surveillance systems from clinics, hospitals, and
health-care providers. In Japan, sentinel reporting of clinical
cases of ILI is mandatory, with or without laboratory tests or
confirmation. Data (e.g., the number of influenza outpatients,
by age and age group) are collected weekly from 5,000 senti-
nel surveillance sites (including 3,000 pediatricians and 2,000
internal medicine clinics or departments) nationwide cover-

ing one tenth of all clinics and hospitals in Japan for all influ-
enza-related visits. Two daily influenza activity information
sources are 1) reported numbers of cases of ILI reported by
the National Surveillance of Daily Influenza Outpatients
(Daily Case Reporting [DCR]), which collects data from 10%
of selected sentinel medical institutions and 2) voluntary re-
porting by clinicians to the Mailing List–Based Influenza Epi-
demic Database (MLflu). DCR is operated by NIID and began
operating in January 2004 for the 2003–04 influenza season;
it collects data regarding the number of outpatients who re-
ceived a diagnosis of ILI either clinically or by diagnostic test
from 500 sentinel sites in clinics and hospitals. Date of onset
is not included in the reported data, which makes this surveil-
lance vulnerable to the-day-of-the-week effect (i.e., few pa-
tient visits reported during the weekend and more on the
following Monday). MLflu is operated by volunteer pediatri-
cians and began operating in December 2003 for the 2003–
04 influenza season; it collects data from approximately 350
pediatricians regarding outpatients who have received a diag-
nosis of influenza by rapid test. Cases reported through MLflu
are more likely to reflect actual influenza activity. Date of on-
set is reported, so the surveillance system is free from the-day-
of-the-week effect. However, because reporting is voluntary,
the number and representativeness of participants varies dur-
ing the influenza season.

Analysis
A model was created to estimate influenza activity from the

OTC sales information during a 6-month period, as follows:

log (influenza activity in period t)
= α + β log (OTC sales in period t-j) + ε

OTC sales data were then adjusted for the-day-of-the-week
effect and compared with three other different influenza
activity surveillance systems (sentinel surveillance, DCR, and
MLflu) to examine the number of lead-days by OTC sales.
The adjusting procedure consisted of two steps, as follows:

Adjusted OTC sales in period 1
= Replaced OTC sales in period 1

Adjusted OTC sales in period t

= Replaced OTC sales in period t

Adjusted OTC sales in period t-j

for t >1 and t <6
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Adjusted OTC sales in period t
= 7/28 Replaced OTC sales in period t

Adjusted OTC sales in period t-j

for t >6.

The data set was adjusted by replacing data for weekends,
holidays, and the day before and after weekends or holidays
with data for the nearest preceding nonholiday weekday. Then
the replaced data were smoothed to the past by taking a mov-
ing average from the current period to 1 week previous, giv-
ing a relatively heavier weight to the nearer days, and gradually
reducing the weight for the far past. Although this adjusting
procedure did not require future data, the adjustment result
might be affected (pulled) from the data used for the replace-
ment and smoothing procedure.

Comparative analysis of OTC sales with one weekly and
two daily data sets recording influenza incidence was performed
to determine correlations and predictability. Adjusted R-square
was used as an index of goodness-of-fit in the estimation.

Results
Because national surveillance data do not capture the num-

ber of persons who consult a health-care provider for general
respiratory symptoms, data regarding consultations for influ-
enza symptoms were used as a substitute to assess lead time of
OTC information. Influenza surveillance in Japan was
designed to report all potential influenza patients from at least
one system for robust detection of influenza activity other
than hospitalization (Figure 1). The case definition of influ-
enza used for both outpatient sentinel surveillance and DCR
was based on clinical symptoms, which resulted in reporting
of patients with ILI.

For this analysis, the hypothesis used was that the majority
of persons who were infected by influenza virus and who
experienced mild symptoms would choose to self-treat with
OTC medications and that those persons whose condition
subsequently became more serious would then consult a phy-
sician later. Data of sales of OTC medications used to treat
the common cold, readily provided as commercial databases,
were assumed to reflect the population of preclinical visits by
persons with ILI. Data on outpatient visits were represented
by sentinel surveillance, DCR, and MLflu. An increase in OTC
sales of medications used to treat the common cold was
assumed to indicate an initial increase of ILI, and the lead
time of the sales to the influenza activity was expected to be
observed.

OTC sales per pharmacy were tracked, and the time trend of
sales per pharmacy, which was adjusted for the-day-of-the-week

effect and then smoothed, was given as a line (Figure 2). Mul-
tiple peaks of different size were observed during the 5-month
surveillance period, with the consistent underlining trend
being that sales were higher in winter and decreased toward
spring. Peaks observed were in early and mid-December, early
February, and late March. The third peak observed occurred
during late January–early February and corresponded with the
peak of ILI sentinel reporting generally recorded during influ-
enza seasons; a subsequent period of decline toward spring was
also matched. However, the pattern of the early influenza sea-
son was fairly discrete between the two data sets (Figure 3).

Adjusted OTC sales data also were compared with adjusted
influenza data from DCR to identify a similar pattern during
the height of the influenza season (Figure 4). DCR for clini-
cally confirmed ILI is case-based and includes the patient’s
age and age group, date of visit, performance of rapid test,
and result of a rapid diagnostic test as a single thread of infor-
mation. Because data are reported by clinics and hospitals,
numbers were low on Saturdays and Sundays and high on
Mondays; consequently, numbers were adjusted for the-day-
of-the-week effect. As with sentinel surveillance, DCR also
indicated a different pattern early in the influenza season, and
the peak coincided with the third peak of OTC sales. Charac-
teristically, no rise in DCR was observed to match the last
peak of OTC sales during late March.

FIGURE 1. Relationship of influenza status and influenza-related
surveillance

* Daily case reporting of the National Survey of Daily Influenza Outpatients.
†Mailing List–Based Influenza Epidemic Database.
§Over-the-counter medications.
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MLflu data were reported voluntarily by physicians inter-
ested in influenza preparedness. Information collected through
the case-based reporting system included the patient’s age, date
of illness onset, date of visit, type of rapid diagnostic test used,
type of influenza virus (A or B) diagnosed, and name of
antivirals or other common cold medications prescribed. The
date of onset was available for MLflu, which made it free from
the-day-of-the-week effect. Additionally, this system was able
to provide the number of laboratory-confirmed cases of influ-
enza (i.e., those diagnosed by rapid diagnosis tests). A limita-

FIGURE 2. Time-trend of adjusted over-the-counter (OTC) sales per pharmacy,
by date — Japan, November 2003–April 2004
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tion of this system was that the number of par-
ticipants varied during the season (low at the
beginning and the end of the season). Interest
of the clinicians participating in MLflu was high
when ILI was rapidly increasing but
decreased after the peak period ended (Figure 5).
The effect of this variance in the reporting rate
should be considered when interpreting the
results. As with the other two influenza surveil-
lance systems, MLflu indicated a different pat-
tern from the OTC medicine surveillance at the
beginning of the influenza season (Figure 5).
However, for the third peak, the rise in sales of
OTC medications did not coincide with the
peak of MLflu reporting. Instead, the peak
observed by MLflu preceded sales by 1–2 weeks
(Figure 5). No matched peak was observed for
the one during March.

OTC sales data were compared with other
influenza activity surveillance data to determine
lead time (i.e., the number of days that OTC
sales elevation preceded an increase in the num-
ber of influenza patients) (Figure 6). Fitness
among DCR declined as lead time became
longer. The highest adjusted R-square was
obtained when OTC data led by 1 day. Con-
versely, fitness among sentinel surveillance or
MLflu rose when lead time was longer. In the
case of sentinel surveillance or MLflu, OTC sales
appeared to lag behind influenza activity. A peak
in OTC sales observed at the end of 2003 was
suspected to reflect influenza activity.

Discussion
Syndromic surveillance in Japan has been

conducted on an ad hoc basis during high-
profile events (1). A short-term, labor-
intensive analysis system was used that was
expensive and resource-intensive to run on a

daily basis. To date, several routine influenza surveillance sys-
tems have been implemented in Japan. However, each system
by itself is unable to provide sufficient information to prepare
for the potential emergence of pandemic influenza or related
diseases. None of three currently existing influenza surveillance
systems might be able to detect the early stage of a pandemic
because all systems detect patients only at the point of consul-
tation. In addition, each surveillance system has certain limi-
tations. For example, the national sentinel surveillance provides
reliable mandatory reporting but captures only the number

FIGURE 3. Comparison of over-the-counter (OTC) sales per pharmacy
(adjusted) with number of patients with influenza-like illness (ILI) reported
per sentinel point by national sentinel surveillance, by date — Japan, November
2003–April 2004
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of patients who visit sentinel clinics and hos-
pitals without collecting sufficient qualitative
information. These data are reported weekly,
with a 1-week delay during which data are com-
piled. DCR captures additional qualitative
information but reports include only the date
of visit. MLflu reports the number of patients
who receive a diagnosis for influenza with rapid
testing. In each surveillance system, timeliness,
accuracy, and representativeness have been
traded off for other advantages. The rationale
for using readily available data of OTC sales for
monitoring is to establish routine early detec-
tion surveillance for pandemics and other
unexpected events to complement those surveil-
lance systems.

The lead time for OTC sales was compared
with influenza surveillance to evaluate the time-
liness of sales data for detecting seasonal influ-
enza epidemics. An estimated 72% of Americans
with cough, cold, influenza, or sore throat
often purchase OTC medications early in the
course of their illnesses (4). Increases in OTC
sales were expected to precede an increase in
patient visits to hospitals, assuming that con-
sumer behavior in Japan is similar to that in other
developed countries (i.e., persons purchase OTC
medications when they first feel ill and then visit
clinics or EDs if their illness becomes more seri-
ous). Although OTC sales correlated well with
contemporary influenza activity (2,3), a clear
lead time was lacking, and analysis of OTC sales
data indicated no evidence of advance detec-
tion of influenza activity. Additionally, difficul-
ties were encountered in interpreting sales
increases in late December from influenza sur-
veillance alone. The increase appeared to reflect
preparation for a long holiday season acceler-
ated by year-end discount promotions but not
an actual increase in influenza activity. How-
ever, further analysis excluding this sales pro-
motion effect was also not able to determine
any influenza activity in advance.

These results indicate that sales data on OTC
medications used to treat common colds have
a low potential for predicting increased influ-
enza activity in Japan. Multiple factors might
account for this outcome. Because the analysis
was performed only on a national level, the
study did not take into account regional varia-

FIGURE 5. Comparison of over-the-counter (OTC) sales per pharmacy
(adjusted) with number of patients with influenza reported through the
Mailing List–Based Influenza Epidemic Database (MLflu), by date — Japan,
November 2003–April 2004*

* MLflu reporting system was activated in November 2003 and officially launched in December
2003 for the 2003–04 influenza season.
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FIGURE 4. Comparison of over-the-counter (OTC) sales per pharmacy
(adjusted) with number of patients with influenza-like illness (ILI) per
hospital or clinic recorded through daily case reporting (DCR) of the
National Survey of Daily Influenza Outpatients (adjusted), by date — Japan,
January–April 2004
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tions in influenza activity and variations in when the
influenza season began. Variation of lead time of OTC sales
to the actual disease incidence by locality has been suggested
previously (5); therefore, to assess the real situation, smaller
geographic areas must be analyzed. The next step to confirm
correlations will be to break down the analysis at the prefec-
ture level for 47 prefectures, with and without the effects of
sales promotions. However, commuters cross prefecture bor-
ders frequently every day, and spatial correspondences or
noncorrespondences of OTC sales and physician visits might
remain biased in certain instances as a result of inexact geo-
graphic data.

The choice of OTC medications selected for this study might
have contributed to the outcome. The study was limited to
medications used to treat the common cold, which were
already grouped in the commercialized sales reporting database.
However, in certain cases of early stages of influenza, persons
might purchase more symptom-oriented medications (e.g.,
antipyretic analgesic, antitussive, and antihistaminic medica-
tions). To include the entire sales rise attributable to ILI in the
analysis, medications in those categories should be examined to
formulate a suitable product group to use as precursor for
detecting increased ILI as soon as data become available (5).

As the copayment proportion of payment for medical care
by consumers continues to rise, a gradual move toward self-
medication is under way in Japan. Consequently, the poten-
tial value of using OTC medication sales data as an indicator
of disease outbreaks should continue to rise. However, Japa-

nese consumers are still relatively reluctant to
take an active role in decision making regard-
ing their own health care. In addition, the ma-
jority of Japanese have easy access to medical
care, and the national health insurance system
provides a high degree of coverage. As a result,
persons who are ill are more likely to visit a clinic
at an early stage of illness. The introduction of
antiviral agents (e.g., oseltamivir) that require a
physician’s prescription also has promoted medi-
cal assistance–seeking behavior during the
influenza season. All of these factors combined
might have influenced the study results.

Conclusion
The results presented in this report are

tentative. Thorough data cleaning and addi-
tional analysis are required before a final decision
is made concerning the use of OTC medication
sales data as part of a national real-time syndromic
surveillance system. Further studies are planned,

including a geographic breakdown analysis, analysis with ex-
clusion and inclusion of sales promotion effects (other than
the year-end discount promotion), choice of methods for sta-
tistical analysis, and analysis taking into account bargain sales
and associated promotion types and trial surveillance concern-
ing respiratory symptoms in a limited area.
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FIGURE 6. Goodness of fit (adjusted R-square) between over-the-counter
(OTC) sales and other influenza activity surveillances at different OTC lead
times for 2003–04 influenza season — Japan, November 2003–April 2004
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Abstract

Introduction: In concert with increased concerns regarding both biologic terrorism and new natural infectious disease threats
(e.g., severe acute respiratory syndrome [SARS] and West Nile virus), as a result of advances in medical informatics, various
data sources are available to epidemiologists for routine, prospective monitoring of public health. The synthesis of this evidence
requires tools to find anomalies within various data stream combinations while maintaining manageable false alarm rates.

Objectives: The objectives of this report are to establish statistical hypotheses to define the compound multivariate problem of
surveillance systems, present statistical methods for testing these hypotheses, and examine results of applying these methods to
simulated and actual data.

Methods: Canonical problems of parallel monitoring and consensus monitoring are considered in this report. Modified Bonferroni
methods are examined for parallel monitoring. Both multiple univariate and multivariate methods are applied for consensus
monitoring. A multivariate adaptation of Monte Carlo trials, using the injection of epidemic-curve–like signals in the multiple
data streams of interest, is presented for evaluation of the various tests.

Results: The Monte Carlo test results demonstrate that the multiple univariate combination methods of Fisher and Edgington
provide the most robust detection performance across the scenarios tested. As the number of data streams increases, methods
based on Hotelling’s T2 offer added sensitivity for certain signal scenarios. This potential advantage is clearer when strong
correlation exists among the data streams.

Conclusion: Parallel and consensus monitoring tools must be blended to enable a surveillance system with distributed sensi-
tivity and controlled alert rates. Whether a multiple univariate or multivariate approach should be used for consensus moni-
toring depends on the number and distribution of useful data sources and also on their covariance structure and stationarity.
Strong, consistent correlation among numerous sources warrants the examination of multivariate control charts.

Introduction
In concert with increased concerns regarding both biologic

terrorism and new natural infectious disease threats (e.g.,
severe acute respiratory syndrome [SARS] and West Nile virus),
as a result of advances in medical informatics, data sources are
available to epidemiologists for routine, prospective monitor-
ing of public health. Persons who daily monitor these data
sources must synthesize recent, disparate evidence to make
decisions about possible public health concerns. To synthe-
size evidence, tools must be used that can find anomalies in
single data streams and in various stream combinations while
maintaining manageable false alarm rates. In this report, a
framework is proposed for this synthesis; basic epidemiologic
hypotheses for routine testing are presented and standard
algorithms from other fields are adapted for testing them.

Implementation principles are offered, but derived multivari-
ate strategies depend on the available data streams, on their
individual and covariate behavior, and on the goals and
resources of the monitoring organization.

Objectives
Two prototype health monitoring problems are considered.

The first problem, the parallel monitoring problem, is the
monitoring of time series representing different physical loca-
tions (e.g., counties or treatment facilities) that are possibly
stratified by other covariates (e.g., syndrome type or age group).
The issue is how to maintain sensitivity while limiting the
number of alerts that arise from testing the multiple resulting
time series. Empirical thresholds can be chosen to achieve
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expected background alert rates of m per week or per month,
where m depends on the investigation capacity and tolerance
of the monitoring system. The second problem, the consen-
sus monitoring problem, is the testing of a single hypothesis
by using multiple sources of evidence. For example, suppose
that the null hypothesis is that no current outbreak of gas-
trointestinal disease exists in the monitored population. Usu-
ally, evidentiary time series available to test this hypothesis are
syndromic counts of emergency department visits, outpatient
clinic office appointments, and sales of over-the-counter rem-
edies. The question is how to make decisions based on all
available data sources (i.e., whether to combine results of tests
applied to the individual time series or to apply a multivariate
algorithm to the collection of visits, appointments, and sales)
and how to implement the chosen strategy most effectively.

The purview and resources of a group performing surveil-
lance will determine the importance of these two monitoring
problems. This report discusses statistical hypothesis tests spe-
cific to these problems, presents an approach for evaluating
and comparing these tests, and applies this approach to gain
preliminary insights. Algorithms used to implement some of
these tests are either implemented or being reviewed in the
Electronic Surveillance System for the Early Notification of
Community-Based Epidemics (ESSENCE) biosurveillance
systems (1).

Methods
Multiple methods that are presented combine the results of

separate hypothesis tests. The computed p values provide test
results amenable to these methods in the interval [0, 1].
Whereas a typical null hypothesis is that the current value(s)
belong to some assumed probability distribution, the epide-
miologic null hypothesis is that disease incidence is at expected
levels. Even for tests of clinical diagnosis data, the rejection of
the statistical hypothesis might not imply rejection of the epi-
demiologic one. In examples in this report, nominal thresh-
olds of p = 0.05 and p = 0.01 are used, but in practical
circumstances with unknown time series distributions from
various data sources, the probabilistic interpretation is fre-
quently unclear, and empirical threshold choices might be
necessary for robust detection performance. Historical data
sets or simulations can be used to make such threshold choices.
Statistical properties of the methods (i.e., parallel monitoring
methods, consensus methods, multiple univariate methods,
and multivariate methods) depend on constant data variance
(and on constant covariance for the multivariate methods);
therefore, estimates of variance and other baseline parameters
should be updated regularly to adapt to nonstationary behav-
ior. The term “alert” is used to denote a threshold crossing,

whereas false “alert” will refer to a threshold crossing unre-
lated to an increase in incidence of the disease type of concern.

Parallel Monitoring Methods
Multiple testing can lead to uncontrolled alert rates as the

number of data streams increases. For example, suppose that
a hypothesis test is conducted on a time series of daily diag-
noses of influenza-like illness. In a one-sided test, this test
results in a statistical value in some distribution that yields a
probability p that the current count is as large as observed.
For a desired Type I error probability of α, the probability is
then (1-α) that an alert will not occur in the distribution as-
sumed for data with no underlying aberrations. Therefore,
for the parallel monitoring problem of interest, if such tests
are applied to n independent data streams, the probability
that no background alerts occur is (1-α)n, which increases
quickly for practical error rates a (exceeding 0.5 for α = 0.05
and n >13).

A common method of controlling this multiple testing prob-
lem is to replace the probability threshold “a” with the
Bonferroni bound α / N, where N is the number of monitored
data streams (2). The resulting criterion is sufficient but usu-
ally not necessary for ensuring an overall Type I error rate of at
most a, and it frequently results in an increased loss of sensitiv-
ity. Several published modifications (3–6) of the Bonferroni
procedure maintain the error rate of “a” with less stringent re-
jection criteria. Let P(1),…, P(N) be the p-values sorted in as-
cending order. In a stagewise rejective multiple test (3),
combined null hypothesis was used if for any j, j = 1...N, i.e.:

P(j) < j · a / C · N, where C = ∑ 1/j.

This criterion provides an overall error rate of “a” for C = 1
if the tests are independent (4), and this relaxed criterion has
been demonstrated to maintain this error rate for multiple
common multivariate data sets with positive correlation (6).
These improvements were applied when it was demonstrated
(7) that they control the false discovery rate (FDR), or
expected ratio of false alerts to the total alert count. For
example, FDR methods have been used to monitor CUSUM
results of hospital data streams from multiple districts in the
National Health Service of the United Kingdom (8).

For a large number of data streams and a well-defined sig-
nal, Bonferroni modifications might substantially improve
detection performance (9). However, for a limited number of
data streams (e.g., 24–36 counties or treatment facilities) these
criteria yield alert rates within approximately 0.1 of the rates
from the Bonferroni bound, unless the data are highly corre-
lated.

The manner in which the number of alerts increase with
the number of simultaneous tests is presented (Table 1). The
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columns are alert rates obtained by combining p values from
a control chart method applied to a data set containing 934
days of daily counts. The first two data sets represent inde-
pendent and correlated background noise. The first was a set
of 12 independent Poisson-distributed time series with a mean
value of 50. The second data set consisted of 12 series that
were similar except that each pairwise correlation coefficient
was approximately 0.5. The third data set contained 12 series
of syndromic counts from a large (median count: >10 per

day) county that included outbreak events among several of
the series. Data use agreements prevent disclosure of the
actual values, but individual time series were Poisson-like, with
variance/mean ratios (excluding one 6-week influenza season)
>1.5 in only two of the series and with a mild day-of-week
effect present in only one. The mean pairwise correlation
coefficient was 0.037, whereas the median was 0.023; there-
fore, they can be viewed as independent. An exponentially
weighted moving average (EWMA) control chart appropri-
ately scaled to return values (10) was applied to all three sets
of time series. Such charts have been applied widely for hospi-
tal surveillance (11–13). The first column (Table 1) indicates
the number of series combined in each row, increasing from a
single series in the top row to all 12 at the bottom. The three
columns for each data set indicate the daily alert rates as the
fractions of days on which the combined values decline below
a = 0.05, computed by three methods. If the p values for the
day in ascending order are P(1)…P(N), then

Minimum method: alert if P(1) < α,

Simes method: alert if Mininum ( N · P(j) / j ) < α, j = 1…N,

Bonferroni method: alert if P(1) / N < α.
The multiple-testing problem is illustrated for each data set

by the rapid increase in the alert rate using the minimum p
value. For the two simulated data sets, the Simes and
Bonferroni alert rates are comparable to formerly published
values (6). The columns computed from the actual syndromic
counts indicate realistic alert rates in the presence of scattered
signals. The combination methods control the increase in alert
rates with the number of data streams, and for these nearly
independent streams, the Simes alert rates are only slightly
(Table 1) above the Bonferroni rates. This difference increases
as data streams are added, as their correlation increases, and as
the alerting threshold “a” is increased. These factors should be
considered in the choice of a parallel monitoring method
intended to control alert rates.

Regarding the Simes method, only p values below the nomi-
nal threshold “a” affect the result. No consensus effect exists
(see Consensus Monitoring Methods); the method applied to
10 p values of 0.06 returns 0.06. The Simes criterion (3–5)
does not specify which of the data streams is anomalous; a
procedure (4) is to reject the null hypothesis for all streams
with p values below the largest one that satisfies the Simes
method inequality. More conservative closed-form criteria (5)
have been developed that indicate which component hypoth-
eses to reject, and the designers of large, complex systems with
hundreds of simultaneous data streams should consider these
criteria.

TABLE 1. Counts and ratios* with nominal alerts comparing
simple minimum, Bonferroni, and Simes parallel monitoring
approaches†

Minimum Simes Bonferroni

No. streams/ No. No. No.
Technique alerts Rate alerts Rate alerts Rate

Poisson data streams: correlation coefficient = 0.0
1 43 0.046 43 0.046 43 0.046
2 89 0.095 48 0.051 48 0.051
3 135 0.145 47 0.050 47 0.050
4 169 0.181 49 0.052 49 0.052
5 212 0.227 48 0.051 48 0.051
6 249 0.267 48 0.051 48 0.051
7 279 0.299 49 0.052 49 0.052
8 319 0.342 52 0.056 51 0.055
9 362 0.388 49 0.052 49 0.052

10 397 0.425 50 0.054 47 0.050
11 430 0.460 56 0.060 54 0.058
12 461 0.494 56 0.060 54 0.058

Poisson data streams: correlation coefficient = 0.5
1 45 0.048 45 0.048 45 0.048
2 89 0.095 49 0.052 48 0.051
3 122 0.131 50 0.054 47 0.050
4 141 0.151 51 0.055 45 0.048
5 161 0.172 48 0.051 39 0.042
6 179 0.192 45 0.048 36 0.039
7 201 0.215 45 0.048 41 0.044
8 221 0.237 45 0.048 42 0.045
9 234 0.251 49 0.052 44 0.047

10 243 0.260 48 0.051 43 0.046
11 254 0.272 48 0.051 43 0.046
12 269 0.288 46 0.049 41 0.044

Syndromic data streams: mean correlation coefficient = 0.037§

1 61.25 0.066 61.25 0.066 61.25 0.066
2 117.95 0.126 75.15 0.080 74.50 0.080
3 170.44 0.182 84.30 0.090 83.28 0.089
4 219.00 0.234 92.03 0.099 90.54 0.097
5 263.95 0.283 96.83 0.104 95.05 0.102
6 305.56 0.327 102.41 0.110 100.09 0.107
7 344.10 0.368 104.26 0.112 101.71 0.109
8 379.81 0.407 110.52 0.118 108.48 0.116
9 412.94 0.442 112.84 0.121 111.75 0.120

10 443.71 0.475 117.74 0.126 117.20 0.125
11 472.33 0.506 120.50 0.129 119.75 0.128
12 499.00 0.534 129.00 0.138 127.00 0.136

* Total = 934 days.
† In computations, three sets of 12 time series were used: uncorrelated

Poisson data, Poisson data with pairwise correlation coefficients of 0.5,
and large-county syndromic counts that included outbreak events among
several of the series.

§Alert counts averaged over all combinations for each row.
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Consensus Monitoring Methods
The consensus problem is the combination of clinical and

nonclinical evidence to gain sensitivity in disease monitoring.
The scope of this report is restricted to prospective monitor-
ing with daily or more frequent syndromic data so that
hypothesis testing can apply. The data streams can be com-
bined at more than one level. Multiple univariate and multi-
variate strategies are considered.

Multiple Univariate Methods

The multiple univariate methods resemble those of the Par-
allel Monitoring section except that the p values are combined
to produce a single p value p* = f( p1,…,pn ) with the consen-
sus property that multiple near-critical values can produce a
critical one. Multiple such functions are possible; two meth-
ods adapted from use in independent, sequential clinical tri-
als are considered. The first method is Fisher’s rule (14), a
function of the product of the p values. The statistic is

For independent tests, values of this quantity form a χ2 dis-
tribution with 2n degrees of freedom. As a multiplicative
method, it is more sensitive to a few small p values than to a
broader number of moderate values. The recommendation is
to use the Fisher’s Rule if the objective is to extract a single
decision on whether to avoid the overall null hypothesis and
avoid considering the individual pj,.

The second statistic is Edgington’s method (15), an addi-
tive method that calculates the resultant p value as

where S is the sum of the n p values. The summation contin-
ues until (S-j) is no longer positive. This additive method is
more sensitive to multiple, near-critical values. For approxi-
mately 24–36 data streams, this formula cannot be computed
accurately. In such cases, the expression

(mean(p) – 0.5 ) / ( 0.2887 / √n)

gives a z-score with a Gaussian probability that is a close
approximation to this formula (16).

If the data streams are independent, Edgington’s method
gives fewer alerts than Fisher’s method at nominal thresholds
but is more sensitive to data correlation. Edgington’s method
is recommended if the number of data streams is modest (e.g.,
<12 data streams) and the user wants a sensitive consensus
indicator in addition to the individual test results. This need
has been expressed by epidemiologist users of the ESSENCE
biosurveillance systems and is common among large system
users who require some summarization but are skeptical of

bottom-line results that hide the contributions of individual
evidence sources.

An example (Table 2) of the performance of these methods
applied to the 2.5 years of syndromic data (Table 1) is pre-
sented. Again, the multiple-testing problem is evident, and
both the Fisher and Edgington methods control the alert rate
growth with the number of data streams. Each entry in the
row representing r data streams is the mean of the alert rates
computed for all combinations of the 12 streams taken r at a
time. Mean alert counts indicate the number of the combina-
tion alerts that are picked up by the individual tests.
Edgington’s method gives smaller alert rates because of the
independence of the data streams, and the majority of the
alerts found with Fisher’s method are also individual stream
alerts. However, because it is an additive method, small single
p values do not necessarily cause alerts in Edgington’s method;
therefore, if the system is not also monitoring single streams,
the use of Fisher’s method or both methods is recommended.

Multivariate Methods

The motivation to use fully multivariate methods is that they
can detect distributed faint outbreak evidence that might be
lost in the individual hypothesis tests, and strong correlation
among the data sources might also be exploited. Efforts have
been confined to multivariate statistical process control (MSPC)
charts based on Hotelling’s T2 as applied in surveillance efforts
in related fields (17). The T2 statistic can be written as

(X- µ) S-1 (X- µ)

where
X = multivariate data from the test interval,
µ = vector mean estimated from the baseline interval, and
S = estimate of covariance matrix calculated from the baseline

interval.
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TABLE 2. Comparison of multiple univariate approaches based
on Fisher and Edgington combination rules*

No. alerts Edgington Fisher
No. from Edgington excluding Fisher excluding
streams any combination single combination single
used stream alerts alerts alerts alerts

1 61.3 61.3 0.0 61.3 0.0
2 118.0 49.7 18.1 69.9 4.2
3 170.4 46.7 16.7 74.8 2.6
4 219.0 46.7 14.2 79.1 2.4
5 264.0 46.8 12.6 83.5 2.0
6 305.6 47.0 11.4 87.2 1.8
7 344.1 47.4 10.3 90.1 1.7
8 379.8 48.0 9.5 93.0 1.5
9 412.9 48.4 8.7 95.9 1.3
10 443.7 49.7 8.2 98.7 1.3
11 472.3 51.6 7.9 100.5 1.1
12 499.0 58.0 10.0 104.0 1.0

* Methods were applied to the 2.5 years of syndromic data. Entries are
counts and ratios of days with nominal alerts averaged over all stream
combinations for a fixed number of time series in each row.
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Whereas T2 can be viewed as a multidimensional z-score,
this method has been generalized to obtain other multivariate
control charts. A multivariate EWMA chart (MEWMA) has
demonstrated improved run length characteristics (18) with
health surveillance data (19). In MEWMA, the data vector is
replaced by the exponentially weighted moving average:

Zj = R X + (1-R) Zj-1

where R is a diagonal matrix of smoothing coefficients, and
the covariance matrix is a scalar multiple of the data covari-
ance matrix S in the usual application where equal smoothing
coefficients are used (18). This method is demonstrated in
the Results section. Analogous multivariate CUSUMs have
also been applied to surveillance data, with the Crosier’s mul-
tivariate cumulative sum (MCUSUM) method (20) applied
to syndromic data from multiple hospitals (21) and
Pignatiello’s MCUSUM (22) applied to yearly, spatially dis-
tributed counts of breast cancer incidence (23). Whereas the
attraction of these multivariate methods is their signal sensi-
tivity, they are also sensitive to noise background changes.
Hotelling’s T2 has been described (24) as “particularly bad at
distinguishing location shifts from scale shifts.” Combined
univariate methods are directional in that they might be quick
to detect shifts in just a few data sources but less sensitive to
shifts in more general directions (23). These methods are
omnidirectional, a property that can be useful in detecting an
earlier signal, but can also cause false alerts if a change in the
covariance matrix occurs that is irrelevant to any outbreak
signal of interest.

Results

Evaluation Methodology
In this section, simulation is used to test the detection per-

formance of some of the consensus monitoring methods dis-
cussed previously. In this testing, direct choice of the minimum
p value was compared with the Fisher and Edgington mul-
tiple univariate methods and with Hotelling’s T2 and Lowry’s
MEWMA among the multivariate methods.

For background data, eight time series simulating 700 days
of syndromic data counts were formed by random draws from
a Poisson distribution with a mean of 100. The individual and
consensus alerting methods were applied to the unaltered back-
ground data to find threshold p values corresponding to three
alert rates considered practical for public health monitoring:
one alert every 2 weeks, every 4 weeks, and every 6 weeks.

For the signal to be detected, injected cases attributable to a
presumed outbreak were added to the background data. These
data epicurves were stochastically drawn from an ideal incu-

bation period distribution to test the ability of each method
to detect outbreak-like signals (10). This procedure differs from
the standard method of adding a fixed quantity to the process
mean to find the average run length of a control chart (1).

The incubation period distribution (25) was used to esti-
mate the idealized curve for the expected number of new symp-
tomatic cases on each outbreak day. The lognormal parameters
were chosen to give a median incubation period of 3.5 days,
consistent with the symptomatology of known weaponized
diseases (26) and a temporal case dispersion consistent with
previously observed outbreaks (25).

The stochastic epicurves were drawn from the resulting log-
normal distribution. To challenge the algorithms, the num-
ber of attributable cases on the peak day of the outbreak was
set at one standard deviation of the background data. The
total outbreak size N was this peak value divided by the maxi-
mum of the lognormal probability density function. Individual
incubation periods were then chosen with a set of N random
lognormal draws and rounded to the nearest day. The num-
ber of cases to add for each day after onset was then the num-
ber of draws that were rounded to that day. The evaluation
process was to add one of these stochastic epidemic curves to
the background time series at a randomly chosen start day
beyond an 8-week start-up period for the alerting method
and then to run the alerting methods on the time series to
determine whether the thresholds were exceeded for each prac-
tical alert level. Algorithm performance can be precisely mea-
sured in this process because the start and duration of each
simulated outbreak are known.

This process was repeated for 100 trials; for each alert level,
algorithm sensitivity was measured as the ratio of the trials for
which the algorithm output exceeded threshold for that level
during the outbreak injection interval.

Tables of sensitivity calculations are indicated for sets of 2,
4, 6, and 8 background data streams in which simultaneous
stochastic signals were added to all streams in a set (Table 3).
The table represents two background data sets: the three left-
hand columns are results for a set with independent data
streams, and the three right-hand columns are for a set com-
puted so that each pairwise correlation coefficient among the
eight streams was 0.5. Key features among the method com-
parisons exist.

• The multiple univariate methods indicate uniformly bet-
ter sensitivity than the multivariate methods among the
independent data streams for this transient signal type.
For the correlated data, the multivariate methods have
better sensitivity for six and eight data streams, an advan-
tage that should continue to increase with the number of
streams.
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• For the independent data streams, the controlled alert rates
of the Fisher and Edgington methods yield sensitivity
advantages over the simple minimum method, increasing
with the number of data streams.

• Whereas the Edgington method has effective sensitivity
for independent data, the correlation degrades its perfor-
mance critically at the stricter alert levels. The Fisher
method indicates the same effects to a lesser degree.

These observations suggest that the choice of multiple
univariate or multivariate methods should depend on the num-
ber of data streams monitored and on their correlation charac-
teristics. For a large enough collection of highly correlated data
streams, the alert rate for even the Fisher method would suffer,
but multivariate methods might retain sensitivity.

The same comparisons are demonstrated (Table 4) but with
the signal injected into only one stream (i.e., the consensus
factor in these methods offers no advantage). For the single
signal results in this table, the peak value was increased to
twice the standard deviation of the background data. The

multivariate methods fared poorly in these runs, even in the
correlated data. For the consistently correlated data, the sus-
tained sensitivity of the simple minimum suggests two prin-
ciples for system designers. First, attempts to remove
cross-correlation with modeling of known features (seasonal,
day-of-week effects) should be tried in the univariate algo-
rithms so that the combination methods will be more robust.
Second, the parallel monitoring methods should be employed
to remain aware of individual algorithm outputs.

Conclusion
This report presents and examines statistical tools for sys-

tematizing the prospective monitoring of public health by
using various spatially distributed time series data. The mod-
eled multiple-stream scenarios illustrate the need to blend the
parallel and consensus monitoring tools to achieve a system
with distributed sensitivity and controlled alert rates.

TABLE 3. Sensitivity measured as ratio of number of events
detected out of 100 simulated runs, comparing five methods
for consensus monitoring*

Signal with Peak 1σσσσσ injected in each stream
Correlation: ρρρρρ = 0.0 Correlation: ρρρρρ = 0.5

No. streams/ Background alert Background alert
Sensitivity†/ interval (days) interval (days)
Technique 14 28 42 14 28 42

2
Minimum 0.79 0.64 0.55 0.87 0.68 0.55
Fisher 0.83 0.72 0.57 0.83 0.72 0.67
Edgington 0.81 0.67 0.54 0.84 0.70 0.69
Hotel 0.58 0.40 0.28 0.70 0.41 0.30
Lowry 0.68 0.49 0.39 0.68 0.52 0.46

4
Minimum 0.71 0.53 0.41 0.83 0.70 0.59
Fisher 0.84 0.68 0.63 0.87 0.73 0.65
Edgington 0.90 0.71 0.61 0.86 0.70 0.46
Hotel 0.51 0.27 0.18 0.69 0.60 0.51
Lowry 0.47 0.31 0.20 0.70 0.57 0.47

6
Minimum 0.89 0.69 0.55 0.86 0.69 0.62
Fisher 0.99 0.96 0.91 0.85 0.69 0.46
Edgington 0.96 0.94 0.94 0.90 0.46 0.31
Hotel 0.57 0.46 0.38 0.81 0.66 0.59
Lowry 0.60 0.49 0.37 0.81 0.70 0.55

8
Minimum 0.80 0.60 0.40 0.91 0.70 0.60
Fisher 0.92 0.88 0.85 0.93 0.56 0.37
Edgington 0.98 0.92 0.87 0.68 0.34 0.23
Hotel 0.61 0.45 0.44 0.74 0.55 0.48
Lowry 0.60 0.48 0.39 0.74 0.57 0.46

* Background data were random Poisson time series with means of 100
and with fixed pairwise correlation coefficients. Stochastic point-source
epicurves, with a peak value of 1 background standard deviations, were
injected into all data streams for each run.

† Sensitivity as a function of background alert interval.

TABLE 4. Sensitivity measured as ratio of number of events
detected out of 100 simulated runs, comparing five methods
for consensus monitoring*

Signal with Peak 2σσσσσ injected in each stream
Correlation: ρρρρρ = 0.0 Correlation: ρρρρρ = 0.5

No. streams/ Background alert Background alert
Sensitivity†/ interval (days) interval (days)
Technique 14 28 42 14 28 42

2
Minimum 0.93 0.85 0.74 0.99 0.90 0.81
Fisher 0.92 0.82 0.70 0.89 0.82 0.77
Edgington 0.69 0.49 0.44 0.75 0.50 0.40
Hotel 0.40 0.26 0.15 0.42 0.25 0.21
Lowry 0.35 0.24 0.16 0.30 0.21 0.16

4
Minimum 0.74 0.61 0.51 0.92 0.80 0.72
Fisher 0.77 0.50 0.43 0.72 0.62 0.50
Edgington 0.61 0.39 0.30 0.57 0.27 0.18
Hotel 0.26 0.17 0.10 0.37 0.21 0.13
Lowry 0.21 0.13 0.10 0.31 0.13 0.07

6
Minimum 0.75 0.57 0.49 0.90 0.78 0.71
Fisher 0.70 0.55 0.41 0.60 0.41 0.27
Edgington 0.59 0.46 0.38 0.45 0.23 0.15
Hotel 0.37 0.22 0.17 0.43 0.20 0.18
Lowry 0.34 0.18 0.14 0.30 0.15 0.13

8
Minimum 0.69 0.49 0.32 0.88 0.73 0.63
Fisher 0.69 0.45 0.39 0.59 0.33 0.22
Edgington 0.65 0.40 0.25 0.42 0.21 0.14
Hotel 0.44 0.29 0.24 0.37 0.25 0.18
Lowry 0.34 0.19 0.15 0.30 0.18 0.11

* Background data were random Poisson time series with means of 100
and with fixed pairwise correlation coefficients. Stochastic point-source
epicurves, with a peak value of 2 background standard deviations, were
injected into one data stream for each run.

† Sensitivity as a function of background alert interval.
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Parallel monitoring methods in which modified Bonferroni
criteria are used are important to retain detection power at
controlled alert rates. A flowchart (Figure) is presented, envi-
sioned as part of a distributed, syndromic monitoring system
diagram, for a method to combine agestratified and unstratified
monitoring methods for increased sensitivity to localized out-
breaks, which have proven difficult (27) for large systems to
detect.

The choice of a multiple univariate or multivariate approach
for consensus monitoring depends on the number and distri-
bution of useful data sources and also on their covariance struc-
ture and stationarity. Strong, consistent correlation among
multiple sources warrants the examination of multivariate
control charts. However, whereas explicitly multivariate meth-
ods offer the possibility of increased sensitivity, careful atten-
tion must be given to data interrelationships when using them.
These charts must be proven sufficiently robust to customary
variation in the correlation among data streams to ensure that
the signals are not overwhelmed by multivariate noise.
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Abstract

Introduction: Emergency department (ED) records and over-the-counter (OTC) sales data are two of the most commonly
used sources of data for syndromic surveillance. The majority of detection algorithms monitor these data sources separately and
either do not combine them or combine them in an ad hoc fashion. This report outlines a new causal model that combines the
two data sources coherently to perform outbreak detection.

Objectives: This report describes the extension of the Population-wide Anomaly Detection and Assessment (PANDA) Baye-
sian biologic surveillance algorithm to combine information from multiple data streams. It also outlines the assumptions and
techniques used to make this approach scalable for real-time surveillance of a large population.

Methods: A causal Bayesian network model used previously was extended to incorporate evidence from daily OTC sales data.
At the level of individual persons, the actions that result in the purchase of OTC products and in admission to an ED were
modeled.

Results: Preliminary results indicate that this model has a tractable running time consisting of 209 seconds for initialization
and approximately 4 seconds for every hour’s worth of ED data, as measured on a Pentium-4 three-Gigahertz machine with
two Gigabytes of RAM.

Conclusion: Preliminary results for surveillance using a new Bayesian algorithm that models the interaction between ED
and OTC data are positive regarding the run time of the algorithm.

medications) is recorded daily, and case-level data about sales
transactions are not available. If such data were to be avail-
able, a multivariate detection algorithm could be applied, and
the additional information about each transaction might be
exploited to improve detection capability. In contrast, ED chief
complaint data do contain case-level information (e.g.,
admission date and time, age, sex, home ZIP code, and chief
complaint) about each patient admitted. These data can be
used to improve a detection algorithm’s capability by identi-
fying known spatial, temporal, demographic, and symptom-
atic patterns of the disease in the data. Nevertheless, an
outbreak signal typically is expected to appear later in ED
data than in OTC data.

Developing a detection algorithm that integrates the two
data sources would combine the advantages of both data types
and might help monitors determine that an outbreak is
occurring. The key difficulty with this data-fusion approach
is in measuring the relationship between data sources when
an outbreak occurs. Correlations between OTC and ED data

Introduction
Syndromic surveillance systems routinely monitor data con-

cerning sales of over-the-counter (OTC) medications and
records of chief complaints of persons reporting to hospital
emergency departments (EDs) (1,2). If a disease outbreak
occurs in a region, its effects are often expected to be seen in
both data sources (3,4). Although ED and OTC data sources
contain the signal of an outbreak, detection algorithms gener-
ally monitor each data type separately, which limits the sur-
veillance system’s detection capabilities.

Persons with initial symptoms of disease are assumed often
to treat themselves before seeking medical care (5–7). Conse-
quently, an outbreak signal is expected to appear first in OTC
medication sales data and then later in ED data (3). Although
an early signal is expected to appear in OTC data, this signal
typically will be weak. Furthermore, OTC data are often
reported as a univariate time series in which regional sales vol-
ume for a particular category of product (e.g., sales of cough
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during an outbreak cannot be estimated from data because
because no training data exist that capture the effects of a
large-scale epidemic on these data sources during the same
period. The majority of existing data-fusion approaches treat
data sources as independent (8–10). However, despite the
absence of training data, a certain amount of background
knowledge does exist about the plausible relationship between
OTC and ED data for particular diseases that can be used to
model the actions of persons that result in possible OTC medi-
cation purchases and ED admissions.

This report extends the Population-wide Anomaly Detec-
tion and Assessment (PANDA) algorithm described previously
(11). That algorithm used a causal Bayesian network to model
a population of persons. The original PANDA algorithm was
designed to monitor only ED chief complaint data. This
report enhances PANDA to simultaneously monitor two data
sources of different granularity: aggregated regional counts for
OTC sales and multivariate ED records for individual patients.
Although the Bayesian network can be used to model the
effects of any noncontagious disease outbreak (i.e., those not
involving person-to-person transmission) in a geographic area
(11), this report focuses on monitoring to detect an outdoor,
aerosolized release of an anthrax-like agent within a countywide
region.

Methods
The key aspect of the PANDA algorithm is the explicit

modeling of each person in the population as a subnetwork of
the overall causal Bayesian network. In this report, these per-
sons are referred to as “person models”; however, models could
be generalized to entities that provide information about dis-
ease outbreaks (e.g., biosensors or livestock). The advantage
of modeling each person in a population is that it allows the
algorithm to have substantial representational power and flex-
ibility. Having a subnetwork for each person enables users to
represent different types of background knowledge coherently
in the model. For instance, to model an aerosolized anthrax
release, designers can build into the model a temporal assump-
tion about the incubation time of anthrax and a spatial
assumption that the release will take the shape of a downwind
plume (12,13). In addition to the power in representing prior
knowledge, modeling an entire population allows the model
to combine spatial, temporal, demographic, and symptom-
atic evidence to derive a posterior probability of a disease out-
break. With respect to representational flexibility, individual
modeling allows new types of knowledge and evidence to be
readily incorporated into the model. For example, radiology
reports (which are especially useful indicators of an anthrax

attack) can easily be added to the model as a new evidential
variable. Finally, the majority of the background knowledge
of the characteristics of respiratory anthrax disease is at an
individual rather than a population level.

Generic Model
In this model, the causal Bayesian network is used to detect

an outbreak caused by an aerosolized release of an anthrax-
like biologic agent (Figure 1). This network is an instantiation
of a generic model for infectious but noncontagious diseases.
The generic model can be partitioned into four sets of nodes,
as follows:

• Global nodes (G). These represent global features com-
mon to all persons. Included in this set is a target node
(T) indicating the occurrence of a disease outbreak. Moni-
toring the state of the target node (e.g., anthrax release)
permits users to derive an updated posterior probability
that a disease outbreak is occurring. The larger set could
include other variables (e.g., the national terror alert level
or information about major local sports events or politi-
cal conventions).

• Interface nodes (I). For the sake of simplicity, only time
and location of release are included in the model outlined
in this report. As the model is refined, other nodes (e.g.,
amount of release, type of anthrax powder, and meteoro-
logic information) will be added to the interface layer.

Anthrax
release G *

I

P

O

Time of
release

Location
of release

OTC† sales for
ZIP code Z1

Person
model 1

Person
model 2

Person
model 3

Person
model 4

OTC sales for
ZIP code Z2

FIGURE 1. The anthrax model used by the Population-wide
Anomaly Detection and Assessment (PANDA) algorithm

* G = global nodes (i.e., features common to all persons), I = interface nodes
(i.e., time and location of release), P = person nodes (i.e., evidence noted
for each person), and O = populationwide evidence nodes (i.e., evidence
aggregated for a particular set of persons).

† Over-the-counter medications.
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• Person models (P) = {P1, P2, …, Pn}. For each person,
evidence observed on an individual basis will be entered.

• Populationwide evidence nodes (O) = { O1, O2, …, Om}.
These represent evidence aggregated for a particular set
of persons (e.g., those living in a particular geographic
region). In the model outlined in this report, the set O
consists of aggregate OTC sales of a particular type (e.g.,
cough medication sales) over a particular ZIP code.

The generic model makes the following three assumptions
that are intended to facilitate the calculation of the probabil-
ity of the target node T given the evidence:

• Assumption 1: ∀i, Pi    P-i | I and any arc between a node
I in I and a node X in some person model Pi is oriented
from I to X. The symbol   means “is independent of ”
and the notation P-i means all person models except Pi.
The fact that the model does not condition on the
populationwide evidence in O might appear counter-
intuitive, but the evidence in O is not used in calculating
the contribution of the evidence in P to the posterior prob-
ability.

• Assumption 2: G  P | I and any arc between a node G in
G and a node I in I is oriented from G to I.

• Assumption 3: The person models Pi contain arcs that
are oriented toward the populationwide evidence nodes
in O.

Thus, from Assumptions 1 to 3, arcs are not allowed
directly between the person models. For noncontagious dis-
eases that might cause outbreaks, these assumptions are rea-
sonable when I contains all the factors that influence the status
of an outbreak disease in persons in the population. For
example, in the case of a biologic terrorist–released agent, such
information includes the time and location of release of the
agent. A key characteristic of nodes in I is that they have arcs
to the nodes in one or more person models, and they induce
the conditional independence relationships described in
Assumptions 1 and 2. In contrast, for contagious diseases (i.e.,
those involving person-to-person transmission), arcs are needed
between person models because persons can infect each other.
Once these three assumptions no longer hold, inference
becomes much more computationally expensive, and the
current optimizations that allow PANDA to run efficiently
do not hold.

Anthrax Model
In this prototype model, the simplifying assumption is made

that persons living in a particular ZIP code purchase OTC
medications only within that ZIP code. Consequently, the
OTC purchases in each ZIP code are independent of each
other. Because this assumption will be violated in the event of

a large-scale biologic terrorist attack, this issue will be addressed
subsequently; however, this assumption was used for the ini-
tial prototype. One straightforward way to avoid this assump-
tion is to model the populationwide evidence O as OTC sales
for an entire region (Allegheny County, in this model); how-
ever, doing so would lose spatial information that might be
helpful in detecting an outbreak. The OTC Sales for ZIP code
nodes are integer-valued nodes representing the aggregate
number of units of OTC medications sold throughout the
specified ZIP code. These nodes are considered to be observed
nodes because they are instantiated with values from the OTC
data.

The structure of the person model (Figure 2) was created
on the basis of expert judgment. Certain nodes in this model
are temporal and modeled for 3 days; that duration was
selected for use in the prototype as the shortest period of time
meaningful for modeling a disease outbreak. For modeling an
anthrax outbreak, this period will be extended to 2 weeks.
Evidence nodes whose values are observed in the ED data
include home ZIP code, age decile, sex, respiratory chief com-
plaint when admitted, and ED admission.

The parameters of certain nodes in this model were esti-
mated from a training set consisting of 1 year’s worth of HIPAA
compliant ED patient data from certain hospitals in western
Pennsylvania during 2000 or from a training set of OTC data
from 2004 (2). The parameters of other variables were
obtained from U.S. Census data about the region. Respective
probabilities (whether prior or conditional) for the rest were
derived as a logical function of their parents or assessed sub-
jectively on the basis of the published literature and general
knowledge about infectious diseases. Because of space restric-
tions, this report describes only six nodes that differ from the
original PANDA model (1):

• Anthrax acute respiratory infection node. This node
indicates whether a person has an acute respiratory infec-
tion (ARI) attributable to anthrax. This node models the
presence of ARI during a 3-day period, similar to the
anthrax infection node.

• ED acute respiratory infection node. This node indi-
cates whether a person who reports to an ED has an acute
respiratory infection (ARI) attributable to an ED disease
other than anthrax. This is a 3-day temporal node.

• Non-ED acute respiratory infection node. This node
indicates whether a person who does not report to an ED
has an acute respiratory infection (ARI) attributable to a
disease other than anthrax. This is a 3-day temporal node.

• Acute respiratory infection. This node indicates whether
a patient has ARI. This node is a “logical or” of three
Boolean nodes: anthrax acute respiratory infection, ED
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acute respiratory infection, and non-ED acute respiratory
infection.

• Daily OTC purchase. This node captures the probabil-
ity of purchasing a respiratory-related OTC medication
(e.g., a cough medication) today, yesterday, the day
before yesterday, or never. The conditional probability of
this variable was derived by using OTC sales of respira-
tory-related medications in the countywide region
being modeled.

• Previous 3 Days’ OTC purchase. This Boolean node
describes whether a respiratory-related OTC medication
was purchased during the previous 3 days by the person
being modeled (2).

Inference
The goal of PANDA is to monitor the state of the target

node T, which captures the probability of a disease outbreak
occurring. PANDA calculates the posterior probability of
T as new ED and OTC data arrive. Let o be the set of
populationwide evidence (i.e., OTC sales volume for each ZIP
code in the countywide region). Similarly, let e be the collec-
tive set of evidence from individual persons (i.e., case infor-
mation from persons who recently visited EDs in the region).
From ED data, demographic data from the most recent U.S.
Census can be used to infer information about persons who
have not been recently admitted to an ED. The sets e and o
can be expressed as follows:

e = {X = e : X ∈ Pi , Pi ∈ P } and o = {X = o : X ∈ Oj , Oj ∈ O}.

FIGURE 2. The person model used by the Population-wide Anomaly Detection and Assessment (PANDA) algorithm

* Emergency department.
†Over the counter. OTC sales for ZIP code is part of the populationwide evidence layer. Although the OTC sales for ZIP code is only shown

with input from a single person model, it actually has arcs from all person models in a given ZIP code (see Figure 1).
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The goal of the algorithm is to calculate the probability of a
disease outbreak given the OTC and the ED data. Mathemati-
cally, this objective is expressed as:

Equation 1. P(T | o, e ) = k . P( o, e | T ) . P(T),

where the proportionality constant is

.

The term P(T) can be calculated by using Bayesian net-
work (BN) inference on just the portion of the model that
includes G. Performing BN inference over just the nodes in
G is much preferable to inference over all the nodes in X,
because the number of nodes in X is approximately 107 in
the current model. Because the set I renders the nodes in
P (including e) independent from the nodes in G, the term
P(o, e | T) can be derived as follows:

Equation 2.

The above summation can be very demanding computationally,
because e usually contains many nodes. The term P(o, e | I = i)
can be factored as follows:

P(o, e | I ) = P(o | e, I ) . P(e | I )

The term P(o | e, I ) can be considered to be the conditional
contribution of the OTC evidence to the posterior probabil-
ity P(T | o, e), whereas the term P(e | I ) can be considered as
the conditional contribution of the ED evidence.

Incorporating ED Evidence
The term P(e | I ) is calculated efficiently by using equiva-

lence classes and incremental updating (11). Space can be saved
and inference time reduced by using equivalence classes to
group persons who are indistinguishable on the basis of their
evidence. Persons in the same equivalence class have the same
values for the home ZIP code, age decile, sex, respiratory chief
complaint when admitted, and ED admission nodes. Incre-
mental updating dramatically reduces inference time by avoid-
ing the necessity to calculate P(e |I ) for the entire population
every time new ED data arrive.

Incorporating OTC Evidence
For OTC evidence to be incorporated into the posterior

probability, the probability P(o, e | I ) must be computed. If,
for the purpose of this initial prototype, the simplifying
assumption is made that persons living in a specific ZIP code
purchase OTC medications only within their home ZIP code,
then OTC purchases for each ZIP code are independent of
each other, conditioned on the nodes in I. OTC purchases
within a given equivalence class are also assumed to be

capable of being modeled with a binomial distribution, and
the distribution of OTC purchases within a given ZIP code is
assumed to be capable of being modeled as the sum of inde-
pendent binomial distributions of the equivalence classes
within that ZIP code. Let Z be the set of all ZIP codes in the
region under surveillance, and let OZk

 be the variable repre-
senting the OTC cough-medication sales volume for ZIP code
Zk. Furthermore, let the observed OTC cough-medication sales
volume during the previous 3 days for ZIP code Zk be oZk

.
The ZIP-code independence assumption allows the prob-
ability P(o | e, I ) to be factored as follows:

Equation 3.

To model the probability P(OZk
 = oZk

 | e, I ), which corre-
sponds to the probability of the OTC cough-medication data
for ZIP code Zk, the contribution of the equivalence classes
that belong to this ZIP code need to be determined. Let ΩΩΩΩΩZk
be the set of equivalence classes that have home ZIP codes
equal to Zk. For the sake of clarity, assume only one person
model exists (Figure 2) that is common to all persons in the
population; in general, as many person models can exist as is
useful to represent different types of persons. An equivalence
class    j is defined by a tuple ej , which is a (possibly incom-
plete) set of values for the evidence nodes in the person model.
An example of such a tuple is {home ZIP code = 15213, age
decile = 2, sex = male, respiratory chief complaint when
admitted = true, ED admission = today}.

The OTC sales volume for each equivalence class   j is
modeled as a binomial distribution with parameters nj and pj.
The parameter nj is simply the number of persons currently
within the equivalence class. The second parameter pj repre-
sents the probability of an individual in the equivalence class
making an OTC cough-medication purchase within the pre-
vious 3 days. This probability is calculated by conditioning
on the evidence ej that defines the equivalence class and com-
puting the probability that the last 3 days’ OTC purchase
equals true by performing Bayesian network inference on the
person model.

Distributions for each equivalence class in ΩΩΩΩΩZk
 are com-

bined by using a normal approximation to the binomial dis-
tribution (14) to represent the OTC sales distribution for each
equivalence class. The normal approximation is needed
because no efficient way exists to derive the distribution over
the sum of binomial variates directly. In contrast, deriving the
distribution over the sum of normal variates is straightfor-
ward. With this approximation, a binomial distribution with
parameters nj and pj  can be converted into a normal distribu-
tion with mean nj pj and variance nj pj (1−pj ). The distribu-
tion for the entire ZIP code is therefore represented as a
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normal distribution NZk 
(µZk 

,
 
σZk 

) with mean µZk
 and

variance σZk
 that are as follows:

and

Finally, to derive the probability of observing the OTC sales
for each ZIP code, the following is computed:

.

Results and Discussion
The average running times for the ED model described pre-

viously (1) and for the ED+OTC model described in this
report were compared, with both models operating on a
Pentium-4 three-Gigahertz machine with two Gigabytes of
RAM. The initialization time for the ED+OTC model (209.7
seconds) is nearly four times that of the ED model (45.3 sec-
onds). However, when actually processing the 3-day window
of data, the models take approximately the same amount of
time (3.0 seconds for the ED model and 3.9 seconds for the
ED+OTC model). For example, suppose PANDA is run in
real-time starting at t = 72 hours. The algorithm first per-
forms an initialization phase and then processes the data from
t = 0 to t = 71 hours. When data accumulate for the next hour,
PANDA moves its window of cases forward by 1 hour and
analyzes the data from t = 1 to t = 72 hours. For each subse-
quent 72-hour window, the running time of PANDA is
approximately 4 seconds. Even with the OTC extension, the
new PANDA model is capable of processing all current data
well before the next hour’s worth of data arrives. These timing
results indicate that the method is practical for real-time
biosurveillance. The false-positive rate and detection time of
this approach will be evaluated by using data created by
injecting simulated anthrax cases into existing ED and OTC
data streams.

Related Work
The algorithms used in syndromic surveillance have been

described previously (15). Two approaches have been suggested
(10) for using a spatial scan statistic (16) to combine multiple
data sources in performing syndromic surveillance. The first
method treats the multiple sources as covariates. The spatial
scan statistic is calculated by using the sum of the observed
counts from the data sources and the sum of the expected
counts. One of the main problems of this approach is that a
data source with a large count might mask data sources with
smaller counts. An alternative approach is to calculate the log
likelihood ratio for each data source and sum these ratios to

form the scan statistic, similar to an approach taken previ-
ously (11). Combining multiple univariate statistical process
control methods by using a consensus method technique
(9,17,18) has also been suggested. However, the consensus
method assumes independence among the data sources. To
capture the correlation between data streams, multivariate
methods (e.g., Hotelling’s T2 [19], MCUSUM [20] and
MEWMA [21]) have been used on multiple univariate sig-
nals (17). In these multivariate methods, the covariance
matrix for the data streams is typically estimated from a baseline
period. If the covariance matrix changes substantially during
an outbreak, then this estimate will not capture the actual
relationship between the data streams during an outbreak.

Conclusion
This report has introduced a data-fusion approach to

biosurveillance that is based on modeling the effects of an
outbreak disease (excluding diseases associated with person-
to-person transmission) on individual persons in the popula-
tion. The causal Bayesian network (1) was extended to
incorporate evidence from both ED and OTC data by mod-
eling the actions of individuals in terms of purchasing OTC
products and visiting the ED. This data-fusion model can
process a 3-day window of ED and OTC data in approxi-
mately 4 seconds, making it a feasible algorithm for real-time
surveillance. In future work, the model will be extended to
cover a 2-week period and relax the ZIP code independence
assumption. A thorough and high-fidelity evaluation of the
detection algorithm will be performed that will involve
injecting simulated anthrax cases into actual ED and OTC
data streams.
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Abstract

Introduction: Detection of space-time clusters plays an important role in epidemiology and public health. Different approaches
for detecting space-time clusters have been proposed and implemented. Many of these approaches are based on the spatial scan
statistic formulation. One key aspect of these cluster detection methods is the choice of cluster shape.

Objectives: In this report, the effect of using flexible shapes for clusters is explored by discussing the issues that need to be
considered and evaluated.

Methods: The first issue is the flexibility of the shape and its ability to model the disease cluster being studied. Another subtle
and related factor is that with a more flexible shape, clusters can appear more often by chance, which will be reflected in the
p value obtained through Monte Carlo hypothesis testing. Choosing more complex cluster shapes can affect the computational
requirements and also constrain the cluster detection approaches that could be applied.

Results: The New Mexico brain cancer data set is used to illustrate the tradeoffs. The analysis of these data should not be
construed as a comprehensive investigation from the public health perspective. The data set is used to illustrate and compare
clusters with two different shapes, cylinder and square pyramid. The results indicate the insights that can be gained from these
shapes, individually and collectively.

Conclusion: The domain expert should choose the cluster shape, being aware of the disease being modeled and the analysis
goals. For example, a flexible shape like the square pyramid can model either growth or shrinkage and movement of the disease
and might provide insights on its origin. In addition, performing the analyses with more than one shape can lead to increased
insights regarding the disease cluster.

Introduction
The spatial scan statistic (1–3) has been applied to both

retrospective and prospective applications (4) in epidemiol-
ogy and public health. A family of analysis methods has been
developed for different models of the underlying disease clus-
ter (e.g., Bernoulli model and Poisson model). Examples of
the Poisson model are used to illustrate the concepts presented.
For the Poisson model, events are allowed to be generated by
an inhomogeneous Poisson process (e.g., the number of dis-
ease events in a region over a time interval can be expected to
be proportional to the corresponding population, assuming
that no other factors are relevant).

These models have been implemented in SaTScan™, a soft-
ware used to detect space-time clusters (5). SaTScan detects
space-time clusters by using cylindrical windows (Figure 1)
with a circular geographic base and the height of the cylinder
corresponding to a certain interval in time. Geographic loca-
tions are specified discretely (e.g., centers of counties) to

FIGURE 1. A three dimensional view of a cluster with a
cylindrical shape
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SaTScan. Input data to SaTScan include the number of cases
and population information at these discrete locations at dif-
ferent times. SaTScan evaluates a set of cylindrical windows
by considering all those spatially centered at any point in a
user-specified grid and exhaustively varying the cylinder’s ra-
dius and time duration. The evaluation computes the likeli-
hood ratio of the alternative hypothesis (an elevated event rate
within the cylindrical window) and the null hypothesis (the
rate is the same inside and outside the window). For the Pois-
son model, this likelihood function (1) is proportional to

where C is the total number of cases over the entire space and
time, c is the number of cases within the window, and n is the
expected number of cases within the window under the null
hypothesis. Case I refers to the condition when the window
has more cases than expected under the null hypothesis, and
LR is zero when this condition is not true. The cylindrical
window with the highest value of the likelihood function is
the resulting cluster R. The multiple hypotheses testing prob-
lem is overcome in SaTScan by using Monte Carlo methods
by generating synthetic datasets for the entire space-time
region in which the event counts are independently gener-
ated, conforming to the Poisson model for each location and
time. Each of these synthetic datasets is analyzed to determine
its most dominant cluster and its likelihood function value.
The likelihood that the cluster R could have occurred by
chance under the null hypothesis (p value) can be determined
by using these Monte Carlo experiments.

The use of cylindrical space-time windows for the clusters
examined can limit the fit to the disease being analyzed. For
example, the cylindrical shape cannot model growth or shrink-
age of a disease cluster over time nor can it model movement
over time. The square pyramid shape was proposed as an
approach to overcome these limitations (6). This cluster shape
is illustrated (Figures 2 and 3) in three dimensional and two
dimensional views. The three dimensional view (Figure 2) is a
cluster growing with time. The axis of the pyramid does not
need to be orthogonal to the two spatial axes, allowing the
cluster to model movement of the disease. This attribute is
clear from the two dimensional view (Figure 3), where the
squares represent the geographic extent at discrete times in
the cluster time interval. The use of this flexible shape results
in substantially increased computational requirements. The
computational issue can be addressed by using a randomized
search heuristic for the strongest cluster instead of the grid-
based pseudoexhaustive approach used in SaTScan (6). This

report explores the issues related to the choice of the shape
used for space-time clusters.

Methods

Choice of Cluster Shape
The first criterion to consider when choosing the cluster

shape is the fit to the disease cluster being modeled. All of the
available information about the disease cluster can be used to

FIGURE 2. A three dimensional cluster with a square pyramid
shape
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FIGURE 3. A two dimensional view of a cluster with a square
pyramid shape
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determine which characteristics are important to model. For
example, if modeling the growth of the disease cluster over
time is important, using a shape that can represent this
behavior is preferable. Choosing a shape arbitrarily that
allows more flexibility than is needed also has shortcomings.

As discussed previously, the goal is to detect strong clusters
that are also significant when compared with those that can
occur by chance under the null hypothesis. An arbitrarily com-
plex shape will increase the chances that the detected cluster is
not significant, because the chance of finding strong clusters
in the synthetic data of the Monte Carlo experiments also
increases.

The fit of the shape to the disease cluster also needs to be
balanced with the computational need for the shape being
considered. This second criterion, namely the computational
need, has to be considered in conjunction with the search
algorithm used. A search algorithm can be exhaustive by con-
sidering all possible clusters of the chosen shape. For example,
in the retrospective analysis of the New Mexico brain cancer
data (7), cylindrical space-time clusters were used. The dis-
ease occurrences and population counts were provided for each
of the 32 counties included in the data. In an exhaustive analy-
sis of cylindrical time-space clusters, all possible circular cross-
sections would have to be considered, with each circular
cross-section represented uniquely by the subset of counties
included. Using a regular grid for the centers of the circular
cross-sections and then exhaustively considering all possible
radii might not be exhaustive, depending on the positions of
the county centers and the choice of the grid. For cylindrical
clusters, choosing a grid fine enough to be spatially exhaus-
tive for a given data set might be practical. However, this
approach might not be computationally effective for all data
sets, and efficient algorithms that guarantee exhaustive explo-
ration by cylindrical clusters need to be developed. Exhaus-
tive methods might not be practical for more complex shapes.
For example, the computational need is significantly higher
for the square pyramid shape (6). One practical solution to
detect square pyramid clusters is to use heuristic search, based
on randomized algorithms (6). However, the p value com-
puted by any method that is not guaranteed to be exhaustive
needs to be validated (6).

The use of these criteria is illustrated by evaluating the
applications of two different cluster shapes to the New Mexico
brain cancer data (7). This data set was analyzed by using
cylindrical clusters with cross-sections restricted to having one
of the 32 county locations as its center (2). To extend the
analysis by using a more complex shape that can model either
growth (or shrinkage) and movement over time, the consider-
ation would be restricted to convex three dimensional shapes
because allowing nonconvex shapes is too general for the

modeling goal. The three dimensional convex hull would be
the least restrictive convex shape, but it is still too general for
the goal at hand, which is to model either growth or shrink-
age, but not both. Truncated pyramids are adequate to model
growth (or shrinkage) over time. The pyramid can model
movement if its axis is not restricted to be orthogonal to the
spatial plane. The degrees of freedom can be limited by choos-
ing a regular polygon for the pyramid cross-section. Whereas
the square cross-section is used as an example in this report,
similar analysis can be performed with other regular polygons
for the cross-section. The flexibility could have increased by
allowing irregular polygons for the cross-sections. However,
an attempt to use an irregular polygon (rectangle) for the cross-
section of the pyramid was not successful. Obtaining effective
convergence behavior for the randomized algorithm was sub-
stantially more difficult with this extra degree of freedom. As
mentioned previously, the p values would also be expected to
worsen if the cross-sections were not restricted to regular poly-
gons. The truncated cone was also considered to be another
cluster shape candidate. A regular polygon was chosen over
the circle for the cross-section, because the computations with
planes in the case of the polygon were simpler when they
involved linear equations.

In the next section, the New Mexico brain cancer data (7)
are used to compare the results of the analyses by using two
shapes, the cylindrical and square pyramid clusters. The
intent of the analysis is not to conduct a public health investi-
gation but to simply use this data set to illustrate the effect of
cluster shape.

Results
The data set (7) contains occurrences of 1,175 cases of brain

cancer in 32 counties in New Mexico during 1973–1991.
Occurrences are aggregated at the temporal granularity of a
year. Population information is provided for each year. Three
covariates are provided: age group, sex, and ethnicity. First,
only the first two covariates will be considered. The third
covariate, ethnicity, will be added, and the effect of this addi-
tion will be discussed. The inclusion and exclusion of covariates
are not based on domain knowledge of their effect on cancer
but are designed to merely illustrate the effect of the cluster
shape in two different situations.

Considering Covariates: Age Group
and Sex

The Poisson formulation for the spatial scan statistic pro-
vides adjusting for covariates by using indirect standardiza-
tion (1). The two covariates, age group and sex, are adjusted
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for, and it is assumed that both covariates are rel-
evant to the disease being analyzed. And the
analysis is intended to find clusters that cannot
be explained by these two covariates.

First, results for the cylindrical clusters detected
by using the SaTScan system will be presented
(3). The results in the first column (Table 1) are
generated by using the default mode in SaTScan
without an explicit grid. The strongest cluster
detected in this mode had a log likelihood ratio
of 11.07 and a p value of 0.013; it includes 16
counties over a 5-year period, 1985–1989. This
mode misses analyzing multiple potential cylindrical clusters
and can be illustrated by using an explicit fine grid of size 1
Cartesian coordinate to perform the analysis. A fine grid is
used to better approximate an exhaustive analysis for cylin-
drical clusters. The characteristics of the strongest cluster
detected in this mode are included in the second column
(Table 1). The cluster detected in this mode is stronger, with a
log likelihood ratio of 13.70, and has a smaller spatial extent
that included only 12 counties over the same 5-year period
(1985–1989). The significant differences in the clusters
detected by these two modes demonstrate the effect of
approaching exhaustive analysis with the fine grid. Only the
cylindrical clusters detected by using the fine grid will be con-
sidered in the rest of this report.

Second, the results for the square pyramid cluster are pre-
sented (6). The characteristics of the strongest cluster detected
by this heuristic search are presented in the last column
(Table 1). The number of cases included in this square pyra-
mid cluster (284) is larger than the number in the cylindrical
cluster (265), which was detected by using a fine grid; it also
extends over a longer period (1982–1989). The p value of
0.038 computed by using 999 Monte Carlo replications is
higher than the 0.004 value for the cylindrical cluster (Table 1),
but the cluster is significant using the threshold of 0.05.

The cylindrical and square pyramid clusters can be com-
pared by using the three dimensional and two dimensional
views (Figures 4 and 5). In the two dimensional view (Figure 5),
the county locations are indicated by an asterisk. This view
also illustrates the square cross-sections of the pyramid for
each of the 8 years. For the 5 years (1985–1989) common to
both clusters, the square cross-sections of the pyramid are in-
dicated with solid lines. The first 3 years (1982–1984) of the
square pyramid cluster are not included in the cylindrical clus-
ter and are marked with dashed lines. The square pyramid
cluster originates with six counties during the beginning of
1982 but expands to include 15 counties during the end in
1989. In contrast, the cylindrical cluster with a spatial extent
is marked by the circle covering 12 counties for the 5-year

TABLE 1. Results for brain cancer data, by age group and sex as covariates —
New Mexico, 1973–1991

Cylindrical cluster Cylindrical cluster Square
Characteristic (No grid) (Fine grid) pyramid cluster

Log likelihood ratio 11.07 13.70 16.918
No. of cases 317 265 284

(249.09 expected) (195.33 expected) (204.92 expected)
Overall relative risk 1.273 1.357 1.386
p-value 0.013 0.004 0.038
Centroid coordinates (60,67) (89,81) NA*
Cross-section radius 68.96 50.25 NA
Years 1985–1989 1985–1989 1982–1989
* Not applicable.

FIGURE 4. A three dimensional view of a comparison of the
cylindrical and square pyramid clusters
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FIGURE 5. A two dimensional view of a comparison of the
cylindrical and square pyramid clusters
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period, 1985–1989. The square pyramid cluster also indicates
movement over time in addition to the growth as certain coun-
ties at the right of the two dimensional view get dropped in
the latter years.

Together, the two dimensional and three dimensional views
provide visualization of the cylindrical and square pyramid
clusters, indicating key aspects (e.g., overlap). The visualiza-
tion suggests that the detected cylindrical cluster could be
viewed as a reasonable approximation of the detected square
pyramid, given the constraints of its shape. Therefore, the
analyses with these two shapes can be viewed as supporting
each other.

Adding Covariate: Ethnicity
In this section, the covariate ethnicity is included in this

analysis. This covariate can take one of three values: white,
black, or other. The spatial distribution of the covariate in
1987 is illustrated (Figure 6). The bar chart (Figure 6) indi-
cates the population fractions for the ethnicity values, black
and other, for each of the 32 counties. The figure illustrates
wide variation of the ethnicities over the counties. Analyzing
this distribution for each year included in the cluster also
indicates shifts in the distribution over time. Therefore, fac-
toring out this covariate can be expected to affect the cluster
detected.

The results for both cluster shapes are presented (Table 2).
The strongest cylindrical cluster is the same as in the two
covariate cases in the section, Considering Covariates: Age
Group and Sex. The log likelihood ratio of the strongest
cylindrical cluster is lower (12.86) and the p value higher
(0.01), with this additional covariate factored out. The analy-
sis with cylindrical clusters differs in multiple aspects from
the comprehensive public health perspective described in the
literature (2). The temporal trend is not factored out, and the
explicit fine grid in the analysis is also used. These factors
affect the results and prevent a direct comparison. However,
the set-up to a direct comparison between the two cluster
shapes will be used. The square pyramid cluster detected in
the previous subsection is not the strongest cluster any more
when this additional covariate is factored out. The log likeli-
hood ratio for the square pyramid cluster decreases to 16.05.
Moreover, even the strongest square pyramid cluster detected
with a log likelihood ratio of 16.208 is not significant with a
p value estimate of 0.054 (using the earlier threshold of 0.05).
Further investigation is needed to determine if the lack of a
significant square pyramid cluster in this case is a result of the
increased flexibility of the shape or a result of slow conver-
gence of the randomized heuristic.

Computational Issues and Usage
The implementation of the prototype took approximately

40 hours on an IBM Intellistation M-Pro computer with an
Intel P4 processor running at 2.2 Ghz to perform each square
pyramid analysis discussed previously. This high computational
cost of the heuristic approach can limit its usage in a surveil-
lance application where the analysis has to be performed fre-
quently. However, when the computational cost is not an issue,
clusters with complex shapes can be used in a surveillance
application by using the methodology described in the litera-
ture (3).

Conclusion
The purpose of considering the different sets of covariates

in this report was to illustrate and compare the behavior of
cluster detection methods with different underlying shapes.

FIGURE 6. Distributions of the ethnicity covariate, 1987
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TABLE 2. Results for brain cancer data, by age group, sex, and
ethnicity as covariates — New Mexico, 1973–1991

Cylindrical cluster Square pyramid
Characteristic (Fine grid)  cluster

Log likelihood ratio 12.86 16.208
No. of cases 265 420

(197.34 expected) (330.14 expected)
Overall relative risk 1.343 1.272
p-value 0.010 0.054
Centroid coordinates (89,81) NA*
Cross-section radius 50.25 NA
Years 1985–1989 1983–1991
* Not applicable.
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The actual set of covariates that needs to be adjusted for in
any data set should be determined by the domain expert per-
forming the analysis. The domain expert should also choose
the cluster shape, keeping in mind the disease being modeled
and the analysis goals. For example, a flexible shape like the
square pyramid can model either growth (or shrinkage) and
movement of the disease cluster and might provide certain
insights into its origin. However, computational considerations
might limit the analysis to use heuristic approaches that can
only estimate the strongest cluster and, more importantly, its
p value. Performing the analyses with more than one shape
can lead to greater insights about the disease cluster. More-
over, more confidence is gained in these insights when the
results of the analyses with different shapes support each other
as illustrated in the previous example.
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Abstract

Objective: Public health surveillance systems that monitor daily disease incidence provide valuable information about
threats to public health and enable public health authorities to detect enteric outbreaks rapidly. This report describes the
INtegrated Forecasts and EaRly eNteric Outbreak (INFERNO) detection system of algorithms for outbreak detection and
forecasting.

Methods: INFERNO incorporates existing knowledge of infectious disease epidemiology into adaptive forecasts and uses
the concept of an outbreak signature as a composite of disease epidemic curves.

Results: Four main components comprise the system: 1) training, 2) warning and flagging, 3) signature forecasting, and
4) evaluation. The unifying goal of the system is to gain insight into the nature of temporal variations in the incidence of
infection. Daily collected records are smoothed initially by using a loess-type smoother. Upon receipt of new data, the
smoothing is updated; estimates are made of the first two derivatives of the smoothed curve, which are used for near-term
forecasting. Recent data and near-term forecasts are used to compute a five-level, color-coded warning index to quantify
the level of concern. Warning algorithms are designed to balance false detection of an epidemic (Type I errors) with failure
to correctly detect an epidemic (Type II errors). If the warning index signals a sufficiently high probability of an epidemic,
the fitting of a gamma-based signature curve to the actual data produces a forecast of the possible size of the outbreak.

Conclusion: Although the system is under development, its potential has been demonstrated through successful use of
emergency department records associated with a substantial waterborne outbreak of cryptosporidiosis that occurred in
Milwaukee, Wisconsin, in 1993. Prospects for further development, including adjustment for seasonality and reporting
delays, are also outlined.

Introduction
Daily disease monitoring through public health surveillance

systems provides valuable information about threats to public
health. Substantial outbreaks can be caused by emerging new
pathogens (e.g., Severe Acute Respiratory Syndrome and West
Nile virus) and evolving well-known ones (e.g., crypto-
sporidiosis). Modern surveillance systems require efficient sta-
tistical tools for early detection of rapid changes in disease
incidence and forecasting the extent of an outbreak, and more
rigorous methodology is needed (1,2). Such tools should
accommodate vital features of surveillance data that relate to
the nature of diseases, their etiology and epidemiology, and
characteristic properties of the data. For example, seasonal
patterns of diseases should be considered in outbreak detec-
tion algorithms, potential reporting delays should be taken
into account in estimating the size of the infected population,

and appropriate adjustments should be made in outbreak-
detection and forecasting algorithms.

This report describes an innovative approach for outbreak
detection and forecasting outbreaks, the INtegrated Forecasts and
EaRly eNteric Outbreak (INFERNO) detection system.
INFERNO is a system of adaptive algorithms for early outbreak
detection and forecasting the extent of detected infectious disease
outbreaks (3). The system uses the concept of an outbreak signa-
ture (i.e., a composite of elementary distributions of incubation
times associated with exposure and population characteristics)
and an adaptive forecasting approach. This report discusses the
INFERNO system by using as examples retrospective evaluation
of a daily time series of physician-diagnosed cases of nonspecific
gastroenteritis that occurred in Milwaukee, Wisconsin, in 1993,
in association with a well-documented waterborne outbreak of
cryptosporidiosis (4).
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Methods
Infectious disease is initiated by the introduction of a patho-

gen into a susceptible population. For the majority of exposed
persons, a certain incubation period exists between the time a
pathogen is acquired and the time of its clearance. In certain
cases, exposure results in clinical manifestation. The period
between exposure and onset of clinical signs and symptoms is
referred to as the incubation period. Duration of incubation
time depends on host immune reactivity. Typically, a case of
infection is recorded as disease symptoms are developed and
confirmed tests are performed. From a modeling point of view,
reported cases of infections are the realization of a random
process that can include both observable and unobservable
parts. The observable part of a process depends on the size of
the population in which exposure results in a symptomatic
event and on detection and recording of such events.

For a substantial class of waterborne and foodborne enteric
infections, symptoms typically are mild and self-limiting; the
observable part might be substantially smaller than the part
that is unobservable and will vary over time. For example,
epidemiologic studies of cryptosporidiosis incidence demon-
strate that although approximately 70% of a population might
exhibit markers of recent infection, typically only 2%–5%
have reported symptoms (5). Waterborne and foodborne
enteric infections often manifest by alternating periods of low
and high incidence. Daily cases of infection might represent
two distinct modes: 1) an endemic mode, in which incidence
is low and observed disease incidence normal; and 2) an epi-
demic mode, in which increased incidence of waterborne or
foodborne enteric infections is caused primarily by an increase
of either a fraction of the susceptible subpopulation or the
dose of the exposure.

Infectious disease events occur in the form of a series of
dependent observations. A sequence of daily cases of infec-
tion reflects a temporal composition of recorded events. Any
outbreak comprises time of onset, magnitude, and duration.
A time series of daily cases can be illustrated schematically as
a simple single point-source exposure outbreak (Figure 1). In
a single point-source exposure outbreak, all subjects are
assumed to have been exposed to the same dose at the same
time. An outbreak starts at time tA, when the mean of an
infectious process begins to change. An outbreak reaches its
maximum at time tB, l-days after a spike in exposure, where
l is the mean latent period. The mean of an infectious process
declines to a preoutbreak level at time tC , k-days after a spike
in exposure, where k is a maximum incubation period. A dark
blue line is used to reflect the temporal pattern of mean dis-
ease incidence with respect to 1) time of onset, tA, 2) dura-
tion, tC – tA, and 3) peak time of disease incidence (Figure 1).

The actual data from which this temporal pattern is observed
are the realization of an infectious disease process, often
referred to as an epidemic curve.

The temporal pattern of mean disease incidence closely
approximates the distribution of incubation times in the symp-
tomatic population only if 1) every person with a recorded
case is exposed at the same time and to the same dose, 2) the
reported time is the latent time, and 3) the latent period is
proportional to the incubation period. For outbreaks caused
by sources of infection other then person-to-person transmis-
sion (i.e., intentional or environmental outbreaks), this state-
ment might be valid, but to expect these three conditions to
be satisfied in real-life settings seems impractical (4,6). Nev-
ertheless, if a temporal pattern of mean disease incidence is
assumed to be a composite of elementary distributions of
incubation times associated with exposure and population
characteristics, the knowledge of pathogen-specific incubation
times can be used to detect an outbreak and forecast its mag-
nitude and duration. Such composites form a unique signa-
ture. For monitoring systems, a signature has two potential
uses. First, when a signature is applied to streamline data in
real time, it produces a long-term forecast. Second, a signa-
ture allows retrospective identification and quantification of
similar temporal patterns from historic data.

Results
INFERNO is a system of adaptive algorithms for outbreak

detection and forecasting that is based on the concept of out-
break signature forecasting. This section discusses the four
components of the system (training, warning and flagging,
signature forecasting, and evaluation) by using a retrospective
daily time series of cases of nonspecific gastroenteritis associ-

FIGURE 1. Time series of a simple single-point source
exposure outbreak, by time of onset, duration, and magnitude —
Milwaukee, Wisconsin, 1993
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ated with a 1993 waterborne outbreak of cryptosporidiosis
that occurred in Milwaukee, Wisconsin.

Training
The purpose of this component is to gain insight into the

nature of endemic temporal variations in the incidence of
infection. As in any other outbreak detection system or algo-
rithm, this component includes examination of retrospectively
collected data and provides estimates for baseline parameters
(7). In this system, daily cases of infection represent two modes
of the process: endemic and epidemic. Although this distinc-
tion is somewhat artificial, it is useful for modeling purposes.
In this analysis, training is limited to a 7-week period during
which the infection is assumed to be in endemic mode, which
is supported by visual inspection and posthoc analysis using
INFERNO. This set of data is used to determine the average
rate of gastroenteritis events and the extent of their variability.
Using the standard deviation of the training set as a multi-
plier, four levels of departure from the mean are estimated
(Figure 2). The training component currently contains the
algorithms to assess potential temporal fluctuations associated
with seasonal fluctuations. The training for the epidemic mode
is also important for refining the signatures to detect different
patterns and to develop a library of observed epidemic curves.

A loess smooth is superimposed on all available daily counts
of nonspecific gastroenteritis (Figure 2). The issue of selecting
a proper smoothing technique deserves special attention. The
span of the smoother must be long enough that random fluc-
tuations in the background infection rates are not chased, yet
short enough to react to the onset of an outbreak. To achieve
such balance for a year of data, the selected span ratio of the

nonparametric smoother is equal to 25/365. This span ratio
implies a window size of 25 days, an arbitrary but reasonable
choice to cover the duration of an incubation period for
cryptosporidiosis, which might be up to 21 days. The data
indicate an outbreak associated with cryptosporidiosis infec-
tion during the period starting at 75 days and ending at 130
days. As an indication of the effectiveness of the smoothing in
capturing the essentials of the daily counts, cumulative data
sums are compared with the smoothed function (3).

Warning and Flagging
The purpose of this component is to quantify the level of

concern in the streamlined (i.e., frequently updated) data to
switch from endemic to epidemic mode in forecasting proce-
dure. Daily collected reports are smoothed by using a loess-
type smoother. Smoothing is updated daily, and estimates are
made of the first two derivatives of the smooth curve indicat-
ing the gradient of change in mean incidence. These loess-
and derivative-based estimates are used to build a near-term
forecast (Figure 3). Three marks indicate the prediction for
the next day during 3 consecutive days, if the records are only
available up to day 80, 81, 82. Next, a long-term forecast is
built by extending the near-term forecast to almost 1 month
in advance as if the records are available only up to a day 80,
81, 82 (Figure 3). To produce the forecasts, a trajectory is
created of the mean between two points: the time of the last
observation (point A) and 1 month in advance (point B) (3).
The trajectory is estimated by using the first two derivatives of
the smoothed function at point A and the values of a trun-
cated version of the Taylor’s series expansion of the function
for the point B. The forecasts are quite different from the
actual observations, indicating that a switch should be made
from the endemic to the epidemic mode that is essential for
modeling.

The recent data and the near-term forecasts are used to quan-
tify a switch point. The warning algorithm uses four severity
indexes: 1) actual counts at the given day, 2 the mean estimate
1 week before the given day, 3) the estimate of the mean at the
given day, and 4) the maximum of the forecast for the next 7.
The sum of four severity indexes for a given day forms a basis
for flagging. A given day is flagged by using five color-coded
categories, and depending on the flag value, either the attenu-
ated forecasts or the signature forecasts are performed. A time
series of cases is transformed to a time series of flag values,
which in any given day contains past, present, and predicted
future information (Figure 4). During the outbreak, the daily
flag values clearly exceed the red code, indicating the period
in which signature forecasting is used.

FIGURE 2. Time series of daily cases of nonspecific
gastroenteritis, with superimposed loess-smoothed curve
and four levels of departure from the mean* — Milwaukee,
Wisconsin, 1993

* 7-week training period.
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Signature Forecasting
If the flag value signals a sufficiently high probability of an

epidemic mode, then a forecast of the possible size of the out-
break is made. Currently, a model for the mean value func-
tion implemented in the system is:

Equation 1. µ(t) = ƒ (t) +     δ(t1i,t2i) (t) Si (t − t1i), t ≥ 0,

where ƒ(t) is a function representing the mean of the endemic
counts of cases at time t, S(.) is a function characterizing the
shape of an outbreak and is referred to as the base signature
function for disease outbreaks, Si(.) is S(.) amplified to accord
with the extent of the ith outbreak, t1i is the date of the onset
of the ith outbreak, t2i is the date of termination or resolution
of the ith outbreak, and δ(t1i,t2i) is a function that assumes
the value 1 during the period of the ith outbreak and other-
wise is zero (3).

Examples of the background, or endemic, function, ƒ(t),
are:

Equation 2. ƒ(t) = µ,t ≥ 0

for the case of constant background infection rates, and

Equation 3. ƒ(t) = µ + a sin(ϖt) + b cos(ϖt), t ≥ 0

for the case of seasonal fluctuations in the background infec-
tion rates. As a possible model for the random process gener-
ating the time series of daily counts for a particular infection,
a time-dependent Poisson process with intensity function µ(t)
defined by Equation 1 is chosen.

To build a signature forecast, a family of gamma distribu-
tions is chosen. This nonnegative, right-skewed distribution
is used to approximate a distribution of incubation times and
can be easily generated by using statistical software. Depend-
ing on the level of concern, an appropriate curve is selected
from a library of distributions and serves as a signature base
(Figure 5). A signature curve also can be simulated as a set of
incubation time distributions according to an intensity func-
tion given by Equation 1, which on the average gives the sig-
nature shape. For streamlined data, the fitting is updated daily.
The fitted signature curve is the long-term forecast.

Evaluation
The purpose of this component is to quantify uncertainty

associated with the predicted size of the outbreak. The algo-
rithms for computing the warning index have to be designed
to balance false prediction of an epidemic (Type I errors) with
failure to correctly predict an epidemic (Type II errors). Ini-
tiation of the signature forecast and selection of the signature
base are determined by the daily flag value. In the example,
five separate week-long sets of data selected from the raw time

FIGURE 3. Near term (panel A) and extended (panel B) forecast
shown as if records are available for only up to a day 80, 81,
82 — Milwaukee, Wisconsin, 1993

Panel A

Panel B

FIGURE 4. Time series of cases transformed to a time series
of flag values by using five color-coded categories —
Milwaukee, Wisconsin, 1993



Vol. 54 / Supplement MMWR 81

series that appear to have a similar pattern to the week that
launched the outbreak of cryptosporidiosis during day 75–130
are highlighted (Figure 6). If the same signature forecasting
procedure were applied to each of the four other sequences, a
Type I error would be committed in each case. To avoid
potential error, the warning index has to be corrected. A data-
driven inflator was developed to balance Type I and Type II
errors. The price for the use of this data-driven inflator is a
significant delay in making a definitive forecast of the extent
of an outbreak when flag values are yellow or blue. However,
this delay would be considerably less when flag values are
orange or red.

Conclusion

Library of Signature Curves
The effectiveness of the forecast depends upon the extent to

which the signature curve captures the shape of outbreaks of
the infection under consideration. In the system under dis-
cussion, epidemiologic observations for incubation periods of
cryptosporidiosis are considered. The lag between the time of
exposure and the time of emergency department visit for gas-
troenteritis symptoms is assumed to be approximately 8 days
(8). However, this period might vary among sensitive sub-
populations; for example, it might decrease among children
or the elderly (9). Different strains of a pathogen might have
different incubation times. Acquired immunity to a pathogen
might shorten the incubation period and reduce the number
of symptomatic cases. Theoretically, mean incubation time
might be inversely proportional to the inoculum dose at low
doses. A library of signature base curves for infections with
various epidemic properties should be developed. A period
between exposure and an outcome of interest (e.g., disease
onset, emergency department visit, or hospitalization time)
can be thought of as a random variable. Although a lognor-
mal distribution, a classic model for incubation time of infec-
tious disease, has been shown to be robust to many biological
factors; multiple distributional forms (e.g., Gamma, Weibull,
inverse Gaussian, exponential, and Poisson) for a continuous
or discrete random variable of time to event have been
applied for investigating waterborne cryptosporidiosis (10–13).

Provisional Data and Reporting Delay
In the proposed system, retrospectively collected data are

used, but the reporting mechanism is assumed to make data
available the day after an event occurs. Certain delays in
reporting are inevitable. Time-consuming testing or report sub-
mission procedures might cause systematic delays in the
streamline surveillance data. The INFERNO framework
allows users to correct for a systematic reporting delay. For
example, the warning index that uses an actual record on a
given day and three estimates (weekly mean for a week before
a given day, a predicted mean for a given day, and a maximum
of forecasts for next few days) could be adjusted for a lagged
systematic delay. A small simulation study was conducted to
initiate an analysis of systematically delayed reporting. On
any given day, i, a report was assumed to contain a number of
time-distributed cases,

Yi = {y0i, y1i, …, yKi}, so the number consists of y0-cases
occurring on a given i-day, y1-cases occurring 1 day before the
i-day, y2-cases occurred 2 days before, etc. Thus, Zi = Σ αi-k Yik.
For demonstration purposes, an exponential weighting

FIGURE 5. Time series of daily cases of nonspecific gastro-
enteritis, with superimposed loess-smoothed curve and
signature fits for days 83–101 — Milwaukee, Wisconsin, 1993

FIGURE 6. Time series of gastroenteritis cases with five
highlighted sets of data selected from the raw time series that
appear to have a similar pattern to the week that launched an
outbreak of cryptosporidiosis — Milwaukee, Wisconsin, 1993
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αi-k = 0.5(k+1), where k = 0 – K, and K = 8 be the maximum
length of delay in days, was used. A 31-day long-time series
was simulated, with 10 cases each day for an endemic back-
ground level (the first 10 and the last 14 days) and 7 days of
outbreak by using Poisson-distributed multipliers of 1.25,
1.45, 1.68, 1.55, 1.38, 1.2, and 1.1. The results of the simu-
lation were presented by using the three-dimensional tempo-
ral exposure-response surface (TERS) (5,9), in which the x-axis
reflects the delay in reporting in days, the y-axis imitates the
simulated time series obtained as provisional data, and the
z-axis reflects restored daily counts with an 8-day lag-
distributed scheme (Figure 7). The TERS plot depicts the speed
in reporting recovery. On day 1, the simulated provisional
daily counts would consist of 10/2 = 5 cases for endemic level.
On day 2, counts would consist of five cases for a second day
and 10/4 = 2.5 for the previous day, the number of cases for
day 1 would be equal to 7.5. By day 8, completed reporting is
99% for an endemic level and 96% for an outbreak. This
simple simulation study suggests an approach for a detailed
analysis of provisional data that might be helpful in assessing
delays, developing adjusting schemes, and quantifying poten-
tial duration for a training period in the surveillance systems.
Better understanding of reporting barriers and better adjust-
ing for delays in outbreak detection and forecasting are needed.

Seasonality Adjustment
Although the algorithms for warning and forecasting of an

outbreak size in this system do not rely on extensive historical
recording, a long training period is needed for a proper sea-
sonality adjustment. The Milwaukee outbreak occurred in the

spring, an unusual time for cryptosporidiosis, which typically
exhibits a seasonal increase during late summer–early fall (14).
The detection of an outbreak close to or during a disease sea-
sonal peak is a difficult task. The forecasting might be sensi-
tive to a degree of seasonal adjustment. Currently, the system
offers certain algorithms to assess potential temporal fluctua-
tions associated with seasonal increases using parametric and
non-parametric approaches. Additional studies are needed to
investigate the effect of seasonality adjustment on forecasting.
Integration of additional information obtained from other
components of the surveillance (e.g., drug sales, water quality
parameters, meteorological information) into the forecasting
algorithms might provide better results. Forecasting might also
be improved by considering additional factors that might
influence incidence and reporting of waterborne infections
(e.g., environmental factors [15], boil-water orders, media
effects, television and radio announcements, day-of-the-week
effects, school vacations, and holidays).

Terminology Refinement
The concept of what constitutes an outbreak should be

refined. In public health literature, the term is used inconsis-
tently and often imprecisely. For example, in certain situa-
tions, an outbreak can mean an increase in incidence over the
endemic level (i.e., the term is used to refer to the onset of
some observed change). In another meaning, the term can
signify a degree of magnitude over a period of time that gen-
erates a public health concern. In a third context, risk com-
munication, the term can serve as a synonym for epidemic,
often with the intention of reducing the public’s level of fear.
The more is learned about the process of infectious diseases,
exposure, and manifestation, the clearer the concept of out-
break will become, allowing it to be used with more rigor.
Both the efficiency and the accuracy of outbreak forecasting
using the mathematical modeling will depend on clarity and
rigor in the use of key terms. With more attention paid to the
precision of the common language shared by mathematicians
and epidemiologists, forecasting will enable public health
authorities not merely to record experiences but also to influ-
ence the future (16).
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Abstract

Introduction: When public health surveillance systems are evaluated, CDC recommends that the expected sensitivity, speci-
ficity, and timeliness of surveillance systems be characterized for outbreaks of different sizes, etiologies, and geographic or
demographic scopes. High-Fidelity Injection Detectability Experiments (HiFIDE) is a tool that health departments can use to
compute these metrics for detection algorithms and surveillance data that they are using in their surveillance system.

Objective: The objective of this study is to develop a tool that allows health departments to estimate the expected sensitivity,
specificity, and timeliness of outbreak detection.

Methods: HiFIDE extends existing semisynthetic injection methods by replacing geometrically shaped injects with injects
derived from surveillance data collected during real outbreaks. These injects maintain the known relation between outbreak
size and effect on surveillance data, which allows inferences to be made regarding the smallest outbreak that can be expected
to be detectable.

Results: An example illustrates the use of HiFIDE to analyze detectability of a waterborne Cryptosporidium outbreak in
Washington, DC.

Conclusion: HiFIDE enables public health departments to perform system validations recommended by CDC. HiFIDE can
be obtained for no charge for noncommercial use (http://www.hifide.org).

Introduction
When public health surveillance systems are evaluated, CDC

recommends that the expected sensitivity, specificity, and time-
liness of surveillance systems be characterized for outbreaks of
different sizes, etiologies, and geographic or demographic
scopes (1). An important approach for computing these metrics
is the simulation of outbreaks.

Researchers have developed injection methods in which
artificial spikes, perturbations of the surveillance data, are
injected into a time series of real surveillance data from
nonoutbreak periods (2–4). This method is called semisyn-
thetic, because artificial data are injected into real data. After
a spike is injected, any outbreak detection algorithm can be
run on the injected time series to determine whether the spike
can be detected, on what date, and with what false alarm rate.
To understand how the detection algorithm would work on
average, the injection is then repeated systematically with the
inject date moving forward one time unit per repetition
(Figure 1). From the results of this procedure, the parameters of
sensitivity, false alarm rate, and timeliness for spike detection

can be computed. To explore detection algorithm performance
at different false alarm rates, the entire procedure is then repeated,
varying the detection algorithm alarm threshold. The results
are typically displayed graphically by using activity monitor
operating characteristic (AMOC) curves (Figure 2) (5).

The primary limitation of the semisynthetic technique is
that it only determines the smallest spike that could be
detected, leaving unanswered the key detectability question,
“What is the smallest outbreak that can be detected?” For
example, the first published semisynthetic analysis injected
spikes that increased linearly in height over time into daily
sales data of cough products (2). The results indicated that if
an outbreak increased sales by a factor of 1.36, it would be
detected. The limitation is what size outbreak increases sales
by a factor of 1.36 is unknown. A second limitation of semi-
synthetic analyses conducted is the use of geometrically shaped
injects, which might be poor estimates of actual temporal
outbreak contours and which do not account for variations in
the data as a result of individual behavior.

An alternative injection technique addresses these limita-
tions by forming injections with a shape derived from surveil-

http://www.hifide.org
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lance data collected during an actual outbreak (6). This inject
is called a high-fidelity inject. Moreover, with this technique,
the height of the inject is scaled in a method that preserves the
known relationship between the magnitude of the real out-
break and the strength of the signal in the surveillance data

from the real outbreak. Because of this property, a detectabil-
ity analysis can be used to determine the smallest outbreak
that can be detected. The scaling adjusts for differences in
population size and in data completeness, which is the pro-
portion of the data that is available in a jurisdiction. This tech-
nique allows health departments to ask whether an outbreak
that occurred in some other region would have been detected
in their own region, provided that the outbreak region was
collecting the same type of surveillance data as the region per-
forming the detectability analysis. The technique can be
applied to the majority of surveillance data, including over-
the-counter (OTC) sales data and emergency department reg-
istrations. However, the two regions might differ in population
size, population density, and completeness of surveillance data.

High-Fidelity Injection Detectability Experiments (HiFIDE)
is a software tool that uses high-fidelity injects to analyze
detectability of surveillance systems. The mechanics of a
HiFIDE analysis are similar to those of a semisynthetic analy-
sis, although the software primarily automates this process. A
user selects from a user interface the type of surveillance data
and outbreak. The user can then easily create a substantial
number of injects by using different values of outbreak size
(defined as the proportion of the population that would be
affected by the outbreak) and surveillance data completeness.
HiFIDE combines each inject with real surveillance data to
form a time series. HiFIDE then runs a set of detection algo-
rithms on each injected time series, varying the alarm thresh-
old, and summarizes the detectability results in AMOC curves
and plots of sensitivity versus timeliness.

This report illustrates how HiFIDE can be used to investi-
gate the detectability of a water-borne Cryptosporidium out-
break in the Washington, DC, metropolitan area by assessing
data from sales of OTC diarrheal remedies. HiFIDE is used
to address the following questions:

• What detection algorithm would be expected to earliest
detect a Cryptosporidium outbreak in Washington, DC?

• What is the smallest Cryptosporidium outbreak we can
expect to detect, given the available surveillance data in
the city?

• How early can we expect to detect Cryptosporidium out-
breaks of different sizes?

• How many false alarms per year would we have to toler-
ate to improve detection?

• How much earlier would detection occur if more phar-
macies were successfully recruited to increase the com-
pleteness of sales data?

FIGURE 1. An example of a semisynthetic process for creating
outbreak data
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Methods
HiFIDE is a software application that runs under the

Microsoft Windows® operating systems. It uses R as a com-
putational backend to enable the rapid inclusion of sophisti-
cated detection algorithms (7). However, no knowledge of
R is required, because the user interacts with only the graphi-
cal user interface of HiFIDE.

Initiating an Analysis
A user initiates a HiFIDE analysis by selecting an outbreak

and surveillance data type from the HiFIDE library of out-
breaks and data types. The user then selects a file with sampled
surveillance data from their jurisdiction. The data must be
organized as a daily time series of counts. Missing data are not
allowed, and outbreak-dependent minimum data requirements
are checked by HiFIDE to ensure that the time series is long

enough to complete the analysis. The user also has the option
of providing the data completeness for the sampled surveil-
lance data. If the user provides data completeness, then
HiFIDE permits investigation of the effect of varying the data
completeness of the surveillance data. For example, the user
could investigate the effect that recruiting additional retailers
would have on detection timeliness.

Creating Injects
The user creates injects in collections called inject repeti-

tions. An inject repetition consists of one inject for each fea-
sible day in the sampled surveillance time series. Two horizontal
sliders on the right of the screen (Figure 3) can be manipu-
lated by the user to adjust the outbreak size and data com-
pleteness; the data completeness slider is only active if the data
completeness for the sampled surveillance data was provided
when the analysis was initiated. A third slider controls the

FIGURE 3. AMOC* curves in HiFIDE† for two detection algorithms§

* Activity monitor operating characteristic.
†High-Fidelity Injection Detectability Experiments.
§The sliders on the right of the display control the outbreak size and data completeness.
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false alarm rate and does not affect the creation of injects.
When the user selects “Inject,” one inject repetition is added
for the selected values of outbreak size and data completeness.

Summarizing Detectability
HiFIDE presents the results of the analysis graphically by

using AMOC plots (Figure 3), which depict the relationship
between day of detection (computed relative to a reference
date) and the false alarm rate, and plots of sensitivity versus
day of detection (Figure 4). The user can alternate between
these plots by selecting the “Switch Plot” button in the upper
right-hand corner. The three sliders control the values of out-
break size, data completeness, and false alarm rate (the false
alarm rate slider is only active for the sensitivity versus day of
detection plot). HiFIDE reads the values of the sliders and
selects values for outbreak size and data completeness that are
closest to the slider-specified values for which at least one
inject repetition exists. The values used by HiFIDE for the
plot are displayed above the plot.

The user can select up to two algorithms to display at a
time from the HiFIDE library of algorithms. The results for
each of the algorithms are pre-computed when the injects are
created, therefore enabling rapid switching between detection
algorithms.

Results
This report illustrates how HiFIDE can be used to investi-

gate the detectability of a water-borne Cryptosporidium out-
break in the Washington, DC, metropolitan area by assessing
data from sales of OTC diarrheal remedies.

Jurisdictions
The focus of the detectability analysis was the Washington,

DC, metropolitan area, which has a resident population of
approximately 550,000. Daily sales of antidiarrheal products
during August 9–December 20, 2003, were obtained from

FIGURE 4. Sensitivity plots in HiFIDE* for two detection algorithms†

* High-Fidelity Injection Detectability Experiments.
†The sliders on the right control the outbreak size, data completeness, and false alarm rate of the algorithms.
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the National Retail Data Monitor (8). These sales represented
approximately 89% of all such sales.

The analysis is based on a waterborne Cryptosporidium out-
break in North Battleford, Saskatchewan. The outbreak
began on March 20, 2001, when the solids contact unit at a
surface water treatment plant malfunctioned (9). Public health
officials issued a precautionary drinking water advisory 5 weeks
later on April 25 after laboratory-confirmed cases of
cryptosporidiosis were identified. The date of the drinking
water advisory is a reference date for measuring timeliness.
The outbreak affected approximately 36% of the 18,000 resi-
dents. The number of weekly retail sales of diarrheal remedies
was available (9) from a single pharmacy.

Detection Algorithms
Multiple simple detection algorithms were used for this

analysis. The algorithms are a day-specific moving average
(DSMA), autoregressive integrated moving average (ARIMA
[1,0,1] ) time series model (3), exponentially weighted mov-
ing average (EWMA) with weights of 0.05 and 0.2, and
CUSUM with a baseline computed via EWMA with weights
of 0.05 and 0.2 (10). The ARIMA parameters and EWMA
weights were set to commonly used values for simplicity rather
than by any model selection criteria.

Number of Repetitions
Multiple values of outbreak size and data completeness were

used in the analysis. Five outbreak sizes were used with a range
of 0.1%–10% in addition to three values of data complete-
ness — 50%, 100%, and 89% — the data completeness for
the surveillance data. Five inject repetitions were created for
each pair of outbreak size (five sizes) and value of data com-
pleteness (three values). The entire computation took approxi-
mately 4.5 hours on a personal computer with a 2.4GHz
Pentium 4 CPU.

Findings
What detection algorithm would be expected to detect a
Cryptosporidium outbreak in Washington, DC, the earliest?

At a false alarm rate of four per year, the DSMA algorithm
detects outbreaks of all sizes that are considered the earliest
(Table 1). The AMOC curves can be inspected to determine
how the false alarm rate affects relative algorithm performance.
This report illustrates AMOC curves and a sensitivity versus
timeliness plot for DSMA and ARIMA for an outbreak of
size 1% (Figures 5 and 6); ARIMA detects the outbreak ear-
lier than DSMA at smaller false alarm rates.

What is the smallest Cryptosporidium outbreak that health de-
partments can expect to be detected, given the available surveil-
lance data in the city?

The values (Table 2) for DSMA were interpolated to deter-
mine the smallest outbreak that is detected 2 weeks before pub-
lic health response (using the North Battleford experience as a
benchmark) at least 75% of the time. The smallest outbreak
that is detectable is approximately 0.78% at a false alarm rate of
four per year and 3.10% at a false alarm rate of two per year.

How early can health departments expect Cryptosporidium out-
breaks of different sizes to be detected in Washington, DC?

When using DSMA, health departments can expect to
detect an outbreak that affects 10% of the population 26 days
before public health response, whereas an outbreak size of 1%
is expected to be detected 21 days before public health response.
The timeliness of detection for other algorithms and outbreak
sizes are illustrated in this report (Table 1).

How many false alarms per year have to be tolerated to improve
detection in Washington, DC?

This report illustrates the trade-off between the false alarm
rate and timeliness for an outbreak size of 1% for the DSMA
and ARIMA algorithms (Figure 5). For example, increasing
the false alarm rate from two to four per year improves time-
liness by 11.67 days for DSMA and 6.09 days for ARIMA.

TABLE 1. Mean day of detection relative to public health response for a false alarm rate of 4 per year, by algorithm and outbreak
size

CUSUM¶- CUSUM-
Outbreak size DSMA* ARIMA† (1,0,1) EWMA§ 0.05 EWMA 0.20 EWMA 0.05 EWMA 0.20

0.10% -16.19 -15.4 -13.4 -6.11 -13.48 -11.43
0.50% -17.81 -15.44 -13.45 -6.32 -13.52 -11.78
1.00% -20.66 -16 -13.57 -6.33 -16.19 -12.45
5.00% -24.76 -23.14 -22.89 -17.52 -23.41 -22.66
10.00% -26.22 -24.74 -24.67 -22.2 -24.67 -24.18
* Day-specific moving average.
†Autoregressive integrated moving average.
§Exponentially weighted moving average.
¶ Cumulative sum.



90 MMWR August 26, 2005

How much earlier would detection be if more pharmacies were
successfully recruited to increase the completeness of sales data?

The current completeness of data is approximately 89%,
and limited improvement would be expected in timeliness if
coverage was increased to 100%. The timeliness of detection
of a 1% outbreak when using the DSMA algorithm at a false
alarm rate of four per year only improves from -20.66 days to
-20.94 days if the remaining 11% is obtained. The effect that
timeliness has on losing pharmacies can also be investigated.
If data completeness decreases to 50%, the timeliness increases
to -19.74 days.

A limitation of this example is that the North Battleford
surveillance data used to estimate the shape of the injects come
from only a single pharmacy. However, weekly sales data from

a second pharmacy also exhibited a similar temporal effect to
the outbreak (11).

These results are from a system that aggregates counts for
the entire jurisdiction. A full detectability analysis would
exploit knowledge of the water distribution system, and sub-
stantial improvements in performance might be possible.

Discussion
The primary contribution of HiFIDE is that it enables public

health departments to conduct detectability analyses for their
jurisdictions. Public health departments can estimate the sizes
of outbreaks that are expected to be detectable and the timeli-
ness of their detection by using currently available surveil-

FIGURE 5. AMOC* curves for the DSMA† and ARIMA§ (1,0,1)
algorithms for the detectability analysis of Cryptosporidium
— Washington, DC, 2003

* Activity monitor operating characteristic.
† Day-specific moving average.
§ Autoregressive integrated moving average.
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TABLE 2. Probability (sensitivity) of detection at least 2 weeks before public health response for a false alarm rate of 4 per year,
by algorithm and outbreak size

CUSUM- CUSUM-
Outbreak size DSMA* ARIMA† (1,0,1) EWMA§ 0.05 EWMA 0.20 EWMA 0.05 EWMA 0.20

0.10% 0.58 0.56 0.5 0.37 0.55 0.55
0.50% 0.65 0.56 0.52 0.38 0.55 0.55
1.00% 0.83 0.59 0.55 0.4 0.6 0.57
5.00% 1 1 1 0.86 1 1
10.00% 1 1 1 1 1 1
* Day-specific moving average.
† Autoregressive integrated moving average.
§ Exponentially weighted moving average.
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lance data. Decisions regarding whether to allocate resources
to improve data completeness by recruiting more retailers or
connecting additional hospitals to the surveillance system can
also be explored. HiFIDE also enables researchers in the field
of biosurveillance to evaluate and compare detection algo-
rithms.

HiFIDE supports detectability analyses for Cryptosporidium
and influenza when sales of diarrheal remedies and emergency
department registrations with constitutional chief complaints
are used, respectively. Additional outbreaks and data sources
are expected to be added.

Conclusion
In the HiFIDE analysis, the substantial practical informa-

tion that HiFIDE can provide users of surveillance systems is
illustrated. In particular, HiFIDE provides the sensitivity, speci-
ficity, and timeliness (metrics recommended by CDC [1]) for
outbreaks of different sizes, etiologies, and scopes. The HiFIDE
tool is available at no charge for noncommercial use (http://
www.hifide.org).

Acknowledgments
This report was supported by the Agency for Healthcare Research

and Quality (290-00-0009), the Pennsylvania Department of Health
(ME-01-737), the Department of Homeland Security (F30602-01-
2-0550), and the National Library of Medicine (LM008278-01).

References
1. Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V, CDC Work-

ing Group. Framework for evaluating public health surveillance systems
for early detection of outbreaks. MMWR 2004;53(No. RR-5):1–11.

2. Goldenberg A, Shmueli G, Caruana RA, Fienberg SE. Early statistical
detection of anthrax outbreaks by tracking over-the-counter medica-
tion sales. PNAS 2002; 99:5237–40.

3. Reis BY, Mandl KD. Time series modeling for syndromic surveillance.
BMC Medical Informatics and Decision Making 2003;3:2.

4. Reis BY, Pagano M, Mandl KD. Using temporal context to improve
biosurveillance. PNAS 2003;100:1961–5.

5. Fawcett T, Provost F. Activity monitoring: noticing interesting changes
in behavior. In: Proceedings of the 5th Association for Computing
Machinery (ACM) SIGKDD International Conference on Knowledge
Discovery and Data Mining; 1997. San Diego, CA: Chaudhuri and
Madigan; 1997.

6. Wallstrom GL, Wagner MM, Hogan WR. High-Fidelity Injection
Detectability Experiments. RODS Technical Report; 2005.

7. R Development Core Team. R: a language and environment for statis-
tical computing. Vienna Austria: R Foundation for Statistical Com-
puting; 2004. Available at http://www.R-project.org.

8. Wagner MM, Robinson JM, Tsui F-C, Espino JU, Hogan WR.
Design of a national retail data monitor for public health surveillance.
J Am Med Inform Assoc 2003;10:409–18.

9. Stirling R, Aramini J, Ellis A, et al. Waterborne cryptosporidiosis out-
break, North Battleford, Saskatchewan, spring 2001. Can Commun
Dis Rep 2001;27:185–92.

10. Stoto MA, Schonlau M, Mariano LT. Syndromic surveillance: is it worth
the effort? Chance 2004.

11. Stirling R, Aramini J, Ellis A, et al. Waterborne cryptosporidiosis out-
break, North Battleford, Saskatchewan, spring 2001. Health Canada
2001. Available at http://www.health.gov.sk.ca/mc_dp_health_can_
epi_report_NB.pdf.

http://www.hifide.org
http://www.hifide.org
http://www.R-project.org
http://www.health.gov.sk.ca/mc_dp_health_can_epi_report_NB.pdf
http://www.health.gov.sk.ca/mc_dp_health_can_epi_report_NB.pdf


92 MMWR August 26, 2005



Vol. 54 / Supplement MMWR 93

Linked Analysis for Definition of Nurse Advice Line
Syndrome Groups, and Comparison to Encounters

Steven F. Magruder,1 J. Henry,2 M. Snyder2

1Johns Hopkins University, Laurel, Maryland; 2Kaiser Permanente of the Mid-Atlantic States, Rockville, Maryland

Corresponding Author: Steven F. Magruder, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723-6099. Telephone:
443-778-6537; Fax: 443-778-6885; E-mail: steve.magruder@jhuapl.edu.

Disclosure of relationship: The contributors of this report have disclosed that they have no financial interest, relationship, affiliation, or other
association with any organization that might represent a conflict of interest. In addition, this report does not contain any discussion of unlabeled
use of commercial products or products for investigational use.

Abstract

Introduction: Nurse advice call centers are a potentially important source of data for syndromic surveillance purposes. For
this reason, researchers at Johns Hopkins University Applied Physics Laboratory and Kaiser Permanente of the Mid-Atlantic
States (KPMAS) have been collaborating to develop methods to use this data within the ESSENCE II Syndromic Surveillance
System in the National Capital Region.

Objective: The objective of this report is to present a general method for finding syndrome groups in data sources that can
be linked to physician encounters and to determine effective advice call syndrome groups for use with KPMAS advice data.

Methods: Advice calls are linked to physician encounters and stratified by patient age. They are placed in groups according to
a maximum positive predictive value criterion. The groups are evaluated by correlating the resulting syndrome time series
against physician encounter data.

Results: Potentially useful advice syndrome groups are found for respiratory, lower gastrointestinal (GI), and total GI
syndromes for each age stratum.

Conclusion: The time series of the advice data for respiratory, lower GI, and upper GI syndromes accurately predict the
physician encounter time series for the corresponding syndromes for each age stratum.

Introduction
Advice lines are facilities such as nurse call centers that

receive telephone calls from persons requiring information,
triage, or immediate assistance. Government agencies, health-
care systems (especially HMOs), or private contractors can
operate these facilities. Advice lines gather information about
a caller’s complaints that enables them to allocate appropriate
clinical resources to that patient with appropriate urgency.
This practice results in an electronic record carrying syndromic
information.

Nurse advice data for syndromic surveillance purposes have
several potential advantages. The syndromic information is
immediately captured in an electronic format. The informa-
tion has been interpreted by a medical professional. The
advice call event might occur either before or instead of a phy-
sician encounter (1). Nurse advice call volume does not
decline as sharply on weekends and holidays as does physician-
encounter volume. For these reasons, researchers at Johns
Hopkins University Applied Physics Laboratory and Kaiser
Permanente of the Mid-Atlantic States (KPMAS) have been
collaborating to develop methods to use this data within the

ESSENCE II Syndromic Surveillance System in the National
Capital Region (2). The potential use of this type of data for
surveillance has also received attention in the United King-
dom (3).

At KPMAS, appointment scheduling and the nurse advice
hotline function together within the KPMAS call center, which
serves as a major entry point into the delivery system. Nurses
operate the advice hotline, administering protocol-driven,
medically appropriate advice and scheduling acute-care office
visits when necessary. By this process, each call is assigned one
of 527 possible advice guidelines (e.g., diarrhea, adult, pin-
worms, or contact exposure) indicating syndromic informa-
tion. This report addresses how best to aggregate this
information to characterize trends in broad syndrome groups,
particularly those defined by CDC relating to critical biologic
terrorism–associated agents (4). A previous paper on the use
of advice guideline groupings for syndromic surveillance evalu-
ated the performance of groupings chosen on the basis of
names of the advice protocols and their presumed usage (1).
For this study, a method was used for finding empirical group-
ings.
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Methods
The KPMAS information system captures the date and time

a patient was seen for an outpatient office visit and the date
and time the patient called to schedule that appointment. A
third record contains the date and time the patient contacted
the nurse advice hotline. For this study, a nurse advice hotline
call and an outpatient office visit are defined as linked if all of
the following criteria were met: 1) the patient identification
number assigned to the nurse advice hotline call is the same as
the patient identification number assigned to the office visit;
2) the calendar date of the nurse advice hotline call is the
same as the calendar date when the patient called for the
appointment; and 3) the time of the nurse advice hotline call
was equal to, or earlier, than the time the patient called for an
appointment.

Using the KPMAS information system, a database was cre-
ated that contained all nurse advice calls made during calen-
dar year 2002 that could be linked to corresponding physician
encounters and International Classification of Diseases, Ninth
Revision (ICD-9)-coded physician diagnoses. Approximately
38% of all advice calls were linked in this way for approxi-
mately 570,500 linked call-encounter pairs. These physician
diagnoses provide a standard for classifying a case into a par-
ticular syndrome group. Visits were grouped according to the
CDC diagnosis-based biologic terrorism syndrome groups
(including categories 1 and 3 only) (4) (Table 1). Approxi-
mately 26% of the linked call-encounter pairs were classified
into one of these CDC groups.

For each advice guideline, the fraction of the calls linked to
diagnoses in each syndrome group and the fraction linked to
diagnoses outside of all the groups (i.e., falls in the
nonsyndromic group) were determined. These fractions rep-
resent the historic positive predictive value (PPV) of each
advice guideline for predicting each syndrome type. Advice
syndrome groups were then formed by including in a given

group only those guidelines whose PPV is greater for that group
than for any other group (including the nonsyndromic group).
If PPV was equal for two syndrome groups, the same guide-
line was assigned to both groups.

The advice syndrome groups formed by this procedure are
then evaluated by comparing time series for advice calls (daily
counts in each syndrome group) against physician diagnoses
time series in each syndrome group, using a different period
than the one used to define the groups. The period used for
this analysis was January 2003–November 2004. Rather than
estimating marginal probabilities that a call will fall into a
given syndrome group, time series were compared because the
identification of disease anomalies typically depends on
observations of temporal trends and because this allowed
inclusion of both linked and unlinked advice calls and physi-
cian visits in the evaluation.

For each syndrome group, r2 (i.e., the fraction of the vari-
ance in the physician diagnosis daily counts explained by the
nurse advice daily counts) was calculated. This comparison of
same-day counts was conducted because of the short observed
median time lags (Table 1). Nevertheless, the actual corre-
spondence between calls and encounters might be higher than
the same-day comparisons suggest. Except for day of week,
holiday, and snow corrections described below, r2 is calcu-
lated directly from the time series of daily counts. No correc-
tions are made for serial autocorrelation or for seasonality; all
time scales are assumed to be equally valid for evaluating the
correspondence between these two data sources.

For some comparisons, the data by patient age (which is
available both in the nurse advice records and in the physician
encounter records) was stratified. The age classes included
infant (aged 0–1 years), pediatric (aged 2–17 years), and adult.
For some comparisons, data were stratified by day of week
(i.e., weekends and holidays, Mondays and days after holi-
days, and other weekdays). When day of week was not strati-
fied, each daily data count was divided by the mean value for
its day-of-week class and then the data was smoothed with a
7-day moving average before calculating r2. This step was nec-
essary to correct for differing day-of-week patterns in the
advice and encounter time series. The 7-day average was used
to improve the statistical strength of the data when stratifying
by age (i.e., daily counts for a given age and syndrome group
were sometimes too small to provide meaningful results). The
use of 7-day averages also mitigates any loss of correlation
caused by small lags between the time of an advice call and
the time of a physician encounter.

Before any other processing steps, 8 days were culled from
the data set because of large snowfalls, which apparently
reduced the numbers of physician encounters without notice-
ably affecting the numbers of advice calls.

TABLE 1. Percentage of syndrome groups linked to nurse advice
calls and median lag of visit relative to advice call, 2002

Median lag
% Linked to nurse of visit relative

Syndrome group advice calls to advice call (hrs)

Botulism-like 58 19
Fever 66 4
Gastrointestinal-lower 75 4
Gastrointestinal-upper 68 5
Hemorrhagic illness 56 14
Localized cutaneous lesion 61 6
Lymphadenitis 51 13.5
Neurologic 57 16.5
Rash 51 7
Respiratory 59 6
Severe illness or death
potentially caused
by infectious disease 73 4
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Use of Positive Predictive Value
The goal in defining syndrome groups is to provide a good

estimate for any given day of the number of advice calls that
will eventually result in physician diagnoses falling in a given
syndrome group. Denoting the number of advice calls using
guideline i as ai , the number of those that would be diag-
nosed in the syndrome group (given a physician examination)
as si , and the sum of all calls that would be diagnosed into the
syndrome group as S, the object is to find coefficients, fi that
minimize the mean squared error, E given by

(1)

In this case, the mean is taken over an ensemble of days on
which advice call and physician encounter counts are mea-
sured. Ignoring correlations between numbers of advice calls
following different guidelines, the condition (obtained by dif-
ferentiating Equation 1 with respect to fi ) for minimizing the
squared error can be written as

(2)

where overbars denote mean value. If it is further assumed
that the number of advice calls that would not be diagnosed
in the syndrome group are uncorrelated with those that would,
and also that fluctuations both in a and in s follow a Poisson
distribution (so that variances equal means), the equation
would be

(3)

which is solved by
(4)

In words, fi is the positive predictive value of guideline i for
predicting the syndrome in question.

Advice syndrome groups could be formed as weighted sums,
as implied by Equation 1. However, assigning each advice guide-
line to a single group adds clarity to the interpretation of the
data. When unique assignments are desired, each guideline
should be assigned to the group for which it would be most
heavily weighted, the one for which it has the greatest PPV.

E = Mean[(S −Σ fiai )2].
i

ai (S −Σ fj aj ) + Cov(ai ,si ) − Var(ai ) fi  = 0, for all I,
j

fi = si / ai .

ai (S −Σ fj aj ) + si − ai fi = 0,
j

Results
Using the method described, empirical nurse advice syn-

drome groups were identified for fever, lower gastrointestinal
(GI), upper GI, total GI, rash, and respiratory syndromes. All
advice guidelines in the upper and lower GI groups also fall in
the total GI group. When estimating whether a guideline
belongs in upper or lower GI, the total GI group was not
considered as an alternative diagnosis. No advice guidelines had
maximum PPV for any of the other CDC syndrome groups.
The advice calls falling into the fever, upper GI, and rash syn-
dromes were too infrequent to be useful as a predictor of the
encounter data (Table 2). Potentially useful advice guideline
groupings were found for the lower GI, total GI, and respira-
tory syndrome groups (Tables 3–5). R-squared values calcu-
lated for these groupings and for the various subpopulations
described previously fell in the range 63%–95% (Table 6). These
values were determined by correlating the counts of a given syn-
drome group constructed on the nurse advice guidelines with the
(same day) counts of the same syndrome obtained from physi-
cian encounters, as explained in detail in the methods section.

Discussion
Certain syndrome group definitions contain entries that

seem to be spurious coincidences (e.g., “ADMINISTRATIVE
NOTE” in the infant GI and Respiratory syndromes or
“FEEDING, NEONATAL” in Adult GI). These advice guide-
lines were rare and have negligible effect. They were left in the
list to keep the methodology clear; no ad hoc editing of the
syndrome groups was performed.

Certain entries seem inconsistent with respect to age groups
(e.g., some guidelines labeled “adult” are included in the
infant syndrome groups, and some labeled “peds” are included
in the adult groups). This might indicate some inconsistent
use of the age designations in the guideline names, but the
actual age of the patient is recorded in the nurse advice call
records; therefore, these ambiguities do not interfere with the
ability in practice to stratify guideline syndrome groups by
age. These age-inconsistent guideline names should not pose
a problem.

TABLE 2. Average daily counts observed in Kaiser Permanente of the Mid-Atlantic States data, January 2003–November 2004*
Encounter Fever GI†-Lower GI-Total GI-Upper Rash Respiratory

Infant advice 0.06 8.84 17.63 0.00 0.02 5.77
Infant encounters 15.79 8.21 10.15 1.93 0.85 43.54
Pediatric advice 0.20 8.47 29.64 0.04 0.02 162.73
Pediatric encounters 38.76 12.75 18.62 5.87 2.54 132.60
Adult advice 0.10 36.23 36.31 0.07 163.12
Adult encounters 27.47 29.23 45.76 16.53 8.19 235.66
*No advice syndrome groups were formed for adult/rash.
†Gastrointestinal.
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TABLE 3. Selected advice guideline syndrome group definitions
for infants, determined by a linked analysis of Kaiser Permanente
of the Mid-Atlantic States advice and encounter data, 2002

Positive
Syndrome groups/ predictive
Advice protocol name Total value (%)

Lower gastrointestinal (GI)
Administrative note, advice supervisor 1 50
Diarrhea, 0–24 months, peds 1,103 54
Diarrhea, >2 years, peds 7 50
Diarrhea, peds 154 52
Pinworms, contact exposure 2 100
Reye’s syndrome, peds 1 100

Total GI
Acute GI, gastroenteritis, adult 1 33
Administrative note, advice supervisor 1 50
Diarrhea, 0–24 months, peds 1,141 56
Diarrhea, >2 years, peds 8 57
Diarrhea, peds 162 55
Pinworms, contact exposure 2 100
Reye’s syndrome, peds 1 100
Vomiting, peds 940 41

Respiratory
Administrative note, advice supervisor 1 50
Bronchiolitis, peds 362 52
Bronchitis, acute, adult 3 75
Bronchitis, chronic, adult 1 100
Croup, peds 238 60
Dehydration, adult 1 50
Epiglottitis, peds 2 50
HIV pneumonia, adult 1 100
Hypothermia, adult 1 100
Influenza, peds 15 37
Kaiser role, NOR/SOR operations 1 50
Neonatal sleep position 2 50
Phenylpropanolamine 1 100
Respiratory distress, adult 1 50
Sore throat, adult 1 100
Upper respiratory infection, long term 2 50

TABLE 4. Selected advice guideline syndrome group definitions
for pediatrics, determined by a linked analysis of Kaiser
Permanente Mid-Atlantic States advice and encounter data, 2002

Positive
Syndrome groups/ predictive
Advice protocol name Total value (%)

Lower gastrointestinal (GI)
Diarrhea, 0–24 months, peds 26 48
Diarrhea, >2 years, peds 772 54
Diarrhea, adult 7 64
Diarrhea, long-term care 1 100
Diarrhea, peds 104 48
Diarrhea-prenatal, OB/GYN 2 67
ECM script 2 67
Pinworms, adult 1 100
Stool occult blood test, adult 1 50
Urgent/bun, creatinine, intact pth l 1 50
Urgent/Co2 urgent values 1 33
Urgent/stat lab values 2 50

Total GI
Acute GI, gastroenteritis, adult 5 50
Anxiety attack, adult 1 100
Dehydration, adult 2 50
Diarrhea, 0–24 months, peds 28 52
Diarrhea, >2 years, peds 807 56
Diarrhea, adult 7 64
Diarrhea, long-term care 1 100
Diarrhea, peds 110 51
Diarrhea-prenatal, obgyn 2 67
ECM script 2 67
Nausea-prenatal, OB/GYN 1 50
Pinworms, adult 1 100
Stool occult blood test, adult 2 100
Urgent/bun, creatinine, intact pth l 1 50
Urgent/Co2 urgent values 2 67
Urgent/stat lab values 3 75
Vomiting, peds 2,229 44

Respiratory
Bronchiolitis, peds 265 50
Bronchitis, acute, adult 17 49
Chicken pox, adult 1 50
Croup, peds 421 61
Epiglottitis, peds 8 50
Fever, adult 3 38
Fever, neonatal 2 67
Fever, peds 2,249 34
Influenza, peds 406 36
Lab results 348 41
Laryngitis, adult 2 67
Learning disabilities, peds 1 100
Medications-prenatal, OB/GYN 6 55
Meningitis, peds, 3 months–2 years 3 43
Mononucleosis, adult 2 67
Overdose, adult 1 100
Pediatric OTC chart (36–59 lbs.) 82 48
Pharmacy questions 3 43
Reye’s syndrome, peds 3 50
Sore throat, adult 54 53
Sore throat, peds 6,561 57
Throat culture, positive 47 58
Throat culture, positive results 84 58
Upper respiratory infection, long term 1 100
Upper respiratory infection, peds 8,594 46

One type of finding in these results consists of advice guide-
lines that are unexpectedly missing from these groupings. For
example, adult nausea and adult vomiting are not included
because it was discovered that these complaints most often
result in diagnoses falling outside of the CDC syndrome
groups. However, if a particular public health threat of con-
cern could present itself as adult nausea and vomiting only,
then it would be important to monitor this channel also, but
perhaps not aggregated with the other complaints, which are
more specific to the GI syndrome as it usually occurs. Other
similar examples are adult upper respiratory infection and res-
piratory distress in adults. The absence of acute laryngitis in
the adult list has a different type of explanation; 4-digit ICD-9
codes were sometimes recorded in the database, while the CDC
syndrome definitions only include the 5-digit codes for acute
laryngitis. For methodological clarity, no attempt was made
to “fix” this type of problem.
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TABLE 5. Selected advice guideline syndrome group definitions
for adults, determined by a linked analysis of Kaiser Permanente
Mid-Atlantic States advice and encounter data, 2002

Positive
Syndrome groups/ predictive
Advice protocol name Total value (%)

Lower gastrointestinal (GI)
Acute GI, gastroenteritis, adult 1,076 49
Diarrhea, >2 years, peds 1 50
Diarrhea, adult 2,534 59
Diarrhea-prenatal, OB/GYN 50 55
Diet change, long-term care 1 50
HIV diarrhea, adult 15 47
Pinworms, contact exposure 1 50

Total GI
Acute GI, gastroenteritis, adult 1,224 56
Diarrhea, >2 years, peds 1 50
Diarrhea, adult 2,614 61
Diarrhea-prenatal, OB/GYN 54 59
Diet change, long-term care 1 50
Drug ingestion, peds 1 100
Feeding, neonatal 1 50
HIV diarrhea, adult 16 50
Pinworms, contact exposure 1 50

Respiratory
Bronchiolitis, peds 1 50
Bronchitis, acute, adult 10,786 59
Bronchitis, chronic, adult 306 55
Influenza, adult 1,855 40
HIV dyspnea, adult 11 61
HIV pneumonia, adult 14 47
Medications-prenatal, OB/GYN 224 49
Meningitis, peds, >2 years 1 50
Sore throat, adult 7,456 60
Sore throat, peds 26 54
Throat culture, positive 15 79
Throat culture, positive results 40 63

TABLE 6. Percentage of physician encounter variance modeled by same-day nurse advice call fluctuations in Kaiser Permanente
Mid-Atlantic States data, January 2003–November 2004

Gastrointestinal- Gastrointestinal-
Days of week Age Respiratory lower total

Weekends and holidays All ages 80 73 81
Mondays and holidays plus 1 day All ages 88 78 82
Other weekdays All ages 87 76 82
All days, smoothed Infants 63 92 94

Children 92 87 94
Adults 95 86 82

All ages 94 94 94

The most marginal case is in respiratory syndrome for
infants; this case has a relatively low number of identifiable
nurse advice calls (Table 2).

Conclusion
A patient-linked mapping of nurse advice guidelines to phy-

sician diagnoses has yielded advice syndrome groups that
accurately track the temporal behavior of the CDC diagnosis-
based groups for respiratory, lower GI, and total GI syndromes
separately for infants, pediatrics, and adults in approximately
2 years of data collected in the National Capital Region. This
same technique indicates that advice syndrome groups that
might be created for other single CDC-defined syndromes
will be substantially less specific than the diagnosis-based syn-
drome groups; more cases would probably be determined to
fall outside of the syndrome groups than in them on exami-
nation by a physician.
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Abstract

Introduction: Multiple systems have been developed that use surveillance of health-care encounters to provide early warning
of a terrorist attack. Limited practical experience and the absence of adequate theoretical assessments have precluded deter-
mining which alarm-generating algorithms should be preferred. In the absence of practical and theoretical results, choosing a
particular statistical algorithm can be difficult. One way to evaluate algorithms is through simulation.

Objectives: This report describes conceptual features of an example simulation based on the dispersal of anthrax spores and
presents results based on the example simulation.

Methods: A simulation was implemented based on the dispersal of anthrax spores from a crop-dusting plane. Simulated cases
were then included into an observed data stream. Detection approaches included SaTScan™ and small area regression and
testing (SMART) scores. An evaluation metric was developed for comparison of results. In addition, a simulation of a separate
data stream was added; and then separate and combined surveillance data were compared.

Results: In the simulation in which a single data stream was used, the two statistical approaches were substantially similar in
performance. The combined surveillance based on two data streams is superior to surveillance based on either stream sepa-
rately.

Conclusion: The other potential uses of such a system are considered. These uses include the comparison of different data
sources (e.g., outpatient versus emergency department and evaluating the impact of potential changes to the surveillance
system, and increasing the population under surveillance). Simulation is a valuable technique for evaluating and planning
for syndromic surveillance.

Introduction
Since the attacks on the World Trade Centers on September

11, 2001, increasing attention has been paid to early detec-
tion of biologic terrorism attacks (1,2). Assuming biologic
agents are not detected directly in the environment, the first
indicator of a terrorist attack might be persons becoming ill.
Surveillance systems designed to detect increased numbers of
ill persons, consistent with exposure to these agents, have been
developed (3–7). Key to these systems is the technique used
to decide whether “too many” ill persons have been observed.
However, despite an increasing number of statistical (8,9) and
data mining (5) techniques, limited comparative work has been
conducted to assess their relative strengths.

Theoretical comparisons are probably not possible in real-
istic settings, and practical experience is limited by small num-

bers of attack-like events. Thus, simulation is an important
route to evaluation. Unfortunately, most simulations published
to date have been too simple for meaningful analysis, except
for a previously published analysis of a system generated by
an epidemic simulation model (10).

The objective of this report is to present a simulation struc-
ture developed in the setting of an outpatient surveillance sys-
tem (11,12). Simulation is only of cases generated by attacks,
as opposed to cases arising both from attacks and natural dis-
ease. In contrast to the system generated by the epidemic simu-
lation model (10), the outpatient system is simple in that it
can be replicated using data likely to be available in many
contexts. Thus, the simulation described in this report can be
transferred to another data setting with ease.
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Simulations can be used to determine the cost-benefit ratio
of the surveillance system, to compare the relative value of
different data sources and other features, and to evaluate sta-
tistical methods. Thus, it can be used to help determine the
value of syndromic surveillance.

Methods

Outpatient Surveillance System
Simulation was performed by using a surveillance system

that relies on data collected as part of outpatient visits near
Boston, Massachusetts (11,12). When insured patients vis-
ited a clinic, their health-care provider created an electronic
medical record. At the close of the visit, the provider entered
International Classification of Diseases, Ninth Revision (ICD-9)
(13) codes that described the patient’s condition.

Each outpatient visit was classified into broad groups or
syndromes of ICD-9 codes (e.g., lower gastrointestinal or neu-
rologic symptoms). The intended effect of these groupings is
that a patient’s condition will likely be classified as a given
syndrome, despite variability in coding practices among pro-
viders. Next, a census location and ZIP code, based on the
patient’s health maintenance organization record, were
attached to the encounter. Finally, for privacy reasons, patient
identities were removed and only the number of patients in
each geographic region (e.g., census tract or ZIP code) was
recorded. The count of each syndrome in each region was
used for analysis.

For example, the respiratory syn-
drome includes 171 ICD-9 codes,
including those for bronchitis, cough,
and pneumonia. This syndrome is of
particular interest because a case of
inhalational anthrax identified in the
prodromal phase would probably
receive an ICD-9 code in this group (11).

Conceptual Simulation
In concept (Figure 1), the first step

of the simulation is to determine who
becomes ill. For simulation of an
anthrax attack, each person is exposed
to a number of spores; this number is a
function of the total number of spores
released by the terrorist and what pro-
portion of spores fall where the person
is located. For each spore to which a
person is exposed, a certain probability

exists that they will become ill. The second step is to deter-
mine when they become ill. The time from infection to initial
symptoms is variable. For each simulated infected person, the
day on which their symptoms appear must be simulated. This
day of initial symptoms depends on the day of the release of
spores and on the distribution of symptom onset times. The
third step is to determine, among persons eligible for surveil-
lance, the probability of seeking care at a clinic and the time
that care was sought. For infected persons who are eligible for
surveillance, some probability exists that they will go to the
clinic and therefore become part of the observed count for
respiratory illness. They also visit the clinic at a simulated time
after symptom onset.

Implementation of the Conceptual
Simulation

In our implementation of the conceptual simulation,
anthrax spores were assumed to have been dropped from the
height of a crop-dusting plane (14). Exposures occurred only
in the ZIP code of residence and to all residents of each ZIP
code. Time was treated as discrete in days. These choices make
the simulation simpler and mirror the nature of the underly-
ing surveillance system.

To approximate the total number of persons living in each
area, U.S. Census data were used. Persons in each area were
randomly chosen to be included in the surveillance system.
Because the exact location of the real persons under surveil-
lance or of the other persons within each area was unknown,

FIGURE 1. Conceptual description of the simulation*
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locations were chosen for them. Approximately 100 locations
were chosen within each ZIP code. The population under
surveillance and the remaining persons were distributed among
these points equally for the purposes of calculating the num-
ber of spores to which persons were exposed.

Simulating Illness

Whether a simulated person becomes ill depends on how
many spores they are exposed to and on the probability that
each spore makes them ill. This step is the most complicated
part of the simulation.

The number of spores that fall over any particular area on
the map is a function of multiple parameters. The first
parameter is the point from which the dispersal starts. The
simulated release could begin at any point on the map. Rea-
sonable distributions across space for this point include a uni-
form distribution, distributions based on population patterns
and wind patterns, and distributions based on perceived lev-
els of surveillance sensitivity. The map was stratified into an
urban region around Boston and a suburban region; within
each region, release points were generated from a spatially
uniform distribution.

The spores could all be released at a single point on the map
or along a line or curve mimicking a flight path. These cases
are described as point-source versus line-source exposure.
However, defining a point-source release as a release with length
0 would be more flexible. The length of release could be cho-
sen from any random function with positive value, if one had
some reason to expect various lengths. A length of 0 is used in
this implementation. Finally, the number of spores falling at a
given spot depends on how they fall. In this implementation,
the anthrax spores are assumed to fall according to a Gaussian
plume (15) function. This process is a flexible function, which
defines for a given point downwind the proportion of released
spores that will fall at any given spot. This function has been
used to describe the concentration of spores in the context of
an accidental release of anthrax (14,16).

 The Guassian plume in its most general form (15) is simpli-
fied in this implementation by making constant the breathing
rate (an estimated value of 0.03), the windspeed (5 m/sec = 18
kph), and the height above the ground (0), and inserting these
values into the general equations. Inserting these constants into
the general form generates the simplified function

where s(x,y) is the number of spores inhaled by a person x
meters downwind and y meters in the crosswind direction

from the release point. Q is the number of spores released,
and h is the height of the release.

Parameters also are available to represent the height of re-
lease and the weather conditions. These parameters can be
chosen randomly. Instead, for the weather conditions, two
different sets of parameters are used: those derived from the
accidental release (14,16) and the parameters described as Class
A (17). For the Sverdlovsk parameters (14), these are

and .

For the Class A weather patterns (17), they are

and

.

The height is set at the height of a typical crop-dusting plane,
100 meters (14). The resulting spore distributions are illus-
trated (Figure 2).

The number of spores falling at a given spot depends on
how many spores were released. The approximate number of
spores of anthrax per kilogram is 1015 (14). Without any spe-
cific information regarding the number of spores a terrorist
can obtain, almost any positive-value distribution could be
used to simulate the number of spores. The implementation
described in this report includes 1015 spores.

The starting point, length and direction of dispersal, shape,
and the number of spores together identify the number of
spores that fall at any spot. This calculation was made for
each point at which persons are assigned to live. The number
of spores a person is exposed to is equal to the number of
spores falling at their assigned location.

The other component describing the probability that each
simulated person becomes ill is the probability of illness per
spore. Estimates that result in probabilities of illness per spore
ranging from 6.9 × 10-7 to 1.2 × 10-4 have been previously
described (18). A distribution of probabilities per spore could
also be chosen; a rescaled beta distribution might be an
appropriate choice in this instance. In addition, the probabil-
ity of illness might depend on individual characteristics (e.g.,
age) that are not available in the current application. The
anthrax available to terrorists might be less functional than
that indicated by the accidental release. Simulations were strati-
fied to include five different values of probability of illness per
spore: 10-10, 5 × 10-10, 10-9, 5 × 10-9, and 10-8. This range
was chosen to incorporate both cases in which few and most
simulated attacks could be detected. An alternative approach
to achieve this goal would be to use the derived probabilities
(18) but to reduce the assumed quantity of anthrax spores
released.
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The probability of a person being affected was calculated
by using the number of spores and the probability of illness
per spore. The probability of illness per spore was treated as
independent of the number of spores. The binomial distribu-
tion was used to calculate the probability of each person
becoming ill as 1- the probability no spore makes them ill =
1 - (1 - probability of illness per spore)number of spores. If data
suggested that the probability of illness depended on the num-
ber of spores present, this individual-dependent probability
could be incorporated.

Timing of Illness

Patterns exist across the year and weekdays for respiratory
syndrome counts (12); a distribution of simulated releases
across the calendar needs to be chosen. Some reasonable choices
would be uniform across the calendar, uniform within month
but different probabilities by month, uniform within week-
day but different by day, or some continuous function of the
day of the year. The choice could be made to mimic the
expected behavior of terrorists. Simulations were stratified by
day across the entire calendar, noting that other distributions
can be constructed by bootstrap sampling of simulated at-
tacks.

The timing of symptom onset has been described previ-
ously (19). The log time to onset has an approximately nor-
mal distribution, with the mean corresponding to 14.2 days;
median, 11.0 days; and standard deviation, 0.713 (log scale).
A time of onset was simulated according to this distribution,
by using the largest integer included.

Timing of Entry into Surveillance System

In the evaluation in this report, the number of persons in
each ZIP code included in the surveillance system was known.
This number could be varied as well (e.g., to allow compari-
son of different potential systems or of improvements to an
extant system).

Only those simulated persons eligible for surveillance who
become ill and go to the clinic are added to the evaluation
data set. Each person can be seen as having some probability
for seeking care; this probability might vary according to
individual characteristics (e.g., age, sex, and ethnic/cultural
background). Obtaining individual characteristics of the
patients under surveillance was not possible, so a fixed value
of 0.2 was used for the probability of an eligible ill person
entering the evaluation data set. This value is derived from
the 2001 anthrax release in the United States, when two of
the first 10 confirmed case-patients went to their physician
before being admitted to the ED (20).

Persons might visit the clinic any time after the onset of
symptoms. Increasing the probability of a clinic visit as the
severity of symptoms increased would be feasible, possibly
including probabilities that increase at different rates, depend-
ing on individual characteristics. The assumption was made
that all patients visited the clinic on the day of symptom onset.

Extension to an Additional Data Stream
Historical data are available from a pediatric ED in Boston

that also measures the count by ZIP code of respiratory syn-
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FIGURE 2. Number of spores above points on the map for two different weather conditions, Sverdlovsk parameters and Unstable
Class A parameters*

* Corresponds to the Sverdlovsk parameters (Wein LM, Craft DL, Kaplan EH. Emergency response to an anthrax attack. Proceedings of the National
Academies of Science 2003;100:4346–51), and the Unstable Class A parameters (Spijkerboer HP, Beniers JE, Jaspers D, et al. Ability of the Gaussian
plume model to predict and describe spore dispersal over a potato crop. Ecological Modeling 2002;155:1–18). The X and Y axes are measured in kilometers
from the release; Z (height), in number of spores.
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drome visits (21,22). Extending the simulation to include
simulated visits to the pediatric ED is straightforward. All
persons aged <18 years are included in the surveillance; pedi-
atric status was randomly assigned to simulated persons
according to the proportion of children reported by the state.
Going to the pediatric ED is simulated as a decreasing prob-
ability with distance from the facility. One less the inverse
normal probability was used with mean 0 and variance 49
(km), implying that a child located 14 km from the pediatric
ED had approximately a 2.5% chance of being examined.
The day of the pediatric ED visit is simulated as 1 (p = 0.15),
2 (p = 0.55), or 3 (p = 0.30) days after symptom onset. Com-
pared with the first 10 terrorism-related inhalational anthrax
cases in 2001, this probability timing structure is generous to
the ED; only four of 10 patients contacted the ED within 3
days of symptom onset (20). However, parents might bring
children to the ED sooner than an adult would go.

Example Evaluation and Metrics
For the outpatient surveillance, two statistical methods were

compared: the small area regression and testing (SMART) score
and a SaTScan approach (9,23,24). In the SMART score, gen-
eralized linear models are used to establish the expected count
per ZIP code per day, adjusting for seasonal, weekly, and tem-
poral trends, and holiday status (23). Then, based on the theo-
retical distribution of case counts and after correcting for
multiple testing, the SMART score generates a recurrence
interval for each ZIP code each day; the recurrence interval is
the length of follow-up required to expect one count as
unusual as the observed count.

SaTScan identifies unusual clusters of ZIP codes each day
(9). Every possible combination of ZIP codes within a circu-
lar area around each ZIP code is considered. Each possibility
is ranked by likelihood to find the most unusual cluster. Then,
a Monte Carlo step determines whether that cluster is
unusual in the absolute sense among clusters expected by
chance allocation of the cases. This step results in a recurrence
interval previously described. The input to the SaTScan is
adjusted by using the SMART scores to account for the trends
described previously (24).

To illustrate the dual-stream outpatient and pediatric ED
simulation, only SMART scores were used. Results for the
outpatient and pediatric ED data streams are illustrated sepa-
rately, and the results of a combined surveillance that incor-
porates signals from each stream are demonstrated. A
combined p value is calculated by summing the p value from
each stream, squaring the sum, and dividing by two, assum-
ing that the sum is <1 (25). This combined p value was calcu-
lated for each ZIP code and converted to a recurrence interval
as previously described.

The conditional receiver operating characteristic (ROC)
curve was developed for use in this evaluation and is intro-
duced in this report. The conditional ROC is defined as the
ROC curve with respect to attacks generated by the simula-
tion. The sensitivity, which is the probability of detecting an
attack, is calculated as the proportion of simulated attacks
detected at a given detection threshold. The probability of a
false anthrax alarm is calculated as the proportion of days with
alarms at that threshold when a simulated attack was not added.
One less this quantity is used as the specificity in the ROC
curve. Note that the different sources of information regard-
ing the sensitivity and the specificity make the conditional
ROC curve somewhat different from the usual (unconditional)
ROC curve. In addition, the proportion of detected events,
by day of detection, is illustrated. Detection requires that the
signal, which is made up of some set of ZIP codes, includes at
least one ZIP code with at least one simulated case.

Results
An example of the effects of a single simulated release in the

outpatient data is illustrated (Figure 3). In this example, the
release was in the urban area, the spores had a 10-8 probability
of causing illness, and the shape was from the accidental release.
Affected ZIP codes indicate no or little response on the day of
or day after release, but by day 3 or 4, a noticeable difference
was observed between the underlying data and the data with
the added cases.

The two methods are similar in their diagnostic value with
respect to the simulated attacks. The area for the SMART
score is 0.93 and for SaTScan, 0.94, which suggests that the
SaTScan is slightly superior in this context (Figure 4).

With 1,095 total simulations, SaTScan identified 85% of
attacks within 9 days, and the SMART score approach identi-
fied 83% (Figure 5). SaTScan identified 57% within 4 days,
and the SMART score approach identified only 50% in that
time frame.

The pediatric ED surveillance detects more attacks than the
outpatient surveillance for any proportion of false positives
(Figure 6). The combined surveillance is slightly better than
the pediatric ED. The areas under curves are 0.98, 0.93, and
0.99 for the pediatric ED, outpatient, and combined surveil-
lance, respectively.

Discussion
The results of this report demonstrate how the simulation

can be used to compare statistical methods and different data
sources. With a focused spore dispersal and a high probability
of infection, SMART scores are slightly inferior to SaTScan
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FIGURE 3. Maps illustrating the outpatient data set before and after simulated cases are added*

* Map area represents ZIP codes in and around Boston, Massachusetts. Black box superimposed over each map indicates
a region in which the simulated release occurred.
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with respect to detecting anthrax attacks, although both meth-
ods perform effectively. Similarly, outpatient surveillance per-
forms slightly less effectively than pediatric ED or combined
surveillance (Figure 6).

A potential use for the simulation is to assess the value of
different levels of coverage in the surveillance system. For

example, approximately 10% of residents are included in the
outpatient-based surveillance described in this report. Increas-
ing that proportion to determine whether the return would be
worth the investment might be possible. Running the simula-
tion with different levels of coverage would allow a comparison
to be made. And coverage could be a parameter in the model.
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FIGURE 5. Cumulative number of anthrax attacks detected
under two different algorithms, by day*

* Small number above each bar indicates the cumulative number detected
through each day. Total number of simulations = 1,095.

†Small area regression and testing.
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As with the ED example, hospital admissions, prescriptions,
or over-the-counter pharmaceutical sales could be added.
Including them in the simulation would allow comparison of
the statistical methods for the multistream surveillance as well
as an assessment of their relative utility.

Although the variable latency of the disease onset includes
times as late as 60 days after exposure, differences in statistical
algorithms a substantial period after exposure are not useful;
a clinician will generate a laboratory-based diagnosis of
anthrax substantially sooner than 60 days after release. The
date of clinical detection might be modeled as a probability
per patient contact or as an increasing probability with the
number of affected persons. The number of ill persons each
day was recorded by area through the 10th day; the assump-
tion was that a clinical diagnosis would be initiated by that
time. However, the number of ill persons overall were retained
from >11 days.

Conclusion
This report presented a conceptual discussion and an imple-

mentation of simulating an anthrax attack. The simulation
will allow various algorithms used to detect such attacks to be
compared, which is otherwise difficult. Although the concep-
tual framework is general, implementation choices can sim-
plify the simulation to suit different purposes (e.g., statistical
comparisons or emergency planning).

Simulations can be a valuable part of evaluating surveil-
lance systems. They can be used to compute comparisons of
statistical and data mining algorithms and can help guide

FIGURE 4. Conditional ROC* curves for two statistical
methods as detection algorithms employed to detect biologic
terrorism†

* Receiver operator characteristic.
†Based on simulated anthrax attack generating outpatient visits.
§Small area regression and testing.

S
en

si
tiv

ity
 g

iv
en

 a
nt

hr
ax

1 – Specificity given anthrax

SMART§ score
SaTScan™



108 MMWR August 26, 2005

public health officials in evaluating and planning surveillance
systems.
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Abstract

Introduction: Syndromic surveillance offers the potential to rapidly detect outbreaks resulting from terrorism. Despite con-
siderable experience with implementing syndromic surveillance, limited evidence exists to describe the performance of syndromic
surveillance systems in detecting outbreaks.

Objectives: To describe a model for simulating cases that might result from exposure to inhalational anthrax and then use the
model to evaluate the ability of syndromic surveillance to detect an outbreak of inhalational anthrax after an aerosol release.

Methods: Disease progression and health-care use were simulated for persons infected with anthrax. Simulated cases were
then superimposed on authentic surveillance data to create test data sets. A temporal outbreak detection algorithm was applied
to each test data set, and sensitivity and timeliness of outbreak detection were calculated by using syndromic surveillance.

Results: The earliest detection using a temporal algorithm was 2 days after a release. Earlier detection tended to occur when
more persons were infected, and performance worsened as the proportion of persons seeking care in the prodromal disease state
declined. A shorter median incubation state led to earlier detection, as soon as 1 day after release when the incubation state
was <5 days.

Conclusion: Syndromic surveillance of a respiratory syndrome using a temporal detection algorithm tended to detect
an anthrax attack within 3–4 days after exposure if >10,000 persons were infected. The performance of surveillance
(i.e., timeliness and sensitivity) worsened as the number of persons infected decreased.

Introduction
Syndromic surveillance offers the potential to rapidly detect a

change in the health status of a population. The main motiva-
tion for conducting syndromic surveillance has been to detect
disease outbreaks resulting from an act of terrorism (1).
Despite implementation of syndromic surveillance (2) and
promulgation of evaluation guidelines (3), limited evidence
exists that describes the performance of syndromic surveil-
lance systems in detecting outbreaks from terrorism (4).

Published evaluations of syndromic surveillance have
focused on the ability of a system to detect influenza out-
breaks compared with traditional means of influenza surveil-
lance (5,6). These evaluations provide useful information, but
this proxy disease approach to evaluation has limitations. Most
notably, the performance of syndromic surveillance in detect-
ing influenza outbreaks might not be generalizable to detect-
ing other types of outbreaks. Outbreaks resulting from
intentional releases will likely have different characteristics than

influenza outbreaks, including a different disease agent and
means of introducing the agent into the population. These
characteristics can change the presentation of an outbreak and
the ability of a surveillance system to detect an outbreak. For
example, an outbreak attributed to inhalational anthrax might
have a faster increase in cases than an influenza outbreak, and
the anthrax cases can also occur in tighter spatial clusters.

Another option for evaluating a syndromic surveillance sys-
tem is to superimpose outbreak cases (i.e., an epidemic curve)
directly onto an existing data source and then use the combi-
nation of the superimposed outbreak data and real baseline
data to evaluate a surveillance system. One method for pro-
ducing the outbreak cases is to specify an epidemic curve,
which is the distribution of time until patients seek health
care after exposure. Specifying the epidemic curve is appeal-
ing because of its simplicity, but the epidemic curve is essen-
tially a black box. Predicting how changes in the many factors
that might influence an outbreak would affect the epidemic
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curve is not possible. Such factors include the progression of
disease within infected persons and the propensity for symp-
tomatic persons to seek medical care. The ability to examine
the influence of these factors on the evolution and detection
of an outbreak is important because uncertainty exists about
these factors in medical literature (7), and debate continues
about the influence of these factors on surveillance (8).

This report describes the implementation and application
of a model for simulating cases that might result from an
exposure to inhalational anthrax. Design of the model has
been described previously (9); in this report, detailed compo-
nents of the model for simulating disease progression and
health-care–service use by persons with symptoms are
described. The model is then used to evaluate the ability of
syndromic surveillance to detect an outbreak of inhalational
anthrax after an aerosol release.

Methods

Simulation Model
A model of the processes underlying the biological and

medical sequelae of an anthrax attack was developed (9). This
model included components for the dispersion of spores after
a release, the infection of persons, disease progression within
infected persons, and health-care use by symptomatic persons.

Evaluation of syndromic surveillance was conducted by
using a temporal algorithm; thus, the dispersion and infec-
tion components of the model, which are necessary only for
evaluating spatial algorithms, were not used. Simulation, there-
fore, began with disease progression and the number of
infected persons. The components of the simulation model
used were the disease and the health-care–seeking components.
The disease component simulates a path through three dis-
ease states (i.e., incubation, prodromal, and fulminant) for
each infected person. The health-care–seeking component then
simulates the occurrence and timing of health-care visits in
each disease state and the syndrome assigned to a person who
seeks care.

Disease Component

Using previous studies modeling anthrax (10), disease pro-
gression was modeled through the three disease states: incu-
bation, prodromal, and fulminant. Disease progression was
modeled as a semi-Markov process (11), with lognormal hold-
ing time functions. The incubation times for inhalational
anthrax fit a lognormal distribution (12–14), and the
parameter’s values for the lognormal holding time functions
used in the base case are indicated (Table 1) (10). The log
time in a state is normally distributed with mean µ and vari-

ance s2, log(t) ~ N(µ, s2). Similar to previous studies (12), the
parameter d = es is referred to as the dispersion factor, and the
median and dispersion factor are used to describe lognormal
distributions. In simulating disease, an infected person begins
in the incubation state, progresses to the prodromal state, and
then to the fulminant state. A distinct path was simulated
through the disease model for each infected person.

Health-Care–Seeking Component

Because detailed data on the probability of seeking care and
the delay to seeking care given an illness are not readily avail-
able in medical literature, a single state semi-Markov process
was used to model the probability of and time to seeking care.
Consumer panel research was used for the probability of seek-
ing care (A. Kress, Surveillance Data Inc., personal commu-
nication, 2004), and a right triangular distribution (15) fit to
the time spent in the disease state was used to model the time
to seeking care. For persons that sought care, the instanta-
neous probability of seeking care increased linearly over the
time in a state. Persons were limited to a single episode of care
in each state, and care-seeking was modeled independently
for the prodromal and fulminant states. When a person sought
health care, the syndrome assigned was simulated using the
probabilities (Table 1) that reflect the distribution of clinical
presentations for inhalational anthrax (16,17). The time to
seeking care was modeled as a continuous variable, and sur-
veillance analysis was performed daily.

Simulation Study
The simulation study examined the ability of syndromic

surveillance conducted with a temporal algorithm to detect a

TABLE 1. Parameters used in simulation model
Parameter name Base value Source

Disease
Incubation duration, median 10.95 days 14
Incubation duration, dispersion 2.04 days 14
Prodromal duration, median 2.50 days 10
Prodromal duration, dispersion 1.44 days 10
Fulminant duration, median 1.50 days 10
Fulminant duration, dispersion 1.44 days 10

Health-care seeking
Probability of seeking care, prodromal 0.4 Estimate
 state
Probability of seeking care, fulminant 0.8 Estimate
state

Probability of respiratory syndrome, 0.7 16
prodromal state

Probability of gastrointestinal syndrome, 0.2 16
prodromal state

Probability of fever syndrome, prodromal 0.1 16
state

Probability of shock syndrome, fulminant 0.7 16
state

Probability of neurological syndrome, 0.3 16
fulminant state
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simulated anthrax outbreak. A temporal algorithm follows the
aggregate incidence of events throughout the surveillance
region and does not examine the spatial distribution of events.
The impact of the size of the outbreak on detection perfor-
mance was examined and the sensitivity of findings to assump-
tions about disease progression and health-care–seeking
behavior was also determined.

The study design simulated outbreaks and then combined
data from each outbreak with real health-care use data to form
multiple test data sets. Each test data set was the union of
authentic data with a set of records from a simulated out-
break. A detection algorithm was then applied to each test
data set, and outbreak-detection performance was measured.
The authentic surveillance data and simulation region, the
approach to generating simulated outbreaks, the outbreak
detection algorithm, and the technical implementation are
described below.

Surveillance Data and Region

Records of ambulatory-care visits were acquired in Norfolk,
Virginia, from the TRICARE health maintenance organiza-
tion (HMO). This HMO finances health care for active duty
military personnel and their dependants. Syndromic surveil-
lance systems, including the ESSENCE (18) and BioSense
systems, routinely use these data. Data were available for 2001–
2003. The simulation region includes 17 clinical facilities that
services approximately 158 ZIP codes from two states. Dur-
ing 2001–2003, a total of 427,634 persons made approxi-
mately 7 million visits for syndromes routinely followed in
syndromic surveillance. Records were classified into syndromes
by using the International Classification of Diseases, Ninth
Revision, Clinical Modification codes to syndrome mapping
defined by the ESSENCE system.

Generation of Simulated Outbreaks

In generating simulated outbreaks, four parameters in the
simulation model were varied: number of infected persons,
median time in the incubation state, median time in the pro-
dromal state, and the proportion seeking care in the prodro-
mal state. For each parameter, eight settings were used and
ten runs were performed at each setting, resulting in 320 simu-
lated outbreaks. Eight dates were then randomly selected for
the beginning of an outbreak, and each simulated outbreak
was superimposed onto the authentic data beginning on each
of the outbreak dates, resulting in 2,560 test sets (Table 2).

Outbreak Detection Method

An autoregressive seasonal integrated moving average
(SARIMA) model (19) was used to calculate one-step-ahead

daily forecasts of respiratory syndrome counts, and a cumula-
tive sum (20) was applied to detect positive deviations in the
forecast residuals. Researchers have employed this approach
to outbreak detection in a surveillance setting (21). The respi-
ratory syndrome was used because this is the syndrome an
anthrax attack will likely affect and the temporal surveillance
algorithm only considers a single syndromic category).

To fit the SARIMA model, the first 2 years of data for respi-
ratory syndromes were used, and a procedure published pre-
viously was followed (22). This entailed subtracting the overall
mean, day-of-week means, month means, and holiday means
from the original count data to give a series centered on zero.
Trimmed means (alpha = 0.1) were used for both day-of-week
and month to minimize the influence of outliers. The tempo-
ral autocorrelation in this series was assessed, and a SARIMA
model was fit to the series by using a standard approach to
model specification (19). The fit of the SARIMA model was
evaluated to the training and test data by using the mean
absolute percentage error (MAPE), which is the average of
the absolute difference between the daily forecast and the visit
count, divided by the visit count. The standardized residual
was calculated for each day as the observed count minus the
one-step-ahead forecast from the SARIMA model, divided by
the standard error of the forecast. To fit the cumulative sum,
the parameters of the test were adjusted to achieve an alarm
rate on the training data that was approximately one per
month, which is intended to reflect a reasonable workload for
a public health agency.

To evaluate outbreak detection, sensitivity and timeliness
were calculated at a set alarm rate. Sensitivity was defined as
the proportion of simulated outbreaks detected before or at
the peak of the epidemic curve; timeliness was defined as the
number of days until an alarm, given that an outbreak was
detected.

TABLE 2. Parameters varied in the sensitivity analysis*
Parameter Settings evaluated

No. of infected persons (in thousands) 5, 10, 20, 30, 40, 50, 60, 70

Incubation duration, median (in days) 3, 5, 7, 9, 10, 11, 12, 13

Prodromal duration, median (in days) 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0

Probability of seeking care, prodromal 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
state 0.7, 0.8

Date of anthrax release March 9 (Sun), April 19 (Sat),
June 14 (Sat), July 8 (Tue),
July 25 (Fri), August 3 (Sun),
September 7 (Sun),
November 7 (Fri)

* Settings in bold are for the base case.
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Results
During 2001–2003, the syndrome mapping classified

351,749 (6.6%) of the 5,319,347 visits as respiratory syn-
dromes. The average was 321 respiratory visits per day (range:
six to 963 visits), with lower counts on weekends (mean: 168
visits) than on weekdays (mean: 382 visits). Examination of
the time series of respiratory counts revealed systematic varia-
tion by day-of-week, month, and holidays (Figure 1).

After subtracting the overall mean and means for day-of-week,
month and holiday, the zero-centered series exhibited tempo-
ral autocorrelation at short lags on the order of days and cycli-
cal lags of order seven. A SARIMA model (2,0,1) x (2,0,1)7
had the best fit to the zero-centered series. One-step-ahead
forecasts from this model resulted in a MAPE of 15.8% on
the training data (2001–2002), indicating that the forecast
values were, on average, within 15.8% of the true value. This
fit is similar to or better than the fit reported in previous
research using the same algorithm and similar data (23).

The cumulative sum was calibrated to a specificity of 97%,
by setting the shift parameter to 1 and the threshold to 1.5.
This is an alarm rate of approximately 1 in 4 weeks (3.5%),
which other researchers have used to evaluate outbreak detec-
tion through syndromic surveillance (24).

Detection by Number Infected
Surveillance with a temporal algorithm detected an outbreak

2 days after release at the earliest, with a trend towards earlier
detection as the number of persons infected increased
(Figure 2). When >40,000 persons were infected, the median
time to detection was 3 days, and the maximum time to
detection was 5 days. At lower release amounts, the median
time to detection increased, reaching a maximum of 6 days
when 5,000 were infected. Sensitivity was 100% when >30,000
persons were infected, decreased to 90% (95% confidence
interval [CI] = 82%–95%) when 20,000 were infected, to
75% (CI = 65%–84%) when 10,000 were infected, and to
56% (CI = 45%–67%) when 5,000 were infected.

Sensitivity to Disease and Behavior
Assumptions

In the base case, 40% of persons sought care in the prodro-
mal disease state. Increasing the proportion of persons who
sought care in the prodromal state resulted in temporal sur-
veillance detecting the outbreak faster, but the change was
minor. In contrast, the performance of temporal surveillance
declined as the proportion seeking care decreased. With 10%

of persons seeking care, syndromic sur-
veillance detected the outbreak on
median in 5 days. Varying the propor-
tion seeking care had a similar effect on
detection to varying the number
infected (Figure 2).

In the base case, the median duration
of the incubation state was 11 days.
Some researchers have suggested that
the performance of temporal surveil-
lance is likely to decline as the incuba-
tion period becomes shorter (8);
however, the findings in this report sug-
gest the opposite. As the median dura-
tion of the incubation state decreased,
temporal surveillance tended to detect
the outbreak faster, with detection
after 2 days for a median incubation of
<5 days. Increasing the median dura-
tion of the incubation period to >11
days tended to increase the time to
detection, but not markedly. In the base
case, the median duration of the pro-
dromal disease state was 2.5 days. A
shorter median duration did not change
considerably the time to detection for

FIGURE 1. Time-series of training (2001–2002) and test (2003) data demonstrating
observed counts, forecast counts, and forecast confidence intervals, the alarms
from the cumulative sum (CUSUM) applied to the forecast residuals in the absence
of injected outbreaks, and the randomly selected release dates in the test data
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syndromic surveillance. As the median duration of the pro-
dromal state increased above 2.5 days, temporal surveillance
tended to take longer to detect the outbreak, but this trend
was not pronounced.

Implications for Performance
of Syndromic Surveillance

To determine the implications of findings for syndromic
surveillance, the timing of detection was considered with a
release of anthrax that infected 20,000 persons. Within the
simulation area, the population that was covered by the
TRICARE HMO was approximately 400,000, thus 20,000
infected persons represented 5% of the covered population. If
40% of those infected sought care in the prodromal state,
that would amount to 8,000 visits, representing 2% of the
covered population. These visits would be spread over the
duration of the outbreak, and of greater interest than the total
number is the number seeking care each day over the first few
days of the outbreak. For an outbreak that infects 20,000 per-
sons, the distribution of the additional visits is illustrated
(Figure 3).

The median time to detection with 20,000 infected per-
sons was 4 days after release (Figure 2), which corresponds to
an additional 56 visits, on average, on the day of detection.
The daily average number of visits in this test data was 321,
thus the additional 56 visits represented an increase of 17%
over baseline for an average day. If the fourth day of an out-

break occurred on a weekend day, when
the average visit count was 168, then
the increase in visits would be 33% over
baseline. Variation in the background
occurs by season, and the maximum
number of daily visits in the 1 year of
test data (2003) was 963. An additional
56 visits is an increase in visits of 6%
over baseline on a day with a baseline
count of 963.

Discussion
This report describes a simulation

model of the processes underlying the
biological and medical sequelae of an
anthrax attack; the model was used to
evaluate the ability of syndromic sur-
veillance to detect an outbreak of inha-
lational anthrax. In the base case
(i.e., 50,000 infected, 11 days incuba-
tion period, 2.5 days prodrome, and

40% seeking care in prodromal stage), the earliest detection
using a temporal algorithm was 3 days after a release. Earlier
detection tended to occur when more persons were infected,
and surveillance tended to detect an aerosol anthrax attack in
a median of 3 to 4 days when >10,000 persons were infected.
Median time to detection increased to 6 days when 5,000
persons were infected.

The sensitivity analysis demonstrated that the proportion
of persons seeking care in the prodromal disease state affected
the performance of syndromic surveillance. As the propor-
tion seeking care declined, temporal surveillance took longer
to detect an outbreak. This was similar to the effect observed
when the number of persons infected in an attack was
decreased. The median duration of the prodromal disease state
had little influence over the performance of surveillance, but
the median duration of the incubation state affected the per-
formance of surveillance. Syndromic surveillance detected an
outbreak sooner as the median duration of the incubation
state decreased, with detection occurring 2 days after release
when the median duration of the incubation state was <5 days.

In examining the implications of these findings for
syndromic surveillance, for a release that infected 20,000 per-
sons, detection through surveillance occurred 4 days after
release when 56 persons in the outbreak used health-care ser-
vices. Health-care providers could have possibly identified these
56 additional cases with nonspecific symptoms as an extraor-
dinary increase in the absence of syndromic surveillance. Sev-

FIGURE 2. Time to detecting an outbreak through syndromic surveillance using a
temporal algorithm as a function of four parameters
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enteen clinical sites were in the simulation area, with a num-
ber of physicians at each site. If the cases distributed them-
selves across multiple sites and physicians, then an additional
56 cases in 1 day might not appear unusual. If persons
reported to a small number of locations and physicians, then
the same number of additional cases might raise concern. The
location of seeking care was not modeled for this study, but
will be considered for future research. Another factor to con-
sider is whether some infected persons are likely to progress
rapidly to a fulminant state and be diagnosed with inhala-
tional anthrax before the fourth day after the release. This is
another factor that was not considered in this study, but will
be in future research.

The evaluation method described in this report has advan-
tages over other approaches. This method models disease and
behavior processes at a level of detail sufficient for examining
the influence of assumptions about these processes on out-
break detection performance, thus allowing thorough exami-
nation of how characteristics of disease and health-care–seeking
behavior influence the performance of syndromic surveillance.
Even with the few assumptions examined, the findings offer
insight into the role of syndromic surveillance in a disease-
control strategy. Another advantage of this approach is that
authentic surveillance data were used as the basis for the evalu-
ation, and simulated outbreaks were superimposed onto these
authentic data. Hence, detection algorithms must be robust
to vagaries in real data, and these results are to some extent
influenced by the characteristics of the underlying popula-
tion and the authentic data.

FIGURE 3. Average number of daily outpatient physician visits
after an aerosol anthrax release that infects 20,000 persons
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In this report, syndromic surveillance conducted with a
univariate temporal algorithm and operating on a single syn-
drome was examined. Following multiple syndromes with
spatial algorithms might improve performance. The sensitiv-
ity of these results in relation to four parameters varied one at
a time. A multi-way sensitivity analysis of a greater propor-
tion of the parameters might prove more informative; this
study is now under way. The evaluation described here looked
at outbreak detection assuming that data are available in real
time. In practice, this is rarely the case and the methods used
to correct for reporting delay might influence detection. If
the distribution of reporting was known, the simulation model
could be modified to evaluate methods that account for
reporting delay. To assess the true impact of syndromic sur-
veillance on time until intervention, it will be necessary to
extend the model to encompass outbreak detection through
other routes such as clinical case-finding and to assess the tim-
ing of intervention decisions with information from syndromic
surveillance.

Conclusion
Evaluation of outbreak detection through syndromic sur-

veillance is difficult for many reasons, including the limited
amount of data for outbreaks of interest. Multiple evaluation
approaches exist, and the simulation method described in this
report provides useful insight. Syndromic surveillance of a
respiratory syndrome using a temporal detection algorithm
tends to detect an anthrax attack within 3 to 4 days after
exposure if >10,000 persons are infected. The performance of
surveillance (i.e., timeliness and sensitivity) worsens as the
number of persons infected decreases, and as the proportion
seeking care in the prodromal stage declined.
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Abstract

Introduction: Syndromic surveillance systems might serve as an early warning to detect outbreaks of infectious diseases and
chemical poisoning, including those caused by deliberate release. In England and Wales, data from National Health Service
(NHS) Direct, a national telephone health advice service, were used for surveillance of 10 syndromes commonly occurring in
the community.

Objectives: The objective of this study was to evaluate NHS Direct syndromic surveillance using the “Framework for Evalu-
ating Public Health Surveillance Systems for Early Detection of Outbreaks”, published by CDC.

Methods: Quantitative and qualitative assessments were performed. Examination of daily data flow was used to determine
the timeliness and data quality. Validity was determined by comparing NHS Direct surveillance with a well-established
clinical-based surveillance system using a time series analysis. Semistructured interviews of main stakeholders were conducted
to determine usefulness, flexibility, acceptability, portability, stability, and system costs.

Results: NHS Direct syndromic surveillance has representative national coverage, provides near real-time recording and data
analysis, and can potentially detect high-risk, large-scale events. Direct costs are low and variable costs are unpredictable.
Flexibility depends on urgency of the need for change, and portability relies on the existence of infrastructure similar to NHS
Direct. Statistically significant correlation exists between NHS Direct surveillance and a surveillance system based on the
Royal College of General Practitioners data for influenza-like illness.

Conclusion: The CDC framework is a useful tool to standardize the evaluation of syndromic surveillance. NHS Direct
syndromic surveillance is timely, representative, useful, and acceptable with low marginal costs and borderline flexibility and
portability. Cross-correlation time series modeling might represent an appropriate method in the evaluation of syndromic
surveillance validity.

Introduction
Emphasis has been placed on the improvement of existing

surveillance systems and developing innovative new surveillance
systems around the world. Commitments to improve surveil-
lance for health protection have been made in the United King-
dom (UK) (1). Because certain emerging infections and chemical
poisonings, including those caused by deliberate release, might
first appear as ill-defined syndromes, rapid outbreak detection
is a challenge. Suspicious patterns of patient presentations might
be apparent at the community level well before laboratory data
raise an alarm. Syndromic surveillance might serve as an early
warning to detect such occurrences (2,3).

In 2004, an evaluation of the usefulness of 35 detection
and diagnostic decision support systems for biologic terror-
ism response was performed. Most evaluations were criti-

cally deficient (4,5). The need for more detailed evaluation of
syndromic surveillance projects culminated in the publica-
tion of the “Framework for Evaluating Public Health Surveil-
lance Systems for Early Detection of Outbreaks” by CDC in
May 2004 (6). This guidance aims to standardize frequently
fragmented evaluation efforts. The CDC framework is
designed for the evaluation of relatively mature, fully opera-
tional syndromic surveillance systems (7). This report expands
on the existing work on the NHS Direct syndromic surveil-
lance system in England and Wales on the basis of call data
from the national telephone health advice helpline operated
by NHS (8,9). This report presents a preliminary evaluation
of NHS Direct syndromic surveillance according to the CDC
framework.
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Methods
Both quantitative and qualitative assessments using

CDC guidance were performed. Information was gath-
ered with respect to the construct and utility of the NHS
Direct syndromic surveillance. Comprehensive
semistructured qualitative interviews with eight main
stakeholders were conducted to determine usefulness,
flexibility, acceptability, portability, stability, and costs
of the system. Respondents were selected on the basis of
their knowledge and experience of NHS Direct
syndromic surveillance and included consultants in com-
municable disease control (CCDC), regional epidemi-
ologists (RE), NHS Direct managerial and scientific
staff, and national experts from the Health Protection
Agency (HPA). Interviews were conducted by the same
investigator using a devised standard questionnaire, and
all answers were recorded and transcribed in a standard
way. Examination of daily electronic NHS Direct surveillance
data and weekly NHS Direct syndromic surveillance bulle-
tins were used to determine timeliness and data quality. Quali-
tative estimates of numbers of outbreaks detected by NHS
Direct syndromic surveillance were also obtained through in-
terviews. This estimate was based on professional judgement
and supplemented by the quantitative analysis.

Quantitative analysis included an evaluation of the system’s
validity by comparing NHS Direct syndromic surveillance for
influenza-like illnesses (ILIs) with a well-established national
clinical surveillance system (the Royal College of General Prac-
titioners Weekly Returns Service [WRS]). WRS is a broadly
representative network of 78 general practices that voluntar-
ily participate in a scheme to collect information on consulta-
tions and episodes of illness diagnosed in general practice.
Weekly incidence rates per 100,000 population for common
illnesses are calculated. On the basis of historical trends,
robust thresholds for ILI activity have been developed by WRS.
These thresholds determine four levels of ILI activity in
England and Wales: baseline activity, normal seasonal activ-
ity, higher than average seasonal activity, and epidemic activ-
ity. Weekly surveillance data on ILI syndromes were compared
between NHS Direct and WRS systems during August 2001–
August 2004. NHS Direct surveillance began collecting data
on ILIs in August 2001, so all NHS Direct data available at
the time of study were analyzed. NHS Direct call data were
aggregated from daily to weekly to conform to WRS data for-
mat and two time series were constructed (Figure 1). Data
from both sources were compared by calculating Spearman
rank correlation coefficient and fitting time-series models and
estimating a cross-correlogram between two time series at dif-
ferent lags (weeks of observations). For the time series mod-

els, both data sets were transformed and detrended by
differencing to ensure that transformed series were stationary.
Then appropriate autoregressive moving average models were
fitted to the differenced, transformed time series so that each
set of residuals were white noise. The models were determined
by examining the autocorrelation and partial autocorrelation
functions to determine autoregressive and moving average parts
of the models. Residuals were determined from models and
checked for normality and against the fitted values. Residuals
were also checked for white noise by the Portmanteau test.
Cross-correlation was estimated for residuals at different lags
with the limit for statistically significant correlation being
2/√(N-1) in either direction, where N represented the num-
ber of data points.

Results

System Description
The initial purpose of NHS Direct syndromic surveillance

was to augment other surveillance systems in detecting out-
breaks of influenza. The aim was to facilitate the early imple-
mentation of preventative measures. In December 2001, the
surveillance of 10 syndromes began, and the purpose of the
system was expanded to provide an early warning for poten-
tial deliberate release of harmful biologic and chemical agents.
The system is more likely to detect large-scale events or out-
breaks and a rise in symptoms with no clear cause evident.
NHS Direct syndromic surveillance is an example of how a
system, initially designed for the clinical assessment (by tele-
phone) of common conditions presenting in communities,
has been used for surveillance purposes. Because the surveil-

FIGURE 1. National Health Service (NHS) Direct and Royal College of
General Practitioners Weekly Return Service (WRS) time series for
influenza-like illnesses, by week — England and Wales, August 2001–
August 2004

* Percentage of calls relates to NHS Direct time series.
† Episode incidence rate per 100,000 population relates to WRS time series.
§ Week 1 corresponds to week 35 in 2001; week 156 corresponds to week 34 in

2004.
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lance process is fully operational, the validation of the
system is considered a priority.

At the time of the inception of the NHS Direct
syndromic surveillance system, the list of stakeholders
was limited to NHS Direct central management, NHS
Direct sites, the NHS Direct Health Intelligence Unit
(HIU), and the Regional Surveillance Unit (RSU) of
the Health Protection Agency West Midlands. The
greater public health community has taken a greater
interest in the activities of NHS Direct syndromic sur-
veillance, and regional and national networks have been
established. These networks include other divisions of
the Health Protection Agency, the Faculty of Public
Health, acute hospital NHS trusts and primary-care
organizations. The need for additional expertise to
interpret trends detected by NHS Direct surveillance
resulted in collaboration with the UK Meteorological
Office. Distribution of data within and across regional
boundaries improved knowledge sharing and networking
among epidemiologists and physicians working in public
health.

Operations of the NHS Direct syndromic surveillance sys-
tem have been previously described (10). NHS Direct is a
nurse-led telephone helpline that provides health information
and health advice to callers with symptoms, including direct-
ing them to the appropriate NHS service. NHS Direct handled
6 million calls per year (11). Nurses at 22 NHS Direct sites
use a computerized clinical decision support system (CAS)
containing approximately 200 clinical algorithms, each with
series of questions relating to symptoms. The NHS Direct
syndromic surveillance system provides surveillance of 10 syn-
dromes (i.e., cold/influenza, cough, diarrhea, difficulty breath-
ing, double vision, eye problems, lumps, fever, rash, and
vomiting) commonly occurring in the community and requir-
ing telephone health advice. An increase in the number of
callers with these syndromes might be caused by a naturally
occurring outbreak (e.g., influenza) or early stages of illnesses
caused by biologic or chemical weapons. At RSU, informa-
tion derived from the call data is initially analyzed using con-
fidence interval and control chart methodology (stage 1
investigation). Any statistical aberrations from historical trends
(i.e., exceedances) are further investigated by the team of sci-
entific and medical staff (stage 2 investigation). A public health
alert (stage 3 investigation) is issued if no plausible explana-
tion can be found for the exceedance (10). An alert is usually
triggered by close geographic clustering of calls and/or sus-
tained high level of calls for the same syndrome (Figure 2).

Outbreak Detection
The NHS Direct syndromic surveillance system captures

an event instantly when a caller contacts the NHS Direct
helpline. Every weekday, approximately 5 minutes are required
to process the previous day’s data at each NHS Direct site and
transmit them to the Health Intelligence Unit (HIU). HIU
collates these 22 files from the 22 NHS Direct sites and trans-
mits them to the RSU. Application of the pattern recognition
tools including confidence intervals and control charts meth-
odologies is normally complete by midday. Further (stage 2)
investigation is completed within 2 hours of the detection of
an exceedance and, if necessary, a stage 3 investigation is initi-
ated on the same day. Public health interventions usually in-
clude communications and alerts to local public health
professionals. These are normally implemented by the end of
the working day and, depending on the severity and urgency
of the situation, very prompt public health responses can be
initiated. Other public health interventions include enhanced
analysis of call data until the exceedance abates. During the
weekends, data are collected but not analyzed until the fol-
lowing Monday. A similar lag exists during public holidays in
England and Wales, although emergency surveillance and epi-
demiologists can be provided if necessary. NHS Direct
syndromic surveillance is the only system producing daily sur-
veillance data for England and Wales and has the ability to
record an increase in syndromes 12–36 hours after the calls
have been made.

Data quality is determined by its completeness and repre-
sentativeness of the coverage. The system is designed to
capture all events from the population of England and Wales.
The volume of calls is disproportionately low for the elderly

FIGURE 2. National Health Service (NHS) Direct syndromic
surveillance operational flowchart
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(aged >65 years) and high for young children (aged <5 years),
suggesting that the surveillance system might have potential
for the surveillance of common viruses predominantly affect-
ing children (e.g., rotavirus). Regional variations in call rates
are not substantial. Calls represent the ethnic mix of the UK
population; however, 65% of callers are female (12). During
the preceding 3 years, the volume of calls to NHS Direct
has increased, indirectly improving representativeness of the
surveillance system. Completeness of data transmitted from
22 NHS Direct sites to the Regional Surveillance Unit consis-
tently approaches 100%; completeness of data collection at
NHS Direct sites is more difficult to evaluate. Intuitively,
because of the simplicity of use of NHS Direct software sys-
tems, data collection should be complete; however, separate
audit is necessary to support this assumption.

Validation of the surveillance systems performance was con-
ducted using both qualitative and quantitative approaches.
The majority of interviewed stakeholders indicated that they
perceived that the NHS Direct syndromic surveillance system
registered an increase in calls about diarrhea and vomiting at
the times when traditional public health surveillance
systems indicated a national increase in Norovirus. Simi-
larly, an increase in calls about colds and fever coin-
cided with the increase of influenza incidence nationally.
Although this is a subjective view, it was recognized that
NHS Direct surveillance augmented data from other
surveillance systems.

Traditionally, a quantitative approach to determine
the validity of a surveillance system involves the calcu-
lation of sensitivity, specificity, and positive predictive
value (6,13). In the context of syndromic surveillance,
this is difficult to achieve. The unit of analysis is the
detection of an outbreak or trend, but not an individual
illness. Such a detection is frequently based on drawing
information from various sources and ultimately on
professional judgement. The standard needed for cal-
culations is rarely available and frequently represents a
variable itself. Another approach is to determine the
correlation between data derived from different surveil-
lance systems. The calculation of the Spearman rank
correlation coefficients was used (2). However, this
approach represents a historic evaluation over a pro-
longed period of time and does not take into consider-
ation natural trends and seasonality. Therefore, while
using the same principle of comparing NHS Direct
syndromic surveillance to other robust surveillance sys-
tems, time series analyses were used to determine the
cross-correlation between NHS Direct and WRS time
series for ILIs. A comparison with the laboratory-based

surveillance was considered less appropriate because only a
small proportion of influenza samples are collected and tested
in the laboratory in the UK. Data from real time series and
those predicted by the models demonstrated a satisfactory fit
(Figure 3). The Portmanteau test results indicated that two
sets of residuals were white noise. Statistically significant but
weak correlations were detected at lag (week) 0, 1, 2, and 3
between NHS Direct and WRS time series (Table 1). This
indicates that an increase in consultations for ILIs recorded
by WRS is preceded by the increase in calls to NHS Direct for
ILI by 1–3 weeks and that increases recorded by both systems
can occur simultaneously. The Spearman rank correlation
coefficient was calculated to be 0.85, but the time series mod-
elling approach takes into account the timing of observations
and indicates how NHS Direct data are correlated to WRS
data by giving the correlations at different lags. The conclu-
sions of this report are dependent on the fit of the time-series
models, normality of the residuals, and the number of obser-
vations (156 in the model). Time-series models with altered
parameters were fitted but results remained similar. NHS

FIGURE 3. National Health Service (NHS) Direct and Royal College of
General Practitioners Weekly Return Service (WRS) influenza-like illness
data and prediction from time series model — England and Wales, 2001–
2004*

* Graph A presents NHS Direct influenza-like illness data and prediction from time
series model for 2001–2004. Graph B presents WRS influenza-like illness data
and prediction from time series model for 2001–2004.

† Week 1 corresponds to week 35 in 2001; week 156 corresponds to week 34 in
2004.
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Direct syndromic surveillance offers an additional benefit of
having data available daily in contrast to the WRS operated
by RCGP.

Experience
Qualitative interviews indicated that analysis and interpre-

tation of data from the NHS Direct syndromic surveillance
system resulted in outbreak detection, public health actions
in response to alerts generated by the system, and research
and development work. The majority of stakeholders agreed
that NHS Direct surveillance detected national (England and
Wales) outbreaks of ILI and increases in diarrhea and vomit-
ing. An increase in callers reporting difficulty breathing was
documented at a regional (countywide) level. Mapping of calls
to NHS Direct by residential postcode was also feasible (10).
However, it is unclear whether NHS Direct syndromic sur-
veillance can be used to detect small-scale local outbreaks
(e.g., neighbourhood or small town). However, on the basis
of modelling work, evidence exists that the potential of the
NHS Direct surveillance system to detect local outbreaks will
be improved by the predicted rise in NHS Direct call rates in
England and Wales (14).

A pilot study to investigate the feasibility of influenza self
testing by NHS Direct callers was conducted during the win-
ter of 2003 and 2004. A total of 22% of the callers involved
in this pilot study tested positive for the influenza virus strain
known to be prevalent during that season’s influenza epidemic
(15). NHS Direct syndromic surveillance output has also been
used to track epidemics, for example, by identifying the age-
groups most affected during the influenza season (9), and to
reassure the public during periods of increased perceived risk
that illness in the community has not increased. The majority
of stakeholders agreed that the system contributed to a better
understanding of trends and baselines of the syndromes
under surveillance. In addition, the system has also promoted
collaborative work between public health professionals and
led to the formation of professional networks.

NHS Direct syndromic surveillance examines call data for
10 syndromes commonly presented in the community. All
interviewed stakeholders believed that the expansion of the
system to capture syndromes other than the 10 under surveil-

lance is feasible because the clinical assessment software used
by NHS Direct staff includes approximately 200 algorithms.
Additional input will be required in terms of professional time
and funds. If a strong need exists, such changes can be imple-
mented quickly. Additional algorithms to handle potential
deliberate release events can also be added to the NHS Direct
clinical assessment software through negotiation with NHS
Direct. These algorithms can be switched on in an emergency
situation. The limitation is that when new data are available,
time is needed to form a meaningful baseline to interpret new
trends. The system potentially can aid the management of an
outbreak and detection by examining local or regional trends
when an outbreak is declared.

The NHS Direct surveillance system is embedded into
operations of the NHS Direct service; therefore, duplicating
such a surveillance system in different settings or jurisdictions
is dependent on an existing service similar to NHS Direct.
Although disseminating NHS Direct surveillance experience
within the United Kingdom (i.e., to Scotland and Northern
Ireland) might be easier, national coverage and reliance on the
NHS Direct infrastructure for operations might preclude the
system’s replication elsewhere.

Most data acquisition is conducted by staff of NHS Direct
sites who contribute indirectly to the operation of the surveil-
lance system. The majority of stakeholders consider NHS
Direct syndromic surveillance important and acceptable.
Regional epidemiologists who staff the on-call roster to help
interpret surveillance output and initiate public health actions
accept the additional workload. The system is easy to operate
because it does not require extensive computer or program-
ming training for most of the front-line staff. The clinical
assessment software (CAS) used at NHS Direct sites is under
constant review, and the proven service robustness of NHS
Direct ensures data are not lost if there is a technical problem
at an individual site. Data transmission modalities are also
regularly serviced and upgraded. Although occasional person-
nel shortages are recorded, this has never resulted in the loss
of data. The NHS Direct syndromic surveillance system is
funded by continuous appropriations and by research grants
ranging from short to long term.

TABLE 1. Results of time series analysis — England and Wales
Portmanteau Statistically

Variable Transformation test p-value significant correlation*

NHS Direct surveillance percentage of calls for influenza-like illnesses Reciprocal 0.99 0.196, 0.224, 0.214 and

WRS episode incidence rate per 100,000 for influenza-like illnesses Reciprocal square root 0.99 0.168 at lag 0, 1, 2 and 3

*Cut-off for statistical significance is 2/√N-1, where N is the number of observations (156). It equals 0.1606.



122 MMWR August 26, 2005

System Costs
The direct annual cost of operating the NHS Direct sur-

veillance system is an estimated $280,000. This includes sala-
ries and benefits for one fulltime scientist, one fulltime
information analyst, and four parttime professionals funded
by the surveillance project. Medical epidemiologists are funded
by the Health Protection Agency. Surveillance activity is
embedded into wider NHS Direct operations. Therefore, no
additional costs are accrued for the use of NHS Direct soft-
ware, maintenance of facilities, and data transmission. Over-
all, the marginal cost of operating the system is low. Estimating
variable cost is more difficult because it depends on the fre-
quency of additional analyses and initiated public health
actions. Given the current workload, no extra cost was
incurred as a result of acting on genuine alerts and screening
out false alarms. In addition to personnel considerations, vari-
able costs might increase if further testing (i.e., laboratory test-
ing) is initiated to validate trends detected by the syndromic
surveillance system. No information is available on clinical
outcomes to estimate benefits resulting from decreases in the
morbidity caused by precise outbreak detection or costs
resulting from missed outbreaks or excessive false alarms.

Conclusion
The NHS Direct syndromic surveillance system is the only

national syndromic surveillance system in England and Wales.
Since the start of its operations in 1999, the capabilities have
been expanded from augmenting data from other surveillance
systems to detecting a variety of syndromic trends, forming
historical baselines, and using it for the potential detection of
deliberate release of harmful agents. Dissemination of the NHS
Direct syndromic surveillance output has prompted inter-
agency collaborations between medical, scientific, and public
health professionals. NHS Direct syndromic surveillance is
regarded as timely, representative, useful, and acceptable with
low marginal costs. More work is needed to improve its port-
ability and flexibility. It has the potential to detect high-risk,
large scale events, but in its current state is less likely to detect
smaller, localized outbreaks.

The CDC framework is a benchmark tool to evaluate well-
established syndromic surveillance systems. The greatest chal-
lenge is to develop consistent techniques to assess whether
syndromic surveillance systems provide an early warning of
outbreaks of disease in the community. In the future, this needs
to be considered at the stage of planning and purpose formu-
lation of new systems. The creation and maintenance of an

international database of evaluation projects can be beneficial
for further development of research on syndromic surveillance.
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Abstract

Introduction: In recent years, many syndromic surveillance systems have been deployed around the United States for the early
detection of biologic terrorism–related and naturally occurring outbreaks. These systems and the associated aberration detec-
tion methods need to be evaluated.

Objective: This study evaluated several detection methods of the Early Aberration Reporting System (EARS) under serially
correlated syndromic data and to demonstrated the need for calibrating these methods.

Methods: In an initial evaluation of the Syndromic Tracking and Reporting System in Hillsborough County, Florida, serially
correlated syndromic data were simulated using statistical models in conjunction with real syndromic data. The detection
methods were tested against two patterns of simulated outbreaks. They were compared using a conditional average run length
and a receiver operating characteristic curve under defined patterns of detection.

Results: Increasing serial correlation inflates the false alarm rate and elevates sensitivity. Among the detection methods in
EARS, C2 and P-chart have the best overall receiver operating characteristic curve within the context of the simulations. C2
is least affected by the serial correlation, the outbreak type, and the defined patterns of detection signal.

Conclusion: Evaluation of the detection methods needs to be adaptable to the constantly changing nature of syndromic surveil-
lance. Deployment of EARS and other methods requires adjusting the false alarm rate and sensitivity in accordance with the
syndromic data, the operating resources, and the objectives of the local system. For timely detection, C2 is superior to other
methods, including C3, under the simulation conditions. P-chart is the most sensitive when the serial correlation is negligible.

Introduction
The risk for biologic terrorism attacks has promoted the

development and deployment of syndromic surveillance sys-
tems in the United States and around the world (1). The
majority of these systems use patient or consumer encounter
data from multiple sources (e.g., hospital emergency depart-
ments (ED), military facilities, or theme parks). Workplace
absenteeism and over-the-counter drug sales are also being
monitored for statistical aberrations. The data are converted
to specified syndrome categories and analyzed to detect sig-
nificant temporal or spatial aberrations that deviate from the
expected baseline trends. Although some systems conduct spa-
tial analysis (2), most use trend analysis to detect temporal
aberrations.

Developed by CDC, the Early Aberration Reporting Sys-
tem (EARS) consists of a class of quality-control (QC) charts,
including Shewhart chart (P-chart), moving average (MA),
and variations of cumulative sum (CUSUM) (3). Many
syndromic surveillance systems use EARS for temporal aber-

ration detection (4); some also use other QC charts such as
exponentially weighted moving average (EWMA) (5,6). A
common characteristic in adopting these QC charts for
syndromic data analysis is the use of a sample estimate for the
baseline mean and standard deviation (SD). This approach
circumvents the difficulties associated with the modeling of
the baseline trend of the syndrome, a process complicated by
the discreteness, serial correlation, seasonality, and daily fluc-
tuation of the syndromic data. At present, understanding of
these methods within the context of syndromic data is lim-
ited, and systematic evaluations of syndromic surveillance have
not been conducted.

In QC settings, serial correlations can substantially affect
the time length to the first aberration signal (Average Run-
ning Length [ARL]) when using such methods as CUSUM
and P-chart (7,8). How serial correlation also could affect other
performance measures such as the false alarm rate (one minus
specificity) or the sensitivity (defined generally as the prob-
ability of successful detection [PSD] associated with a pattern
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of signals) is unclear. Certain signal patterns or event detec-
tion (e.g., signaling three days in a row) might provide more
information than a single day signal about the strength or
duration of the outbreak, thus guiding public health agencies
in designating the necessary follow-up investigation accord-
ing to the strength of the signals (9). Simulation studies were
conducted to evaluate the sensitivity and specificity of a single
day signal for three EARS’ variations of CUSUM (C1, C2,
and C3) (10), a seasonally adjusted CUSUM, and an historic
limits method (11). However, these simulations assumed seri-
ally independent data, with the magnitude of aberrations rang-
ing between 1.65 to 51.0 times the baseline mean (10) or 2–3
times the baseline standard deviation. Seasonality was added
to simulated baseline data in the second study (11), but was
not modeled in the baseline mean. The simulation indicated
that C3 is superior to C2, without controlling for specificity.

This study focuses on the impact of serial correlation on the
PSD of selected patterns of signals and compares the perfor-
mance of five common detection algorithms (P-chart, C2,
C3, MA [employed in EARS], and EWMA [a general statisti-
cal QC chart not included in EARS]). Two different outbreak
patterns are considered here. The comparisons are based on
two criteria. The first criterion is a conditional average run
length (CARL) given successful detection in a given time win-
dow. The second is the receiver operation characteristic (ROC)
curves. The purpose is to provide guidance for selection of
detection methods and to illustrate the need for calibrating
the methods to attain a required level of specificity and sensi-
tivity.

Methods

Detection Algorithms
The QC charts in EARS use daily syndromic counts or

incidences (daily counts of a specific syndrome divided by
total ED volume for the day) yt between day t−K+1 and day t
(current day) to derive a monitoring statistic mt (4). The moni-
toring statistic is

, and    ,

for P-chart, MA, and EWMA, respectively. P-chart uses the
current day only; MA is the average of K days before and
including the current day; EWMA is a weighted average of all
previous days with an exponentially decreasing weight given
to days further away from the present day. The system gener-
ates a signal if mt exceeds a threshold c σm above the expected
level µm. The PSD of a single alert (sensitivity) is the prob-
ability Pr(mt – µm > cσm) given an outbreak. The constant

c determines the threshold in multiples of the standard devia-
tion σm. Because the distribution of mt is complex, EARS
uses a sample estimate of µm and σm on the basis of data in a
baseline window of B days: yt-B-g, yt-B+1-g, …, yt-1-g with a gap
of g days before the present day t. Specifically,

, and  .

EARS also employs three variations of the CUSUM method
(4) (C1, C2, and C3). C1 uses data from the current day only
and a baseline window of the preceding 7 days: day t−7 to t−1
(B = 7 and g = 0). If C1 generates a signal on day t, day t will
become a part of the baseline for day t+1, which might inflate
the corresponding baseline mean µm, and reduce the PSD for
that day. C2 differs from C1 by shifting the 7-day baseline
window to left with a gap of g = 3 days. As a result, its PSD of
signaling on day 2 and 3 is not affected by a signal on day 1.
Analytically, C1 and C2 are nearly equivalent in the absence
of outbreaks, but C2 is more sensitive than C1 in signaling a
continued outbreak past its onset. For this reason, C1 was not
evaluated.

C3 differs further from C2 by using a partial sum of
positive daily deviations for the current and 2 previous days
(t−1 and t−2):

   .

The superscript + truncates the quantity in the parentheses
to zero if its value is negative, and I assumes the value 0 if
y > µm + 3σm for (t−1 and t−2) or 1 otherwise. Thus, C3
includes only the deviations that are 1–3 standard deviations
above its mean and will generate a signal if mt is >2, the
default threshold in EARS. C2 exceeding the threshold of 3
implies the first component of mt (C3) exceeds the threshold
of 2. In EARS, the sample estimate of mean µm does not
adjust for seasonality (e.g. the day-of-the-week effects) of the
baseline. Ideally, seasonality can be filtered out before apply-
ing these methods to the data.

Performance Measures
QC charts are traditionally evaluated with respect to the sen-

sitivity and false alarm rate (one minus specificity) of single day
detections (10,11). Because disease outbreaks probably are
associated with temporal patterns, corresponding patterns of
aberration signals should be considered. For example, with a
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disease outbreak that persists at a high level of incidence or
count for a number of days after onset, consecutive signals might
alert not only the onset but also the duration of the outbreak.
Such a pattern of signals is called a detection event. More
importantly, public health workers can use a detection event to
estimate the duration or strength of an outbreak and respond
accordingly. Therefore, detection events of composite detection
signals (e.g., the first or the first pair of consecutive signals) are
used to define sensitivity and false alarm rates, which are in
turn converted to ROC curves and used as an overall perfor-
mance measure.

Average run length (ARL) also provides information on the
distribution of time to first signal. Analytical results on run-
length distribution are difficult to obtain for the monitoring
statistic (12), so a conditional ARL is considered by assuming
a detection event on the first day or the first two days (within
the first 4–5 days of the outbreak).

Simulations
Daily ED visit data were collected from a local hospital

during March 2002–December 2003. A common syndrome,
respiratory infection (RI), was chosen for simulation. The data
revealed an average daily visit of 155 patients (standard devia-
tion = 32.6). Daily RI count was 5.96 on average, or 0.0319
in incidence. The patient volume and RI count showed a lag-
one serial correlation between two consecutive observations
of 0.768 and 0.438, respectively. The lag-one correlation for
incidences was 0.323. The magnitude of these correlations is
expected for common syndromes; rare syndromes are less cor-
related. Ignoring the serial correlation can yield a misleading
level of sensitivity and false alarm rate. The data also indi-
cated day-of-week-effects (lower values on Friday and peaks
on Sunday and Monday). In evaluating the detection meth-
ods used in STARS, these simulations did not incorporate
day-of-the-week effects in the baseline.

On the basis of these parameters derived from the RI data,
multilevel, generalized linear mixed-effects models (13) were
used to simulate the baseline of daily ED volume Nt and RI
count Xt. Under the Poisson distribution for Nt, the daily mean
λt fluctuates around a constant λ0 with

log(λt) = log(λ0) + α−t .

Random effects αt characterize the variation, which are seri-
ally correlated through a classic first order autoregressive time
series (AR1) model

αt = ∅1 a t−1 + ε1t .

The errors {ε1t} are independent, normal N(0,σ 1 ). Presently,
λ0 = 155, ∅1 = 0.8, and σ1 = 0.479 are used to approximate
the observed parameters.

2

The simulation model for count Xt uses a binomial distri-
bution B(Nt, pt) given the volume Nt and incidence pt. The
incidence pt fluctuates around the baseline average p0 through
the model

logit (pt) = logit (p0) + βt

with the random effects βt also following an AR1 time series
model

βt = ∅2 βt−1 + ε2t .

The errors {ε2t} were independent, normal N(0,σ 2 ). The RI
data suggested p0 = 0.0319, ∅2 = 0.699, and σ2 = 0.315 (9).

Each simulation consists of 100 days of data {Nt , Xt}, and
the study involved 5,000 replications. Simulated incidences
yielded a sample serial correlation of 0.277 (SD = 0.175).

Outbreak data are simulated under two patterns: a slow-
building and a sudden-surge trend. The slow-building trend
is characterized by a constant-pace increase in incidence that
peaks on day 4 as it rises to three times the incidence at baseline.
It then decreases at a constant rate back to the baseline by day
8. A norovirus outbreak that is spread from person-to-person
with a short incubation period of 12–50 hours could produce
such a pattern. The sudden-surge trend describes an elevation
of incidence to three times that of the baseline on day 1,
remaining at the same level for the following 3 days, then
dropping back to the baseline level on day 8 at a constant
rate. A foodborne salmonellosis outbreak is a good example
of an outbreak of such a pattern. If persons were exposed dur-
ing a 1–2 day window, many cases would be expected in a
3–4 day period, with the cases declining over the next few days.
Secondary cases could occur as a result of person-to-person
transmission that could account for some of the cases occur-
ring during the end of the outbreak.

The magnitude for the simulated outbreaks was chosen at
three times that of the baseline; the actual size will depend on
several factors, particularly the size of the exposed popula-
tion. Syndromic cases were simulated using the same models
for the baseline but under the incidence parameters of the
designed outbreak pattern and size. Outbreak cases replaced
baseline data between day 81 and day 87. Simulations were
also conducted with zero serial correlation to further demon-
strate the impact of correlation.

Detection methods were tested against 5,000 replications
of the outbreak and nonoutbreak data during days 61–67.
The time periods of the outbreaks and nonoutbreaks were
chosen to ensure that the simulated data reached statistical
stability. The false alarm rate was calculated by the number of
detected events divided by the total possible number of detec-
tion events during the nonoutbreak period. PSD was estimated
identically, but over the outbreak period.

2
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Results

Conditional ARL
The probability of successful first detection on day one, two

(no alert on day 1), three (no alert on day 1 and day 2), or four
(no alert on day 1, day 2, and day 3) varies, along with the
probability of first detection within the first four days of the
slow-building outbreak (Table 1). The detection algorithms were
calibrated by a varying threshold so that the probability of false
alert was approximately 0.05. Given the PSD within 4 days,
the conditional average run length (CARL) is the weighted
average of the days to the first detection, with the weight being
the conditional probabilities of detection on each day, given
detection by day four. P-chart has the highest probability (0.97)
of first signal within four days, and MA has the lowest (0.32).
Given detection by day four, CARL is 2.60 for P-chart and
3.32 for EWMA (λ = 0.72). For a single day, C2 is more likely
to signal (PSD = 0.18) than others on day 1, P-chart on day 2
and 3 (0.33 and 0.37), and EWMA on day 4 (0.45).

With the detection event of first pair of consecutive signals,
CARL is the weighted average of PSD on days 1 and 2, 2 and
3 (but not day 1), up to days 4 and 5 (Table 2). The PSD
decreases with time for C2, C3, and P-chart, and increases for
EWMA.

With the sudden-surge outbreak, the PSD of first signal
(Table 3) and of first pair of consecutive signals (Table 4)
decreases with time, with the only exception being MA on
days 1 and 2 (Table 3). For the event of day 1 signal, P-chart
has the highest PSD followed by C2. For the event of first
pair of consecutive signals, the five methods are comparable
on days 1 and 2, but EWMA (λ = 0.464) retains a slightly
higher PSD on days 2 and 3.

ROC Curves
For the serially correlated baseline (ρ = 0.277) with the slow-

building outbreak, the ROC curves of first detection occurred
on day 1 (Figure 1). Each marked point on an ROC curve

TABLE 3. Probability* of first alert within 4 days of a sudden-surge outbreak
Method Threshold Day 1 Day 2 Day 3 Day 4 Probability† CARL§

C2 2.68 0.68 0.13 0.06 0.03 0.90 1.38
C3 3.85 0.59 0.21 0.09 0.03 0.92 1.52
P-chart 2.90 0.71 0.15 0.06 0.04 0.96 1.40
MA 1.84 0.31 0.41 0.17 0.04 0.93 1.94
EWMA¶ 1.89 0.57 0.23 0.09 0.04 0.93 1.57

* False alarm rate is approximately 0.05.
† Probability of first alert within first 4 days
§ Conditional average run length in day.
¶ Exponentially weighted moving average .Weight parameter λ = 0.464.

TABLE 1. Probability* of first alert within 4 days of a slow-building outbreak
Method Threshold Day 1 Day 2 Day 3 Day 4 Probability† CARL§

C2 2.56 0.18 0.27 0.25 0.15 0.85 2.44
C3 3.59 0.14 0.25 0.27 0.18 0.84 2.58
P-chart 2.72 0.11 0.33 0.37 0.16 0.97 2.60
MA 1.87 0.05 0.02 0.05 0.20 0.32 3.25
EWMA¶ 1.83 0.05 0.06 0.26 0.45 0.82 3.32

* False alarm rate is approximately 0.05.
† Probability of first alert within first 4 days.
§ Conditional average run length in day.
¶ Exponentially weighted moving average. Weight parameter λ = 0.72.

TABLE 2. Probability* of first pair of consecutive alerts within 5 days of a slow-building outbreak
Method Threshold Day 1 and 2 Day 2 and 3 Day 3 and 4 Day 4 and 5 Probability† CARL§

C2 1.35 0.30 0.13 0.09 0.03 0.55 2.73
C3 1.44 0.30 0.12 0.10 0.06 0.58 2.86
P-chart 1.69 0.25 0.14 0.13 0.05 0.57 2.96
MA 1.70 0.06 0.01 0.02 0.11 0.20 3.90
EWMA¶ 1.58 0.06 0.04 0.11 0.23 0.44 4.16

* False alarm rate is approximately 0.05.
† Probability of two consecutive alerts within first 5 days.
§ Conditional average run length in day.
¶ Exponentially weighted moving average. Weight parameter λ = 0.72.
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indicates the PSD (sensitivity, vertical-axis) and false alarm
rate (one minus specificity, horizontal-axis) associated with a
given threshold. As the threshold increases, the point moves
to the left along the ROC curve. The PSD can be read off of
a ROC curve at its intersection with a vertical line given a
fixed false alarm rate. The overall performance of a detection
method is evaluated by the area under the curve. Thus, a
method associated with a higher ROC curve is superior to
one with a lower ROC curve. Ideally, ROC curves are plotted
in an identical range of false alarm rates. However, because
the false alarm rate is unknown for a given threshold, a
sequence of threshold levels with 0.25 increments were used
in determining the plotting range of false alarm rate for each
curve. As a result of this approximation, ROC curves do not
fill the maximum intended range in each plot. C2 has the best
ROC for day 1 detection within the common range, followed
by C3 and P-chart (Figure 1). This clarifies the misperception
that C3 is more sensitive than C2 when one holds the thresh-
old constant. C3 is only more sensitive if one ignores the higher
false alarm rate associated with it. A threshold of 3 for C2
(third point from left) is similar to that of 4.75 for C3 (fourth

point from left) in terms of false alarm rate (Figure 1). For
consecutive signals on days 1 and 2 (Figure 2), C2 retains the
highest PSD; MA and EWMA remain low. As the false alarm
rate reaches a level above 5%, C3 performs nearly as well as
C2 (Figures 1 and 2).

Under the sudden-surge outbreak, the ROC curves of day
1 detection (Figure 3) demonstrate a superior performance of
P-chart compared to the other algorithms, with C2 perform-
ing nearly as well. At an approximately 2% false alarm rate,
the PSD is approximately 60% for P-Chart (Figure 3) for the
sudden-surge outbreak. In contrast, the PSD is less than 5%
for the slow-building outbreak (Figure1). The PSD is gener-
ally higher with outbreaks of large magnitude. ROC curves
for signals on both days 1 and 2 (Figure 4) indicate that C2
and P-chart perform the best. C3 is comparable only when
the false alarm rate exceeds 5%. MA and EWMA gain in the
PSD as the outbreak sustains itself (Figures 3 and 4).

ROC Associated with a Zero Correlation
To further demonstrate the impact of serial correlation on

aberration detection, 5,000 replications of baseline and
outbreak data with serial correlation ρ = -0.0176 (theoreti-

TABLE 4. Probability* of first pair of consecutive alerts within 5 days of a sudden-surge outbreak
Method Threshold Days 1 and 2 Days 2 and 3 Days 3 and 4 Days 4 and 5 Probability† CARL§

C2 1.41 0.72 0.05 0.01 0.00 0.78 2.09
C3 1.53 0.72 0.10 0.02 0.02 0.86 2.23
P-chart 1.74 0.72 0.06 0.02 0.01 0.81 2.16
MA¶ 1.57 0.61 0.12 0.07 0.02 0.82 2.39
EWMA** 1.48 0.67 0.26 0.03 0.02 0.98 2.39

* False alarm rate is approximately 0.05.
† Probability of two consecutive alerts within first 5 days.
§ Conditional average run length in day.
¶ Moving average.

** Exponentially weighted moving average. Weight parameter λ = 0.464.

FIGURE 2. Receiver operation characteristic curves of detection
on the first 2 days of a slow-building outbreak
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FIGURE 1. Receiver operation characteristic curves of detection
on day 1 of a slow-building outbreak
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FIGURE 3. Receiver operation characteristic curves of detection
on day 1 of a sudden-surge outbreak
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FIGURE 4. Receiver operation characteristic curves of detection
on the first 2 days of a sudden-surge outbreak
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cally ρ = 0) were generated. The ROC curves of detection on
day 1 of the slow-building outbreak (Figure 5) indicate that
P-chart is most capable, followed by C2, C3, and EWMA;
MA was the least capable. PSD increases for all methods, par-
ticularly P-chart, compared with the case of moderate corre-
lation (Figure 1). Similar results are observed for the ROC
curves of detection on both of the first two days (Figure 6)
compared with correlated case (Figure 2). P-chart is superior
to the other algorithms.

Evaluation under the sudden-surge outbreak with zero cor-
relation yielded a similar conclusion. The PSD is generally
higher in the absence of serial correlation. However, EWMA

now places second in PSD, behind P-chart. PSD increases
rapidly as the false alarm rate increases at the lower end
(Figure 7). Compared with the nearly linear ROC curves
under the slow-building outbreak (Figure 3), the PSD is larger
under outbreaks of larger magnitude. The ROC curves of
detection on both of the first 2 days (Figure 8) again depict a
superior performance of P-chart, closely followed by EWMA.
Unexpectedly, C3 has the lowest PSD when the false alarm
rate falls below 0.01.

FIGURE 6. Receiver operation characteristic curves of detection
on the first 2 days of a slow-building outbreak*

* Serial correlation = 0.
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FIGURE 5. Receiver operation characteristic curves of detection
on day 1 of a slow-building outbreak*

* Serial correlation = 0.
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Conclusion
On the basis of the CARL and ROC, these simulations sug-

gest that P-chart has the best overall performance when the
data are serially independent under both the slow-building
and sudden-surge outbreak (Table 5). This conclusion holds
true for both detection on day 1 and detection on both day 1
and 2. Under the slow-building outbreak, C2 delivers the sec-
ond best performance; under the sudden-surge outbreak
EWMA performs well, closely following P-chart and clearly
outperforming C3, especially at the lower false alarm rates.

With the moderate serial correlation (0.277), C2 has the
best ROC under the slow-building outbreak, followed by C3.
However, C3 is outperformed by C2 with respect to both day
1 detection and consecutive signals on day 1 and 2 at the
lower false alarm rates. Under the sudden-surge outbreak
P-chart and C2 outperforms the other methods. The differ-
ence between P-chart and C2 is generally small. Contrary to
the common perception among the users of EARS, C3 is not
more sensitive than C2 once the false alarm rate is held con-
stant.

With an emphasis on timely detection of outbreaks within
the first few days of onset, the findings of this report suggests
the use of C2 and P-chart for surveillance purposes when the
syndromic data are moderately correlated. Surveillance of rare
syndromes also might benefit from EWMA because rare syn-
dromes tend to be less correlated. EWMA also is expected to
be more sensitive as an outbreak persists.

Serial correlation can considerably increase the false alarm
rate and reduce the PSD. For example, the PSD of P-chart is
approximately 0.20 with the false alarm rate of 0.04 for inde-
pendent data; as the serial correlation increases to 0.277, the
PSD decreases to approximately 0.075. In general, similar
trends hold, although the magnitude of such impacts varies
between detection methods and detection events. These trends
were confirmed by an additional simulation with a higher
serial correlation. The impact on MA and EWMA is particu-
larly pronounced because these methods depend on an aver-
age of several days’ data.

FIGURE 7. Receiver operation characteristic curves of detection
on day 1 of a sudden-surge outbreak*

* Serial correlation = 0.
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FIGURE 8. Receiver operation characteristic curves of detection
on the first 2 days of a sudden-surge outbreak*

* Serial correlation = 0.
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TABLE 5. Detection methods with the best ROC* under different outbreak, serial correlation, and detection objective
Serial correlation                         0                   0.277†

Outbreak detection objective Slow-building Sudden-surge Slow-building Sudden-surge

Timely (day 1) P-chart P-chart; EWMA§ C2 P-chart; C2

Continuous (days 1 and 2) P-chart P-chart; EWMA C2 C2; P-chart

* Receiver operation characteristic.
†Serial correlation among daily incidences.
§Exponentially weighted moving average.
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C2 appears to be least affected by serial correlation and is
most robust. For example, the PSD of C2 declined from
approximately 0.22 to 0.20 while holding the false alarm rate
at 0.06; at the false alarm rate of 0.04, the PSD stayed almost
constant. This offers another justification for favoring C2.

Another simulation was conducted to evaluate the use of
count data (9). In comparison with daily incidence, using
counts yielded slightly higher false alarm rates and PSDs. It
seems practical to use counts for monitoring rare syndromes
and proportions for common syndromes. The two approaches
would be similar when the ED volume is stable and only spe-
cific syndrome cases fluctuate.

Syndromic data might demonstrate day-of-the week effects,
which can be accounted for through modeling of the mean
µm and the standard deviation σm. This is not done in EARS.
Assessing the impact of ignoring such trend on the methods
of EARS would be useful (11). Modeling syndromic data is
complex, requiring sufficient amounts of historical data.
Because syndromic data might vary by location, season, syn-
drome category, and type of outbreak, performance of aberra-
tion detection methods must be evaluated specifically.
Appropriate use of any detection method requires evaluation
and calibration of its operating characteristics. Although a
higher level of PSD is generally desirable, false alarm rate needs
to be controlled at a level according to the objectives of the
local system and resources required to maintain the system.
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Abstract

Introduction: Since June 2004, CDC’s BioIntelligence Center has monitored daily nationwide syndromic data by using the
BioSense surveillance application.

Objectives: The BioSense application has been monitored by a team of full-time CDC analysts. This report examines their
role in identifying and deciphering data anomalies. It also discusses the limitations of the current surveillance application,
lessons learned, and potential next steps to improve national syndromic surveillance methodology.

Methods: Data on clinical diagnoses (International Classification of Diseases, Ninth Revision, Clinical Modifications
[ICD-9-CM]) and medical procedures (CPT codes) are provided by Department of Veterans Affairs and Department of
Defense ambulatory-care clinics; data on select sales of over-the-counter health-care products are provided by participating
retail pharmacies; and data on laboratory tests ordered are provided by Laboratory Corporation of America, Inc. All data are
filtered to exclude information irrelevant to syndromic surveillance.

Results: During June–November 2004, of the approximately 160 data anomalies examined, no events involving disease
outbreaks or deliberate exposure to a pathogen were detected. Data anomalies were detected by using a combination of
statistical algorithms and analytical visualization features. The anomalies primarily reflected unusual changes in either daily
data volume or in types of clinical diagnoses and procedures. This report describes steps taken in routine monitoring, including
1) detecting data anomalies, 2) estimating geographic and temporal scope of the anomalies, 3) gathering supplemental facts,
4) comparing data from multiple data sources, 5) developing hypotheses, and 6) ruling out or validating the existence of an
actual event. To be useful for early detection, these steps must be completed quickly (i.e., in hours or days). Anomalies described
are attributable to multiple causes, including miscoded data, effects of retail sales promotions, and smaller but explainable
signals.

Conclusion: BioSense requires an empirical learning curve to make the best use of the public health data it contains. This
process can be made more effective by continued improvements to the user interface and collective input from local public
health partners.

Introduction
CDC’s BioSense application, which has been in use since

November 2003, permits the early detection of intentional
and natural infectious-disease outbreaks. The application has
an Internet-based interface that enables public health officials
in 86 geographic regions (50 states, two territories, and 34
major metropolitan areas) to access prediagnostic health data
on a near real-time basis (1). Statistical algorithms and ana-
lytical visualizations are used to present multiple streams of
nationwide public health data. The CDC BioSense Initiative
provides a new surveillance tool for state and local health use
and gives CDC the responsibility for informing its use. Since
June 2004, an average of six full-time CDC BioSense moni-

tors have examined and analyzed data daily. This report
describes the role of the BioSense data monitors and discusses
how they monitor and decipher data anomalies.

BioSense receives daily data that are delivered electronically
from four sources. Ambulatory-care clinics within the
Department of Veterans Affairs (VA) and Department of
Defense (DoD) systems provide International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
coded diagnoses and CPT-coded medical procedures for 580
(98%) of 592 facilities nationwide. On an average day,
BioSense received more than 1,000,000 records from VA and
500,000 from DoD. During June–November 2004, data on
select over-the-counter (OTC) pharmacy sales were received
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from >10,000 pharmacies, representing 23% of the national
market share (2) and 20% of U.S. ZIP codes (CDC, unpub-
lished data, 2005). Data on laboratory tests ordered were
received from Laboratory Corporation of America, Inc.
(LabCorp), representing 33,674 (77%) of 44,008 U.S. ZIP
codes.

BioSense is a multijurisdictional data-sharing surveillance
application that is nationwide in coverage and is available to
state and local public health departments. Other applications
implemented at local or regional levels use other data sources
and user interfaces and cannot easily be used to compare dif-
ferent localities across the United States (3–17). The BioSense
Initiative includes partnerships with other application groups.
BioSense’s national scope maximizes its ability to detect local
events and those that cross jurisdictional boundaries (e.g., states
or counties). Because the sources are consistent across the coun-
try, data monitors can compare multiple locations by using
the same types of data. Data-sharing efforts could lessen the
surveillance burden for state and local health departments and
clinical personnel (18).

Methods
BioSense organizes incoming data into 11 syndromes that

are indicative of the clinical presentations of critical
biologic terrorism–associated conditions (Table 1). These
syndromic categories and their associated codes are classified
on the basis of definitions identified by multiagency working
groups (19,20).

BioSense represents individual syndrome information in
maps, graphs, and tables. Multiple options are available for
customizing visual displays. Data can be displayed by using

raw counts or transformed in multiple ways before graphing
and mapping (e.g., normalized standard deviation, log, ratio,
and proportional). Geographic extent can be defined as an
entire state or metropolitan area, an individual or group of
contiguous ZIP codes, or a cluster of ZIP codes based on the
first three digits (ZIP3). Useful data transformations include
standard deviation and day-of-week adjustments. A specific
age group (e.g., children aged <3 years or persons aged >60
years) or sex also can be selected for all data sources. Histori-
cal data ranging from 1 to 365 days can be included in the
visual displays. Within the tabular view, filtering is available
to include or exclude key variables. All these customizations
increase users’ ability to detect data anomalies.

A data anomaly is a change in distribution or frequency in
data compared with geographic or historic context. Change is
quantified by using the elevated scores of two different algo-
rithms. An adaptation of the CUSUM (9) is useful for identi-
fying anomalies on a regional level, whereas SMART Scores
(21) detect changes at the ZIP-code level. Changes are also
identified by abrupt departures in the visual presentation of
the data, including changes in the daily data volume or in the
types or combinations of clinical diagnoses and procedures.

BioSense displays data in multiple presentations (e.g., algo-
rithm scores, line graphs, maps, and tabular summaries, and
detail) that can reveal data aberrations clearly. However the
application does not draw conclusions for the user; human
interpretation is required in using the technology to enhance
the ability of analysts to detect and understand nuances in the
data.

Function of Data Monitors
The primary function of CDC data monitors is to support

broad use of the system among state and local public health
partners. To this end, CDC monitors gather and provide feed-
back to improve the BioSense interface by troubleshooting
problems, increasing user friendliness, and generating ideas
for application enhancement. Monitors also conduct inquir-
ies of data anomalies to better understand the causes of data
anomalies and develop procedures to follow in accomplishing
inquiries quickly. With experience, monitors have recognized
repeat patterns and recommended changes in program logic
to eliminate certain kinds of routine records demonstrated
not to be related to a health event (e.g., vaccination-
associated diagnoses and obvious miscoding). Finally, data
monitors help refine and encourage the use of BioSense at the
state and local level by providing training support.

TABLE 1. Biosense syndromic categories
Syndrome Biologic terrorism–associated condition

Botulism-like Botulism

Fever NA*

Gastrointestinal Gastrointestinal anthrax

Hemorrhagic illness Various viral hemorrhagic fevers

Localized Cutaneous anthrax, tularemia
subcutaneous
lesions

Lymphadenitis Bubonic plague

Neurological NA

Rash Smallpox

Respiratory Inhalational anthrax, tularemia, pneumonic plague

Severe illness/ NA
Death

Specific infection Represents specific illnesses

* Not applicable.
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Steps in Data Anomaly Inquiries
Because CDC BioSense monitors examine the interface pre-

sentation daily, they frequently detect anomalies that trigger
an in-depth data inquiry (Figure 1). Each data anomaly is
examined and analyzed to determine if it is of public health
interest. For BioSense to be useful as an early-detection system,
prompt inquires are necessary. Initial inquiries are usually com-
pleted in hours or days, depending on the circumstance and
estimated degree of urgency. Urgency is estimated qualitatively
by the number of records, the specific diagnostic or proce-
dural codes, and the strength of the spatial pattern.

Inquiries of BioSense data anomalies take a predetermined
pathway (Figure 2). Before a data anomaly is detected, the
first step is to check the quality of the data. Data usually are
loaded into BioSense within 2–4 days of the event, but the
data occasionally take longer to arrive (e.g., on rare occasions,
up to several weeks late). The initial page of the BioSense
interface displays the estimated completeness of the data for
the 5 previous days (Table 2). These estimations are available
for each state or metropolitan area. If data receipts are consid-
ered complete for a given range of dates, the number of records
must also constitute a sufficiently large numerator for analy-
sis. If a data anomaly is detected at the ZIP-code level, suffi-

cient records might not be available from which to draw con-
clusions.

The second step is to determine the geographic, temporal,
and demographic extent of the data anomaly by using the
different visualization features. Key questions to answer
include the following:

• How widespread is the anomalous pattern?
• Are similar patterns found in adjacent regions?
• For how many days has the anomaly lasted?
• Has the geographic spread changed with time?
• Does the pattern have a day-of-week or cyclical nature?
• Did a similar pattern exist during the same period last

year?
• Does the anomaly affect primarily one sex or age group?
The third step is to look for similar data anomalies in the

other data sources. For example, if an anomaly is detected in
the VA clinical data, monitors will assess whether a similar
pattern exists in the DoD clinical data or in the LabCorp labo-
ratory tests ordered. Although these data sources might repre-
sent different segments of the population, a correlation can
exist between one data set and another. Within the BioSense
data, additional information (e.g., other codes associated with
visit) is available that is not viewable through the interface.
BioSense monitors at CDC use SAS® EG (SAS Institute, Cary,
North Carolina) to extract this information from the master
files. Important information can be gathered by extracting all
the available data associated with each individual visit. Moni-
tors assess whether all visits associated with a given anomaly
have other diagnostic codes in common. Although the major-
ity of these codes are not associated with a given syndrome
and are excluded from the interface, these codes are still use-
ful when trying to decipher a detected anomaly. Displaying
records by weekly or monthly totals, rather than daily, can
make patterns more sharply discernable.

FIGURE 2. BioSense inquiry road map
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FIGURE 1. Example of a data anomaly in BioSense
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TABLE 2. Percentage of historic records received, by day of
week, source, and type of record — BioSense application,
October 27–31, 2004

Yesterday
Wed Thu Fri Sat Sun
10/27 10/28 10/29 10/30 10/31

OTC* 96% 97% 94% 98% 3% Store reports

DoD† 77% 69% 46% 3% Encounters

VA§ 101% 92% 32% 21% Encounters

Sufficient for
monitoring

Not sufficient
for monitoring

* Over the counter.
†Department of Defense.
§Department of Veterans Affairs.
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Once the BioSense data have been analyzed, the next step is
to gather data from outside sources. State and local public
health partners are a source of primary importance because
they are familiar with the region in question, have numerous
personal contacts, and often are the only persons who can
rule out a data anomaly. Relevant information can be gleaned
from online newspapers, public health bulletin boards
(e.g., Epi-X* or ProMed†), and state/local public health
department web sites. Weather information (e.g., tempera-
ture changes, pollen counts, ozone reports, cold fronts, and
low-pressure zones) can be relevant to analyzing certain syn-
dromes (e.g., respiratory).

The final step is to decide if a public health explanation
exists for the data anomaly. If no public health explanation
exists, the inquiry ends. If a public health explanation appears
to exist, then state and local public health BioSense adminis-
trators are notified. Any further investigation, contact with
DoD or VA clinics, or other follow-up response is determined
by the state or local public health officials.

Results
During June–November 2004, of the approximately 160

data anomalies examined, no events involving disease outbreaks
or deliberate exposure to a pathogen have been detected.
Although monitors have contacted local and state BioSense
administrators for their input on 12 occasions, no inquires

have required a public health response. All inquiry results have
been classified into one of eight categories (Table 3).

Sample Data Anomalies
The following section describes four in-depth inquiries in

response to syndromic data anomalies in BioSense.

Example 1

Data Anomaly

In early September 2004, increased record counts associ-
ated with lymphadenitis syndrome were noted in DoD clini-
cal data from one major metropolitan area. No similar increase
was noted in local VA clinical data. On examination, 67 (72%)
of 93 records during August 1–September 30, 2004, were for
infectious mononucleosis (ICD-9-CM 075.0), all from the
same DoD clinic. The visit/discharge disposition code infor-
mation indicated that 37 (59%) of 63 patients with mono-
nucleosis were sick enough to have work restrictions or be
sent to bed.

Inquiry

At the end of the month, monitors compared monthly totals.
Totals for August and September were 59 and 41, respectively,
approximately 2.5 times higher than any of the previous 6
months (Figure 3). A clinician on location was contacted to
obtain further information.

Findings

The clinician reported that the 59 records noted in BioSense
for August actually represented 19 patients; 24 of the records
were premature diagnoses whose diagnostic tests were later
demonstrated to be negative. The actual number of labora-
tory-confirmed cases was 15 in August and four in Septem-
ber (B. Feighner, MD, Johns Hopkins Applied Physics

TABLE 3. Interpretation categories
Interpretation category Examples

1 Predictable periodic trends Seasonal Monthly Day-of-week
Daily Weekly Clinic hours

2 Anomalies of limited duration Associations with cold weather, high ozone, or pollen counts

3 Effects of data influxes New clinics
New retail store chains
Temporary increase in military deployment

4 OTC* surges because of sales promotions Merchandise sold at a loss to draw customers
2-for-1 sales

5 Duplicate or missing data Data sent multiple times but not recognized by system as duplicates
Days with missing data that make surrounding days appear as spikes

6 Vaccination-associated indications Vaccination codes often paired with disease codes (diphtheria, anthrax, influenza, etc.)

7 Miscoded diagnoses Congestive heart failure (CHF) coded as crimean congo hemorrhagic fever (CCHF)
Prediagnostic determinations that are laboratory-confirmed negative later

8 Multiple follow-up visits by a few patients Illnesses often require frequent follow-up visits, each appearing as a different record

* Over the counter.

* Epidemic Information Exchange is a web-based communications network
(available at http://www.cdc.gov/epix) that enables the secure exchange
of information among authorized epidemiologists, laboratorians, and
other public health professionals at CDC and state and local agencies.

† Program for Monitoring Emerging Diseases, a global electronic reporting
system for outbreaks of emerging infectious diseases and toxins (available
at http://www.promedmail.org), is a program of the International Society
for Infectious Diseases.

https://www.cdc.gov/epix
http://www.promedmail.org
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Laboratory, personal communication, 2004). The decreased
count was attributable, in part, to multiple visits by patients
for referral and follow-up treatment. Because DoD records
do not include individual identifiers, the ability to distinguish
between multiple patients and multiple visits by a limited num-
ber of patients is limited.

In addition, four patients coded as having mononucleosis
were laboratory confirmed to be negative. Furthermore,
August and September experienced an increase in the newly
recruited population in this area; thus, the incidence for mono-
nucleosis in this clinic was actually less than the same-type
population incidence (0.15% versus 1.1%–4.8% for active-
duty military personnel and college students annually)
(B. Feighner, MD, Johns Hopkins Applied Physics Labora-
tory, personal communication, 2004). No escalation was
required. Interaction with local public health providers was
vital to gathering supplemental information because the cir-
cumstances would not have been understood without the
information proved by the resident clinician.

Example 2

Data Anomaly

In early August, a sharp overnight increase was observed in
OTC pharmacy sales volume for a single large state
(Figure 4). Nearly all metropolitan areas within this state were
affected similarly, and all OTC product classes had the same
magnitude of change. No correlation was noted with DoD or
VA data.

Inquiry

The OTC sales volume remained at elevated levels thereaf-
ter, and the data anomaly was not of limited duration. Within

the state, the average number of units sold daily increased
from approximately 3,100 in July 2004 to 11,500 in August
and to 20,500 in September 2004. An examination of neigh-
boring regions revealed that three adjacent states experienced
similar surges in OTC sales volume.

A review of Epi-X and ProMed did not indicate any public
health event that matched the scale of the anomaly. Monitors
suspected that the anomaly reflected an influx of additional
retail stores or pharmacy chains to the data-sharing program.
An examination of the number of ZIP codes reporting data
indicated that nationwide, the geographic range of localities
reporting OTC sales increased by 2,156 new ZIP codes on a
single day in early August 2004. A second increase of approxi-
mately 1,000 additional new ZIP codes nationwide occurred
in early September 2004.

Findings

Although monitors could not confirm their suspicions, they
hypothesized that the anomaly reflected the addition of new
localities reporting data. One metropolitan area in that state
previously had no pharmacies reporting. No response was
required in this case because no public health threat was
involved. This inquiry was completed in 5 business days.

Example 3

Data Anomaly

In late July 2004, monitors noticed an elevated number of
records associated with the specific infections syndromic cat-
egory (Figure 5). When the data on the tabular detail were
examined, monitors identified 23 records with a diphtheria

FIGURE 3. Monthly count of mononucleosis cases at a single
Department of Defense clinic, 2004
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diagnosis (ICD-9-CM code 032.9) on a single day at a single
clinic. All the patients were children aged <4 years. By using
visit/discharge disposition codes, monitors learned that all
patients were released without any restrictions. If these records
had really represented patients with a serious disease, these
children would not have been released without restrictions.

Inquiry

No mention had been made of recent diphtheria cases in
the United States in either Epi-X or ProMed. By examining
the historic BioSense data, monitors identified 138 other vis-
its associated with diphtheria in 2004, which was improbable
when compared with nationwide data indicating that no labo-
ratory-confirmed cases of diphtheria were reported in 2004
(22). SAS EG was used to extract all ICD-9-CM codes asso-
ciated with these visits. In every instance, an associated
ICD-9-CM code was identified that indicated that a DTaP
vaccine had been received during the visit; certain visits also
included CPT codes, indicating the visit had been a routine
well-baby examination.

Findings

All of the diphtheria records represented children receiving
routine childhood vaccinations. In response to this finding,
BioSense now excludes all records associated with vaccina-
tions.

Example 4

Data Anomaly

In mid-July 2004, monitors noticed five records associated
with the severe illness/death syndrome. All patients were chil-
dren aged 5–13 years who have been examined at the same
DoD clinic on the same day. All had records with an ICD-9-
CM code of 799.9, labeled in BioSense as “Mortality, cause
unknown.”

Inquiry

Monitors initially suspected that a violent event such as a
house fire or motor-vehicle crash had occurred, but no men-
tion was found of five children dying on the same day in the
archived local or military newspapers. Monitors then noticed
elevated levels of “child mortality” occurring on a regular
basis at this particular clinic, all on Wednesdays during Feb-
ruary–July 2004 (Figure 6). On multiple Wednesdays, the chil-
dren matched in age and sex, and the visit/discharge disposition
code of 1 indicated that these children had been released with-
out any school or day limitations. Monitors also determined
that these were not duplicate records; each record represented
a unique visit.

Findings

At this point, monitors contacted the local BioSense
administrator, who contacted the DoD clinic directly. The
administrator was informed that the repeating records repre-
sented the same cohort of children who had psychotherapy
each Wednesday. The local administrator also reported that
the correct description for ICD-9-CM 799.9 was “Mortality
or Morbidity, cause unknown.” This error was corrected im-
mediately. No further escalation was necessary. Further logic
strategies will be implemented to eliminate those visits that
are psychotherapeutic in nature from the severe illness/death
syndrome category.

This example underscores the importance of using infor-
mation gleaned from other ICD-9-CM and CPT codes asso-
ciated with the visit to clarify the nature of an individual event,
especially when the key diagnostic code is vague, as is the case
with 799.9. This case also demonstrates that the effectiveness
of BioSense depends on the partnership of local, state, and
federal public health agencies.

Conclusion
The BioSense Initiative represents a new paradigm for pub-

lic health surveillance. BioSense makes secondary use of
nationwide data sources, using data collected for other pur-
poses aggregated without individual identifiers. An empirical
learning process is required for BioSense users to understand
how to make effective use of these data for public health pur-
poses. Although the BioSense application was developed for
use by local public health departments nationwide, CDC is
responsible for developing an understanding of how to use it
most effectively. To this end, CDC BioSense monitors con-
duct inquiries of data anomalies to rule out their potential
threat to public health, provide feedback on their experiences
for development of continued improvement to the user inter-
face, perform a system troubleshooting function, generate and

FIGURE 6. Number of reported “child mortality” for a single
Department of Defense clinic, February–July 2004
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collect input from local public health partners, develop new
ideas for system enhancements, and most important, offer
support and guidance to local users on the basis of their expe-
rience. Each CDC monitor has surveillance responsibility for
a public health region but also works side by side with other
monitors. Access to national scope information gives moni-
tors the capability to coordinate information about adjacent
regions. For example, in holding a telephone conversation with
local public health officials, monitors have quick access to data
in the surrounding regions to consider and characterize a po-
tential event. As increasing use is made of additional second-
ary data sources, the learning requirements for their
complementary use will continue to evolve. For new surveil-
lance capabilities to be improved, procedures for investigat-
ing observed anomalies should be shared, information and
knowledge compared, and automated means to account for
data artifacts developed.
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Abstract

Introduction: Syndromic surveillance systems are becoming increasingly common in health departments. These systems rep-
resent a substantial improvement in the timeliness of ascertainment of community health status. For the value of such systems
to be realized, protocols are needed for review and analysis of the findings that these systems produce.

Methods: A workgroup of experienced syndromic surveillance users and developers was convened to discuss approaches to
data review and analyses. The discussion was structured to include general principles of the use of syndromic surveil-
lance; how and why specific data are reviewed; integration of multiple data sources; daily versus research uses of systems;
how data anomalies are identified by users and surveillance systems; the relative merits of anomalies; how a data
anomaly is investigated to determine if it warrants a public health response; and how such a public health response
should be framed.

Results: From this discussion, a generalized and more detailed process was documented that describes the common elements of
analysis used by the workgroup participants.

Conclusion: Establishment of a framework for evaluation and response to syndromic surveillance data will facilitate the imple-
mentation of these systems and standardization of procedures for validation of system findings. Careful development of an
evaluation and response framework should be undertaken to assess whether use of syndromic surveillance systems requires excess
work to distinguish between statistical anomalies and important public health events.

Introduction
Although initially conceived to assist public health officials

in detecting occurrence of intentional disease outbreaks
(i.e., those caused by a biologic terrorist attack), syndromic
surveillance systems are becoming a basic tool for public health
epidemiologists. The majority of these systems employ mul-
tiple data streams (including data from hospital emergency
departments [EDs] or other emergency encounters, physician
office visits, over-the-counter [OTC] pharmaceutical sales, and
school absenteeism records) to detect potential disease clus-
ters in the community. The increased sensitivity provided by
multiple data sources requires users to review and summarize
an unprecedented amount of data daily. Clear guidelines for
using these systems are needed to help epidemiologists
1) quickly identify and disregard statistically significant but
epidemiologically unimportant events, 2) distinguish true dis-
ease clusters from groups of unrelated cases, 3) determine
which true disease clusters warrant further evaluation or pub-
lic health response, and 4) perform these tasks quickly and

cost effectively. The Montgomery County (Maryland) Depart-
ment of Health and Human Services (MCDHHS) has been
using the Electronic Surveillance System for Early Notifica-
tion of Community-Based Epidemics (ESSENCE) syndromic
surveillance system continuously since spring 2001. This
report describes a framework for daily evaluation of ESSENCE
data that was developed jointly by staff from MCDHHS and
the Johns Hopkins University Applied Physics Laboratory
(JHU/APL). This framework can be generalized for use with
other electronic syndromic surveillance systems.

Methods
The framework for using the ESSENCE system presented

in this report is based on the experience of the authors gained
through daily use of the MCDHHS ESSENCE system and
on a structured discussion with 10 syndromic surveillance sys-
tems users and persons with expertise that was designed to
collect qualitative information on how public health profes-
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sionals use ESSENCE. Participants included representatives
of state health agencies in Maryland, Virginia, and the Dis-
trict of Columbia; civilian and military users of ESSENCE;
and members of the JHU/APL ESSENCE development team.
Topics discussed included general principles of the use of
syndromic surveillance; how and why specific data are
reviewed; integration of multiple data sources; daily versus
research uses of the systems; how data anomalies are identi-
fied by users and by the surveillance systems; the relative mer-
its of anomalies; how a data anomaly is investigated to
determine if it warrants a public health response; and how
such a public health response should be framed. Comments
on how and why syndromic surveillance is used were also pro-
vided by representatives of the New York City Department of
Health and Mental Hygiene after a review of the meeting notes.
Syndromic surveillance systems such as ESSENCE are
intended to identify higher-than-expected counts of visits to
EDs or physicians’ offices, retail sales of pharmaceutical prod-
ucts, or other similar events grouped into broad syndromic
categories. These increases are assumed to represent increases
in disease incidence.

Syndromic surveillance systems can identify certain health
events that are of sufficient concern that a single occurrence
warrants a public health response (e.g., the collection of addi-
tional data when certain rashes appear among persons in par-
ticular age groups or with certain neurologic complaints).
Those procedures and public health responses are not consid-
ered in this report.

Results

Use of Syndromic Surveillance Data
Epidemiologists use syndromic surveillance systems for mul-

tiple purposes. Because these systems collect and store longi-
tudinal disease incidence data, epidemiologists can use them
to trace disease patterns over time, describe patterns of disease
in the community geographically and demographically at any
given time, and determine the impact of specific targeted health
interventions. These systems most commonly are used for early
detection of changes in a community’s health status that might
represent a public health emergency. A protocol is followed to
detect and analyze the importance of anomalies in the data
(Figure 1).

Anomaly Detection
All syndromic surveillance systems use a statistical algorithm

to determine whether the number of reports for a specific syn-
drome exceeds the norm for the community and then to alert

the user that a statistically significant increase has occurred.
However, important health events can be detected in other
ways. Syndromic surveillance systems enable epidemiologists
to systematically monitor disease trends and identify suspi-
cious clusters of disease. Epidemiologists also receive infor-
mation about unusual disease clusters or incidence from local
health-care providers, which they then can evaluate in the sur-
veillance system. Both system- and operator-generated alerts
are considered to be of equal value.

Anomaly detection presents jurisdictional challenges that
should be accommodated in developing response guidelines.
Although public health officials have obligations associated
with defined geographic boundaries, neither the movement
of persons nor the distribution of illness is so limited. Anomaly
detection should be conducted at multiple levels (local,
regional, state, and possibly federal) to capture anomalies that
might remain undetected within any single jurisdiction.

Characterization of Anomalies
Anomalies should be described fully to determine whether

they are likely to represent an important public health event
that requires a public health response. The anomaly should
be described with respect to person, place, and time by using
whatever demographic and geographic information is avail-
able. In addition, available clinical data (e.g., chief complaint
and discharge diagnosis and disposition) should be evaluated
and summarized. In certain cases, additional information
(e.g., laboratory test requests or results or detailed ED admis-
sion data) might be available to further characterize the anomaly.

Validation of Anomaly
Once the epidemiologist is convinced that an anomaly rep-

resents a true cluster of similar health events, whether the
anomaly is expected or unusual should be determined. Nor-
mal seasonal and temporal syndrome and disease trends should
be reviewed. Influenza-like illness is easily spotted in the
majority of syndromic surveillance systems. An increase in
disease causes regular statistical alerts in established syndrome
groups as illness spreads through the community. Because this
increase is expected each winter, the anomaly does not require
further evaluation efforts. Similarly, environmental factors
should be considered. For example, seasonal increases in pol-
len generate increases in respiratory illness, which might cause
statistical alerts in surveillance systems even though these events
are expected. If more than one source of data is available within
a system, then part of the validation effort should be to ascer-
tain whether corroboration is expected in those sources and
whether it exists.
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Assessing Public Health Importance
of Findings

Once an anomaly is fully characterized, its public health
importance should be considered. First, the magnitude and
continuity of the increase generating the anomaly should be
evaluated in the context of the particular syndrome group in
question. Regardless of statistical significance, a substantial
1-day increase warrants more scrutiny than a limited one; simi-
larly, a relatively modest increase during multiple days that
deviates from known seasonal and historic patterns also should
be evaluated closely. In each of these instances, the size of the
actual increase is characterized by the nature of known pat-
terns of the data source and syndrome being evaluated; these
considerations require an understanding of the usual frequency
distribution for the particular event of concern.

Certain signals can be expected and, when detected, are of
less concern, especially when the public health response is well
established (e.g., the beginning of the influenza season and
winter increases in cases of viral gastroenteritis). However,

observations of such anomalies at other times of the year, or
when frequency is much different than expected or presenta-
tions more severe, are more likely to represent important public
health events.

Other Factors of Importance
The majority of syndromic surveillance systems collect

multiple streams of data to be evaluated as indicators of changes
in the health status of the populations they monitor. Each
data stream has unique attributes that must be understood to
estimate the value of the results they produce. Chief among
these attributes is the lag time between the occurrence of an
event and the time it is available to the system for anomaly
detection. Another critical attribute is the clinical value of the
data. ED data, for example, convey important information
about clinical encounters when chief complaint data are coded
into syndromes. However, ED data are more clinically valid
when the syndromes are coded on the basis of discharge diag-
noses, as physician office visit data are coded. In determining

FIGURE 1. Theoretical framework for response protocols in use of syndromic surveillance
systems
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the attributes of a system with these data sources, the user
should be aware of the timing of the coding efforts and the
change in lag time introduced by the coding effort. Data on
OTC pharmaceutical sales can be available quickly but have
less clinical value than encounter data sources. Whether the
data source provides individual level data to allow scrutiny at
that level to characterize and validate any changes detected
also should be considered.

On the basis of these attributes, identifying a single data
stream within the system to serve as the principal indicator of
changes in community health status might be desirable;
remaining data sets can be relied on as secondary sets that are
used to corroborate findings in the primary stream or to assist
in refining hypotheses when indications of important changes
are observed in the primary data set. A process flow chart
(Figure 2) can be used to illustrate how evaluation and
response might proceed with a system that has designated a
primary, individual encounter–based data source.

Discussion
Syndromic surveillance is emerging as a practical tool for

public health epidemiologists. Procedures for evaluation of
data provided to public health practitioners through syndromic
surveillance systems will necessarily vary based on the system
in place and the jurisdiction in which it operates. However, to
facilitate identification and response to important public health
events, users believe that standardized evaluation and response
strategies should be developed and adopted by all public health
practitioners.

A step-by-step evaluation strategy (Figure 2) can be used
for evaluation of any individual-encounter based surveillance
data source (i.e., ED chief complaints, hospital discharge codes,
and call-center encounters). The process should begin with
an evaluation of data completeness and with efforts to either
complete the data set or limit the analytical data set to one
which is as complete as possible. Proceeding then from gen-
eral evaluations of incidence and aberration patterns to more

FIGURE 2. Evaluation of data from syndromic surveillance systems
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specific ones (e.g., from the all-encounter level to age-group
syndrome evaluations), all anomalies should be analyzed to
identify usual and expected patterns for consistency of pre-
senting complaints; age, sex, and geographic-distribution; and
severity of illness as indicated by discharge dispositions and
diagnoses (when data are available). When possible, historic
comparisons (e.g., with the same period in previous years or
seasons) should be evaluated. Finally, consideration should be
made of whether an unusual but modest change in patterns
has persisted for longer than can be explained or whether an
increase is simply too large to dismiss as a random occurrence.

These information-gathering tasks are the same as those
conducted in the early stages of conventional outbreak inves-
tigations. Although this framework is intended to assist pub-
lic health practitioners in distinguishing between statistical
anomalies and anomalies of public health concern, the work
required parallels that of a typical outbreak investigation. Both
processes have the same objective: to determine whether the
appearance of an outbreak is, in fact, an outbreak (Table).

The majority of the tasks in the proposed evaluation frame-
work overlap, which is often the case in outbreak investiga-
tion as well. Ideally, the surveillance system will allow for the
routine and automated collection of the data required for
completion of these tasks (e.g., clarification of clinical com-
plaints, determination of existence of the anomaly, creation
of a case definition, scrutiny for other similar cases, and
descriptive epidemiology work). This will serve to ease both
the burden and costs of the efforts. The majority of anomalies
will require no more consideration than can be made system-
atically by using information routinely available to users
through the system. As such, the distinction between evalua-
tion and response becomes less clear, and response can be
thought of as something that, in most cases, can be deter-
mined easily from the epidemiologist’s work station. The evalu-
ation of the data is, in effect, a limited investigative response
that either can support the need to proceed to field work or
indicate that the anomaly is not important in a public health
sense. If the results of this descriptive work fail to rule out the
existence of an event of public health concern, syndromic sur-
veillance systems can provide data to support epidemiologic

studies (e.g., case-control studies) to evaluate findings further.
Depending on the implementation of particular systems, cases
and controls can be distinguished from one another with
respect to time of the event, distribution of particular chief
complaint keywords, or discharge diagnoses within interest-
ing clusters.

The move to field work also requires a considered, step-by-step
approach. The level of effort required depends on the particu-
lar features of the anomaly. The response could be as simple as
a telephone consultation with a health-care provider or a
review of ED record face sheets. Rarely, a response might
require the full effort of an outbreak investigation.

Evaluation work should be conducted by staff members who
have sufficient experience with the data to be familiar with
fluctuations in incidence attributable to common variation
and who have training to support their interpretation of the
statistics employed for anomaly detection. Furthermore, evalu-
ation work should be assigned to staff members who under-
stand the demographic features of the community, its habits,
and current activities or events because these factors can
influence the appearance of anomalies in the absence of a real
shift in the health status of the community. Often, responsi-
bility for community-level evaluations should be assigned to
health officials in local health departments, and responsibility
for region- or statewide evaluations should be assigned to
officials in those jurisdictions. Evaluation and
response strategies need not be materially different at these
levels, but communication of findings and required response
should be communicated and monitored across all levels.

Conclusion
Establishment of a framework for evaluation and response

to syndromic surveillance data will facilitate the implementa-
tion of these systems and standardization of procedures for
validation of system findings. The framework presented in
this report was developed on the basis of the experience of a
substantial number of users of multiple systems and may be
generalized for use in other systems and jurisdictions. Evalu-
ating data at the local, regional, and state levels might ensure

TABLE. Comparison of outbreak investigation and syndromic surveillance evaluation tasks
Outbreak investigation task Syndromic surveillance response framework task

Establish existence of anomaly Evaluate data quality and completeness; evaluate corroboration of other data sources; evaluate magnitude
and continuity of increase; make historical comparisons

Verify the diagnosis Clarify the chief complaints and diagnoses causing the anomaly

Construct a working case definition Clarify the chief complaints and diagnoses causing the anomaly; evaluate corroboration of other data sources

Find all related cases; develop line list Evaluate continuity and magnitude of increase

Complete descriptive epidemiology Characterize age, sex, and geographic distribution
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that officials with local awareness will evaluate changes
detected in the context of current events and demographics
and that increases that occur across jurisdictional boundaries
are detected and coordinated by appropriate officials. Finally,
careful development of an evaluation and response framework
should be undertaken to assess whether use of syndromic sur-
veillance systems requires excess work to distinguish between
statistical anomalies and important public health events.
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Abstract

Introduction: A critical need exists for mechanisms to identify and report acute illness clusters to health departments. The
Massachusetts Department of Public Health (MDPH) works with partner organizations to conduct syndromic surveillance.
This effort is based on CDC’s Health Alert Network program and includes automated generation and notification of signals
and a mechanism to obtain detailed clinical information when needed.

Methods: Syndromic surveillance partners collect emergency department and ambulatory care data. The principal communi-
cations platform between syndromic surveillance partners and MDPH is the Massachusetts Homeland and Health Alert
Network (HHAN). This Internet-based application serves as a portal for communication and collaboration and alerts pre-
defined groups of users involved in emergency response. Syndromic surveillance partners’ systems report to HHAN by using
Public Health Information Network Messaging System events that meet thresholds selected by MDPH. Cluster summaries are
automatically posted into a document library. HHAN notifies users by electronic mail, alphanumeric pager, facsimile, or voice
communications; users decide how they want to be notified for each level of alert. Discussion threads permit real-time commu-
nication among all parties.

Results: This automated alert system became operational in July 2004. During July–December 2004, HHAN facilitated
communication and streamlined investigation of 15 alerts.

Conclusion: The system allows rapid, efficient alerting and bidirectional communication among public health and private-
sector partners and might be applicable to other public health agencies.

Introduction
A critical need exists for mechanisms to report acute illness

clusters and for public health personnel to obtain timely clinical
information about persons who are part of these clusters.
Timely identification of newly emerging pathogens and syn-
dromes, as well as unusual clusters of illness, is difficult when
health departments rely solely on traditional methods of sur-
veillance (e.g., laboratory reporting). Identifying illnesses early
facilitates treatment, prevention, and control of disease.
Syndromic surveillance systems access and analyze data sources
that are not normally accessible to departments of public health
(e.g., symptoms and signs of illness captured by International
Classification of Diseases, Ninth Revision [ICD-9] codes and
chief-complaint data). As a result, syndromic surveillance
might detect unusual clusters of illness before definitive diag-
noses are made and thus potentially earlier than traditional
disease reporting allows.

In Massachusetts, two syndromic surveillance systems are
in place, one capturing visit data from ambulatory-care set-
tings and one using chief-complaint data from hospital emer-
gency departments (EDs). Both systems were established in
partnership with the Massachusetts Department of Public
Health (MDPH). The Harvard Pilgrim Health Care/Harvard
Vanguard Medical Associates (HPHC/HVMA) system col-
lects ambulatory care data from an electronic medical record
system at 14 clinic sites in eastern Massachusetts (1–4). The
Children’s Hospital Boston system (AEGIS) utilizes chief-
complaint data from eight Massachusetts hospital EDs (5,6).
In both systems, new visits are grouped into syndromes
defined previously by a CDC-led working group (7) and
aggregated by ZIP code. Statistical models are used to assess
whether each day’s syndrome counts are unusual.

The first challenge to response to syndromic surveillance
signals is to establish bidirectional communication among
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partners. MDPH uses the Massachusetts Health and Home-
land Alert Network (HHAN) to automate communication of
alerts. HHAN is an Internet-based application that serves as
the principal platform permitting communication among Mas-
sachusetts’ syndromic surveillance partners. This report
describes the experience gained and outlines remaining chal-
lenges.

Methods
Data on HPHC/HVMA patient encounters (i.e., visits or

calls), including demographic information and diagnostic
codes, are recorded electronically as part of routine patient
care, usually on the same day. Every 24 hours, encounters
with codes of interest are extracted automatically from the
clinical data system. The data are deidentified and aggregated
by syndrome and ZIP code of residence; the resulting aggre-
gate counts of illness are automatically uploaded to a data-
coordinating center. During processing of the daily data file,
a line list of the day’s encounters is generated and kept at
HPHC/HVMA. This list contains demographic information
and the text of the diagnostic codes assigned during each
encounter and allows a first-level epidemiologic assessment
(short of consulting the full medical record). These methods
have been described previously (1–4).

The Small Area Regression and Testing (SMART) scores
method (8) is used. This method uses generalized linear mixed
models that adjust for day of the week, holidays, seasonal pat-
terns, and any secular trends on the basis of historic data to
determine the degree of statistical aberration associated with
each date–syndrome–ZIP code count. The signal detection is
automated and occurs at the data coordinating center. If the
number of cases of a syndrome detected in a particular ZIP
code on a particular date is higher than expected, an auto-
matic alert is generated and sent to designated recipients at
MDPH through HHAN by means of an interface between
the data-coordinating center and HHAN. MDPH created
three alert levels (low, medium, and high), corresponding to
recurrence interval (i.e., the number of days of surveillance
that would normally elapse between the chance occurrence of
counts as unusual as the one observed) thresholds. MDPH
uses recurrence-interval thresholds of 2 months (low),
6 months (medium), and 2 years (high), except for respira-
tory syndrome, for which the chosen thresholds are 6 months,
1 year, and 2 years, respectively. Syndrome-specific alert levels
are defined by MDPH staff and can be changed readily; for
example, the alert threshold can be lowered during periods of
heightened concern (e.g., during a political convention).

HHAN functions as a secure collaboration portal that
allows role-based alerting and access to a document library
(Figure). Once a syndromic surveillance partner’s system
detects a signal, a document is posted in the library on HHAN
through the Public Health Information Network Messaging
System (PHIN-MS). Simultaneously, an automatic alert mes-
sage is sent from PHIN-MS to HHAN, which then uses built-
in functionality to distribute the alert further by electronic
mail, facsimile, alphanumeric pager, or voice (e.g., cellular
telephone). Each user decides how to be notified for each alert
level (low, medium, or high). Simultaneously, the system au-
tomatically posts a document providing details about the clus-
ter that generated the alert. Once alerts and documents have
been sent, bidirectional communication between MDPH and
clinical responders is facilitated by using discussion threads
associated with the alert document in question.

After the HPHC/HVMA system generates an alert, MDPH
staff contact a designated clinical responder on call. Respond-
ers have been trained for this purpose and are available at all
times according to an established schedule. Within the line
list for the day in question, the clinician reviews the cases
responsible for the alert, and, if a cluster of illness of public
health importance is suspected (e.g., a substantial cluster within
a single ZIP code of lower gastrointestinal illness that includes
family members), MDPH staff proceed with further investi-
gation. A response protocol guides MDPH epidemiologists
in contacting on-call responders to obtain further details about
cases contributing to suspect clusters of illness. Before full
implementation of the HHAN alert system, this response
protocol was pilot tested with clinical responders from
HPHC/HVMA.

FIGURE. Protocol followed by Massachusetts Homeland and
Health Alert Network (HHAN) to generate and respond to a
syndromic surveillance alert
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Results
Pilot testing of HPHC/HVMA clinical response began in

June 2004, and the automated alert system became opera-
tional in July 2004, in time for use during the Democratic
National Convention held in Boston July 26–29. During July–
December 2004, HHAN received 15 alerts from the HVMA/
HPHC system. Two alerts required investigation beyond
consultation of line lists (e.g., chart review), but no public
health intervention was necessary.

Case Scenario #1: Medium-Level
Neurologic Alert

In September 2004, MDPH received an alert through
HHAN about 23 persons who reported symptoms consistent
with a neurologic syndrome. These 23 cases occurred in
multiple areas with ZIP codes beginning with 021
(HVMA/HPHC population: 55,866 persons; U.S. Census
population: 1,183,247 persons). The estimated recurrence
interval was 405 days. Review of the line list determined that
20 (86.9%) of 23 patients had headaches. The clinical
responder reviewed the patient medical records and determined
that the patients’ clinical presentations did not suggest a genu-
ine cluster. The clinician posted the results of the chart review
in the discussion thread, allowing MDPH to halt the investi-
gation.

Case Scenario #2: Medium-Level
Lower Gastrointestinal Illness Alert

In October 2004, MDPH received an alert through HHAN
about 37 persons (age range: <1–>80 years) who reported lower
gastrointestinal illness. The cases occurred in multiple areas
with ZIP codes beginning with 021 (HVMA/HPHC popula-
tion: 55,866 persons; U.S. Census population: 1,183,247
persons). The estimated recurrence interval was 296 days.
MDPH staff contacted the clinical responder, who posted a
deidentified line list of cases in the discussion thread of the
alert. Review of the ICD-9 codes associated with the visit
indicated multiple symptoms and diagnoses, including
abdominal pain, diarrhea, gastroenteritis, and Clostridium
difficile. In the discussion thread, the clinical responder noted
that among the 18 towns included in the alert, symptoms
generally did not appear to be similar within each town. In
one town, four patients had abdominal pain, but the charac-
teristics of the pain varied. Epidemiologic review of the line-
list information ruled out the need for further clinical response,
and MDPH closed the investigation.

Case Scenario #3: High-Level
Respiratory Alert

In September 2004, MDPH received a high-level respira-
tory alert through HHAN involving five cases in a single ZIP
code (HVMA/HPHC population: 56 persons; U.S. Census
population: 7,480 persons). The estimated recurrence inter-
val was >200 years. The clinical responder posted the
deidentified line list in the discussion thread and noted that
two of the five patients were members of the same family and
that three patients had asthma. A second clinical responder
viewed the discussion thread and concurred with this assess-
ment. Epidemiologic review of the line-list information ruled
out the need for further clinical response, and MDPH closed
the investigation.

Discussion
The HHAN alert system meets multiple needs. It allows

routine, timely, and automated aggregation of clinical infor-
mation from a large, defined population; identification of
unusual clusters of illness; and communication about these
events to designated health department epidemiologists. It also
establishes a repository of limited clinical information (line
lists) about each case that contributes to a cluster and creates
a formal protocol for obtaining additional information about
cases at any time from a clinician in the delivery system who
has access to full-text medical records.

In implementing this system, MDPH recognized a need for
a more timely response to HHAN alerts. To address this criti-
cal need, MDPH epidemiologists need access to the limited
line-list information about cases that contribute to clusters.
In each of the scenarios described in this report, initial clinical
response time for review of line lists was approximately 2–4
hours, whereas epidemiologists were available to review HHAN
alert information within 30 minutes. To address this delay in
response time, the system is being revised so that deidentified
line lists of cases will be provided automatically to HHAN
along with the alert. This will allow MDPH staff to perform
an initial epidemiologic evaluation of the cluster without con-
tacting the clinical responder. The line list will include a unique
identifier, age range, sex, ZIP code, or town of residence,
ICD-9 codes, and a family identifier (to identify multiple cases
occurring in the same household). Receiving the information
in this way will reduce the need to involve clinical responders
so responders can focus on performing chart reviews and con-
ferring with health department personnel about additional
follow-up (e.g., contacting patients or advising clinicians to
be alert for additional cases). Only the first scenario described
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in this report required medical record review; epidemiologic
review of the line-list information in the other two scenarios
described ruled out the need for further clinical response.

Although the HVMA/HPHC catchments encompass
densely populated urban areas, implementing this system in
rural areas might present a problem with regard to line lists
being fully deidentified. Submitting patient-identifiable
information only when the health department and clinical
responders agree that a cluster is potentially of public health
concern minimizes the total amount of personal health-care
information provided routinely. Avoiding routine transfer of
information for health-care encounters that are not part of
clusters helps the delivery system assure patients about the
confidentiality of their health-care data. In addition, data are
protected by a secure web portal and by MDPH privacy and
confidentiality standards.

Once a potential cluster of public health concern is identi-
fied, obtaining a comprehensive line list that includes identi-
fiable patient information remains problematic. Lists cannot
be posted on HHAN because HHAN does not have a sec-
ond-tier identification mechanism; second-tier authentication
(e.g., a secure token or digital certificate) would give HHAN
an additional layer of security and permit posting of identifi-
able information. MDPH is also exploring using PHIN-MS
to securely transfer these data to a proposed Internet-based
disease reporting system.

Given the investments that have been made and the effort
involved in responding to alerts, the still-unanswered ques-
tion of the usefulness of syndromic surveillance to public health
can and should be addressed even before the issues discussed
in this report are fully resolved. As part of a multistate effort,
MDPH and its partners are undertaking an evaluation of
the sensitivity, predictive value-positive, timeliness, and cost-
benefit of these alerts and establishing databases of alerts and
outbreaks that include nontraditional data elements (e.g.,
person-time spent on investigation and interventions and
assessment of costs and benefits of receiving and responding
to each alert).

Conclusion
The HHAN alert system allows rapid, efficient alerting and

bidirectional communication among public health and pri-
vate-sector partners. Automatic generation of alerts saves time
because epidemiologists do not have to manually review data
each day to define clusters. Issues identified in the implemen-
tation of the system include the need to generate and make
accessible to public health signal-specific line lists, a problem
that is being addressed. Future MDPH plans include build-
ing the ability to send alerts to local boards of health to gain
local public health participation earlier in the investigation
process.

This experience with HHAN might be applicable to other
public health agencies, including those with access to
syndromic surveillance data. Evaluation of the effectiveness
and utility of this surveillance and reporting system in
improving public health is needed and is currently under way.
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Abstract

Introduction: Syndromic surveillance systems can be useful in detecting naturally occurring illness.

Objectives: Syndromic surveillance performance was assessed to identify an early and severe influenza A outbreak in Denver
in 2003.

Methods: During October 1, 2003–January 31, 2004, syndromic surveillance signals generated for detecting clusters of
influenza-like illness (ILI) were compared with ILI activity identified through a sentinel provider system and with reports of
laboratory-confirmed influenza. The syndromic surveillance and sentinel provider systems identified ILI activity based on
ambulatory-care visits to Kaiser Permanente Colorado. The syndromic surveillance system counted a visit as ILI if the pro-
vider recorded any in a list of 30 respiratory diagnoses plus fever. The sentinel provider system required the provider to select
“influenza” or “ILI.”

Results: Laboratory-confirmed influenza cases, syndromic surveillance ILI episodes, and sentinel provider reports of patient
visits for ILI all increased substantially during the week ending November 8, 2003. A greater absolute increase in syndromic
surveillance episodes was observed than in sentinel provider reports, suggesting that sentinel clinicians failed to code certain
cases of influenza. During the week ending December 6, when reports of laboratory-confirmed cases peaked, the number of
sentinel provider reports exceeded the number of syndromic surveillance episodes, possibly because clinicians diagnosed influ-
enza without documenting fever.

Conclusion: Syndromic surveillance performed as well as the sentinel provider system, particularly when clinicians were
advised to be alert to influenza, suggesting that syndromic surveillance can be useful for detecting clusters of respiratory illness
in various settings.

Introduction
The 2003–04 influenza season in the Denver metropolitan

area began earlier, was more severe than in recent years, and
included reports of pediatric mortality (1). Influenza outbreaks
occur each year, but uncertainty exists with respect to the tim-
ing and severity of these outbreaks. Effective surveillance is
critical for tracking the spread and severity of disease and for
determining the types and subtypes of viruses that circulate
during the influenza season.

Most public health organizations that monitor influenza use
the U.S. Influenza Sentinel Provider Surveillance Network, a
collaborative effort between CDC, state and local health
departments, and health-care providers (2). This system moni-
tors influenza activity in the general population. Tradition-
ally, the sentinel provider surveillance system operates from

October to mid-May each year. Each week, sentinel providers
report the total number of patient visits during the preceding
week and the total number of patient visits for influenza-like
illness (ILI) (2), stratified by age categories.

In recent years, substantial investments have been made in
syndromic surveillance systems. These systems allow rapid
detection of natural infectious disease clusters and of inten-
tional acts of terrorism (3–5). Previous studies have demon-
strated that syndromic surveillance can be useful in detecting
ILI (3,6,7). Investment in these systems might enhance pub-
lic health organizations’ ability to identify and react to infec-
tious disease outbreaks. This report compares the dates on
which a syndromic surveillance system and a Sentinel Pro-
vider Network, both in a single health-care delivery system,
identified unusual ILI activity associated with the onset of the
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fall 2003 influenza outbreak in Denver, as determined by
reported laboratory-confirmed cases of influenza.

Methods
A retrospective comparison of data collected by three ILI

detection systems (i.e., two ambulatory care–based and one
laboratory-based) was conducted during fall 2003. The two
ambulatory-care surveillance systems were situated in Kaiser
Permanente Colorado (KPCO), a closed panel, group-model
health maintenance organization serving approximately
380,000 members in the Denver-metropolitan area.

Laboratory-Based Surveillance
During the 2003–04 influenza season, laboratories in Colo-

rado reported positive influenza tests to the Colorado
Department of Public Health and Environment (CDPHE),
either via the Colorado Electronic Disease Reporting System
(CEDRS) or by fax or telephone; test results were displayed
graphically by week of report on CDPHE’s website (8). Weekly
electronic newsletters that included the county specific counts
of laboratory-confirmed influenza cases were generated and dis-
tributed to providers and public health officials. Laboratory-
confirmed cases were from the seven-county Denver-
metropolitan area, consistent with KPCO’s service area; how-
ever, test results were obtained by clinicians outside and within
KPCO*. Laboratory confirmation of influenza cases was based
on direct fluorescent antibody and viral culture results. Infor-
mation about other viruses in the community was obtained
from The Children’s Hospital (TCH) in Denver, Colorado,
which published counts of confirmed cases of respiratory syn-
cytial virus (RSV), adenovirus, parainfluenza, rhinovirus, and
pertussis (9). The source of these laboratory specimens was
pediatric patients who sought medical care at the TCH emer-
gency department with respiratory illness during October–May.

Syndromic Surveillance System
The CDC-sponsored National Bioterrorism Syndromic

Surveillance Demonstration Program, in which KPCO par-
ticipates, has been described previously (4,7,9–11). This
syndromic surveillance system is based on diagnostic codes
entered in patients’ electronic medical records (EMR) by pro-
viders during the routine delivery of ambulatory care. Diag-
nostic codes are mapped to 13 syndromes. To be counted as a
case of ILI, the encounter must have at least one of a set of

respiratory illness codes and have measured fever of at least
100ºF (37.8ºC) in the temperature field. If no value is present
in that field, an International Classification of Diseases, Ninth
Revision (ICD-9) primary, secondary, or tertiary code of fever
(code 780.6) must be provided. These data are extracted daily,
and counts by ZIP code are reported on a secure website in
both a graphical and a map format and on a daily basis. Sig-
nals of unusual clusters of ILI are identified by three statistical
models: small area method, spatio-temporal method, and
purely temporal method. These models are estimated daily,
and signals are reported based on pre-determined thresholds.

The small area method has been described previously (12).
The historical series of counts in each small area are used to
create a regression estimate of the count to be expected in
each area on each day, adjusting for seasonal, weekly, and secu-
lar trends, as well as holiday effects. The results are used to
create p-values for statistical significance. These estimates are
then corrected to account for multiple ZIP codes and used to
create recurrence intervals (RIs). RIs are defined as the num-
ber of surveillance days required to expect a count as unusual
as the one observed to occur exactly once by chance. This
method, also called the SMART (Small Area Regression and
Testing) scores method, is advantageous in that large values
imply more unusual results, and the multiple tests are adjusted
for in the same step. For this analysis, ZIP codes were used as
the small areas.

The spatio-temporal method is a space-time scan statistic,
implemented by using the public domain SaTScan software
(13). Day of the week, holidays, season, secular trends, and the
unique characteristics of each ZIP code area (e.g., the health-
seeking behavior of the population) were adjusted for by using
the results of the regression needed in the SMART scores method
(14,15). The space-time scan statistic searches all circular areas
incorporating one or more ZIP codes for the most unusual
grouping, as measured by a likelihood ratio statistic. A p-value
is calculated by using Monte Carlo methods (16). The maxi-
mum geographic size was set at 50% of the adjusted popula-
tion at risk (14) and the temporal length at 3 days.

The temporal method implemented the space-time scan
statistic by also using SaTScan, but required the area to
include 100% of the surveillance area, effectively removing
the spatial aspect of the test. In all other respects, it was iden-
tical to the space-time scan statistic used. For the space-time
and temporal scan statistics, the RI was calculated, although
no correction for multiple comparisons was required, and the
RI was the inverse of the p-value.

The full-text medical records of patients with ILI who were
counted as part of signals in September and October with RI
>30 days were reviewed by a clinician to assess mention
(present, absent, not mentioned) of ILI clinical characteris-

* Counties include Adams, Arapahoe, Boulder, Broomfield, Denver,
Douglas, and Jefferson.
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tics. These characteristics included headache, myalgia, or
muscle aches; malaise; cough; sore throat; ocular pain; photo-
phobia; dyspnea; and/or fever.

Sentinel Provider System
The sentinel provider system is overseen by CDPHE and is

part of the CDC funded Colorado Influenza Surveillance
Project (2). This ongoing project recruits providers each sea-
son to report weekly ILI activity from early-October through
mid-May. In 2003, KPCO submitted ILI data from its EMR
for approximately 250 primary care providers. The surveil-
lance system relies on a report of the total number of patients
evaluated and the number of those patients with ILI stratified
by age group and reported weekly. From these data, the per-
centage of patient visits for ILI is calculated. During the 2003–
04 influenza season, KPCO used an EMR system that
employed a controlled-medical-terminology vocabulary from
SnoMed (17) for the documentation of diagnoses. A patient
visit was reported to the sentinel provider system as ILI if the
physician actively selected either of the SnoMed terms “influ-
enza or influenza-like illness” within the
diagnosis section of the patient’s EMR.
Data were extracted weekly, based on
the specific SnoMed terms selected
rather than on the specific ICD-9 codes.
SnoMed terms were extracted from the
patient’s electronic chart for analysis
because in KPCO’s data warehouse
both “influenza-like illness” and “influ-
enza” were mapped only to ICD-9 code
487.1, which is “influenza, not other-
wise specified.” In addition to report-
ing the percentage of all visits for ILI,
this analysis stratified data by the spe-
cialty of the provider (i.e., pediatrics,
family practice, internal medicine, and
urgent care).

Although many visits captured by one
KPCO provider-based system were also
captured by the other, the two sets were
not completely overlapping. The senti-
nel provider system did not explicitly
require the patient to meet the fever
criterion of the syndromic surveillance
system. In addition, the syndromic sur-
veillance ILI system could capture vis-
its for which the provider did not assign
the influenza or ILI diagnosis, either
because the provider believed the cause

was not influenza or because the provider simply chose a dif-
ferent diagnosis, such as cough, upper respiratory infection,
or pneumonia.

Results
A single, positive laboratory-confirmed influenza case was

reported before October 25, 2003, in Denver. On November
10, CDPHE reported a substantial increase in reported
laboratory-confirmed cases, from seven during the week end-
ing November 1 to 69 during the week ending November 8.
A total of 447 laboratory-confirmed cases were reported dur-
ing the week ending November 15; cases peaked at 1,504
during the week ending December 6 (Figure). During that
week, TCH reported <15 positive tests each for RSV, parain-
fluenza, rhinoviruses, or pertussis.

When the daily syndromic surveillance data were aggregated
into comparable weekly units, the number of episodes that
met the syndromic surveillance definition for ILI exceeded
the number of sentinel provider reports until the week ending

FIGURE. Recurrence intervals from daily syndromic surveillance conducted at
Kaiser Permanente Colorado using three statistical alogirthms, weekly counts of
syndromic surveillance and a sentinel provider system both conducted at Kaiser
Permanente Colorado, and laboratory-confirmed influenza cases — Denver,
Colorado, October 2003–January 2004
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November 15. ILI episodes identified by the syndromic sys-
tem increased from 89 (week ending November 1) to 242
(week ending November 8) and to 556 (week ending Novem-
ber 15). For the sentinel system, identified cases increased from
11 (week ending November 1) to 100 (week ending Novem-
ber 8) and to 567 (week ending November 15). For both the
syndromic and sentinel systems, the number of episodes and
cases peaked the week ending November 22, with 859 epi-
sodes and 1,304 cases, respectively (Figure).

The number of new clinical episodes identified in the
ambulatory-care setting that met the syndromic surveillance
system definition of ILI are illustrated, as well as signals with
RIs >30 days for the three signal detection algorithms (Figure).
Signals of at least this magnitude occurred on 1 day in Sep-
tember and 2 days in October; during this 2-month period,
six events would have been expected by chance (1 per method
per 30 days). Signals of at least this magnitude were then
observed on November 1 and every day during November 6–
December 1. RIs exceeded 10,000 (expected to occur by
chance no more often than once in 27 years) on every day
during November 8–30.

Among the three signal detection algorithms, the SMART
score generated RIs of >30 days on 3 days during November
1–8. The SMART scores also generated RIs of 200–9,000 on
8 days and RIs of >10,000 on 9 days during November 8–
December 6. Both the spatio-temporal and purely temporal
SaTScan generated RIs of >30 days beginning November 7,
with RIs of >10,000 days for 23 days during November 8–
December 6.

Manual review of the medical records for the 20 patients
who were part of the September and October ILI signals gen-
erated by either SMART scores or SaTScan indicated that all
20 patients had fever (100ºF [37.8ºC]), 15 had cough or
nasal congestion, and 17 had cough, nasal congestion, or sore
throat. Chart abstraction also indicated that more than half
of the patients associated with the early signals (i.e., 12 of
20 patients in signals before November 1, 2003, had cough
and fever, the combination most predictive of influenza (18).
Two or more of the four signs that are most commonly
reported among patients with confirmed influenza A diag-
noses and consistent with CDC’s case definition (i.e., fever,
cough, nasal congestion, and sore throat), were reported in
15 of 20 patients (19–21).

The average weekly sentinel surveillance data from visits
from all KPCO primary care providers first indicated an
increase in ILI above 1% of visits during the week ending
November 15. During the dominant weeks of the outbreak,
weeks ending November 8–December 6, substantial variation
was observed in the sentinel provider group by primary care

specialty. During the week of November 22, the Pediatrics
department providers assigned an ILI diagnosis for >8% of
visits, compared with <2% of visits in the Internal Medicine
department.

Discussion
Although the ambulatory-care–based syndromic surveillance

system described in this report was designed principally to
detect terrorism events, it would have automatically gener-
ated ILI alerts at the same time a meaningful number of
laboratory-confirmed cases were reported. The sentinel pro-
vider also demonstrated increased activity. The syndromic sur-
veillance and sentinel provider systems shared important
features. Both obviated the need for clinicians to participate
directly in reporting because the information recorded as part
of routine documentation of clinical encounters was extracted
from an EMR. For this reason, this is a best-case implementa-
tion of sentinel provider surveillance. A difference between
the syndromic and sentinel systems is that the syndromic sur-
veillance system is more standardized it does not require clini-
cians to make an explicit diagnosis of influenza or ILI. Instead,
influenza can be defined by signs and symptoms the provider
might not recognize or code as influenza. Because of this, cli-
nicians were not reminded to use the influenza codes; out-
reach to clinicians was a prominent feature of the sentinel
provider program. This difference would be particularly
important for surveillance of conditions that are not expected
at a particular season or that are not readily recognized by
clinicians; examples include the early phases of many terrorism-
related illnesses or severe acute respiratory syndrome.

Another difference is that the sentinel provider system did
not explicitly require the patient to meet the fever criterion of
the syndromic surveillance system. In addition, the syndromic
surveillance ILI system could capture visits for which the pro-
vider did not assign the influenza or ILI diagnosis, either
because the provider believed the cause was not influenza or
because the provider simply chose a different diagnosis, such
as cough, upper respiratory infection, or pneumonia.

The findings of this report suggest that clinicians’ likeli-
hood of choosing an “influenza” diagnosis might have been
subject to external information about the presence of influ-
enza in the community (i.e., media reports and public health
alerts). During the week ending November 8, the number of
ILI episodes identified by KPCO’s syndromic surveillance sys-
tem increased by 153, whereas the number of cases identified
by the sentinel provider system increased by 89. Given the
increase in reported laboratory-confirmed cases and the lack
of evidence that other respiratory viruses were circulating in
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the metropolitan area during that week, a substantial fraction
of the difference represents cases that were missed by the sen-
tinel provider system. In contrast, after an outbreak was rec-
ognized, the number of sentinel provider reported cases (1,304)
substantially exceeded the number of new syndromic surveil-
lance episodes (859). This is also the week that the Infectious
Disease Department sent reminders to KPCO primary care
providers asking them to use the KPCO specific ILI coding
terms for suspected influenza cases. Most of this difference in
the counts of new episodes versus cases (445) is likely to be a
result of clinicians’ assigning an influenza diagnosis without
documenting fever.

The findings also demonstrate the utility of the signal
detection algorithms that were used to analyze the syndromic
surveillance data. They provided unequivocal signals, despite
the syndrome definition being nonspecific, as evidenced by
the baseline rate of nearly 100 new episodes per week before
influenza became widespread in the community. These meth-
ods might also be useful for detecting unusual clusters of other
endemic infectious diseases, despite being designed to ignore
typical seasonal increases in ILI episodes.

Theoretical considerations suggest that the spatio-temporal
approach has the best combination of sensitivity and specific-
ity for detecting events that occur in more than one adjoining
small area (e.g., more than one ZIP code that is under surveil-
lance), whereas a purely temporal approach is best when the
events are scattered throughout all regions under surveillance.
The size of the 2003 influenza outbreak overwhelmed these
theoretical differences among the algorithms, and all three—
SMART score, spatio-temporal, and purely temporal
SaTScan—provided strong signals that coincided with the
increase in laboratory-confirmed cases of influenza.

All of the signal detection algorithms used in the syndromic
surveillance adjusted for typical seasonal fluctuations in ill-
ness, including ILI, to be able to detect a terrorism event against
a background of normal patterns of morbidity. Because the
influenza season arrived earlier than usual facilitated its iden-
tification in November. If identification of seasonal respira-
tory illness is a goal of such a syndromic surveillance system,
it will be necessary to develop signal detection algorithms that
are optimized for this purpose.

Conclusion
Automated syndromic surveillance identified unusual ILI

activity early, as did the traditional sentinel provider surveil-
lance and reported laboratory-confirmed influenza cases,
despite being designed to detect terrorism rather than natural
outbreaks of diseases such as influenza. The syndromic sur-

veillance system’s ability to use uniform criteria for case iden-
tification might be an advantage in situations in which clini-
cians are not alerted to the potential presence of a problem.
Because the syndromic surveillance system is a passive sys-
tem, this might limit bias in the data collection that might be
associated with external factors such as media reports and
public health alerts in contrast to sentinel provider recogni-
tion. In addition, the three different signal detection algo-
rithms used by the syndromic surveillance system proved useful
and might have broader applicability for surveillance of other
infectious diseases.
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Abstract

Introduction: Syndromic surveillance’s capability to augment existing surveillance for community-acquired gastrointestinal
disease is unknown.

Objective: The objective of this study was to evaluate the capability of a syndromic surveillance system to detect outbreaks of
gastrointestinal disease.

Methods: A retrospective analysis was conducted comparing ambulatory care data from a health plan with a set of 110
gastrointestinal-disease outbreaks identified by the Minnesota Department of Health during 2001–2002. Unusual clusters of
illness (i.e., signals) in the health-plan data were identified by analyzing daily counts of gastrointestinal illness using an
adjusted space-time scan statistic. Concordance was defined as <5 km between outbreak and signal and the signal occurring
within 1 week of the outbreak.

Results: During 104 weeks, the number of signals was roughly what would have been expected by chance, suggesting that the
modeling did a good job of estimating the expected counts of illness and that false alarms would not have occurred much more
often than the number predicted at the various thresholds. During the same period, the health department identified 110 eligible
gastrointestinal outbreaks. Apparent associations of the three statistically most unusual concordant signals with outbreaks of viral
or bacterial gastrointestinal illness were ruled out by the health department on the basis of detailed knowledge of the circumstances
and low numbers of affected persons seeking medical care.

Conclusion: No previously known gastrointestinal outbreaks were identified by this surveillance system. However, relatively
few recognized outbreaks resulted in patients seeking medical care, and the sensitivity of this system to detect outbreaks of real
significance to public health remains to be determined. Prospective evaluation probably will be required to understand the
usefulness of syndromic surveillance systems to enhance existing disease surveillance.

Introduction
The increasing availability of electronic health data and

interest in biologic terrorism preparedness have accelerated
the development of new public health-related disease surveil-
lance systems, including systems intended to provide early
detection of unusual clusters of illness before the etiology of
the cases is known (1–4). This approach is sometimes referred
to as syndromic surveillance. These systems could possibly
augment public health departments’ traditional systems of sur-
veillance for naturally occurring disease, both through early
detection and by providing better overall understanding of
illness patterns. However, their usefulness for this purpose has
not been convincingly demonstrated (5), and their perfor-
mance needs to be evaluated (6), particularly in light of the

resources required to establish and maintain these new sur-
veillance systems and to respond to false or uninteresting alarms
they might generate.

Ultimately, these systems will be evaluated on the basis of
their ability to provide useful information to guide public health
practice. One way to assess this ability is to compare historic
information from novel surveillance systems to actual morbid-
ity reported to public health departments. In this report, infor-
mation about unusual clusters of gastrointestinal illness obtained
in the ambulatory-care setting was compared with information
about outbreaks that a state health department obtained through
routine disease surveillance. Gastrointestinal illnesses were
selected because these are the most common discrete outbreaks
that health departments investigate.
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Methods

Surveillance System Overview
The surveillance system tested here monitors and analyzes

daily counts of new cases of illness assigned by primary-care
providers during the routine delivery of care. All participating
health-care organizations use electronic medical records,
allowing near real-time extraction of diagnosis information in
a manner that is transparent to clinicians. This system has
been described previously (7–10). The system includes data
from health-care organizations in Colorado (Denver metro-
politan area), eastern Massachusetts (Boston metropolitan
area), Minnesota (Minneapolis-St. Paul metropolitan area),
and central Texas (Austin area), and information from a nurse
telephone triage company that operates in all 50 states.
Together, these systems include approximately 20 million per-
sons. Typically, health-care organizations identify encounters
with International Classification of Diseases, Ninth Revision-
coded diagnoses of interest that have occurred during the pre-
ceding day. They use open-source software to assign these
encounters to syndromes defined by the CDC–Department
of Defense working group (11) to identify and ignore repeat
visits and to assign new episodes of illness to the ZIP code
where the affected persons live.

Health Plan Data Source
and Processing

This report uses information about gastrointestinal illnesses
in Minnesota, where the state health department provided data
on a substantial number of recognized outbreaks for com-
parison. Ambulatory-care information during February 2001–
January 2003 originated from HealthPartners, a 240,000-
member health plan that services approximately 8% of the
population in the Minneapolis-St. Paul metropolitan area in
ZIP codes beginning with 550, 551, 553, 554, or 563.

Signals of unusual clusters of gastrointestinal illness were
identified by analyzing the daily counts of gastrointestinal ill-
ness with a space-time scan statistic (12), adjusting for day of
the week, holidays, season, secular trends, and the unique
characteristics of each ZIP code area (e.g., its population’s
health-seeking behavior) by means of a generalized linear mixed
model (GLMM) (13,14) on the basis of past data. The space-
time scan statistic is a likelihood-ratio test statistic that can
detect clustering of cases in space and time. The “window”
through which it “looks” can be visualized as a cylinder of
variable size that moves across both space (with its circular
base) and time (with its height). The maximum geographic
size of the window was set at the size covering 25% of the

adjusted population at risk (14) and the temporal length at
1 day.

To reflect the degree to which characteristics of clusters
(i.e., size for syndrome, location, and date) deviated from
the expected, an index of statistical aberration called the
“recurrence interval” was used (13–15). This recurrence
interval is the expected number of days of surveillance needed
for one such cluster of at least the observed magnitude to
occur in the absence of any actual outbreaks and is the inverse
of the nominal p value from the space-time scan statistic.
Therefore, the larger the recurrence interval, the more
unusual the cluster of illness. Because the maximum possible
p value is 1, the minimum possible recurrence interval is 1
day, meaning one would expect clusters of that magnitude
every day.

The period analyzed was February 1, 2001–January 31,
2003. The statistical evaluation emulated a prospective sur-
veillance system with data collection beginning on January 1,
2001. Statistical evaluation started on February 1, 2001,
using data from January 2001 to calculate the expected counts.
For every succeeding month, the expected counts were recal-
culated for each ZIP code area with at least one case as of
then, incorporating the additional month’s worth of data. The
analyses in March 2001 used data from January–February
2001, the analyses in April 2001 used data from January–
March 2001, and so on until the final month in the observa-
tion period (January 2003), whose analyses used data from
January 2001–December 2002. The statistical evaluation prob-
ably improved over time.

Information on Outbreaks From Health
Departments, Exclusion Criteria

Information about gastrointestinal illness outbreaks from
2001 through early 2003 was provided by the Minnesota
Department of Health. These outbreaks had been detected by
the department’s foodborne and other surveillance systems and
have been described separately (16). Most of these outbreaks
involved foodborne transmission. Information included the
ZIP code of the outbreak, the number of recognized cases,
the date of presumed first exposure to the pathogen, the date
of first onset of illness, the date the illness or outbreak was
reported, and the date on which the health department initi-
ated its investigation.

From a list of 206, excluded were 1) outbreaks occurring
outside of the catchment area of HealthPartners (i.e., not
occurring in ZIP code areas beginning with 550, 551, 553,
554, or 563); 2) all institutional outbreaks (e.g., those in uni-
versities, prisons, and long-term care facilities) because affected
persons would not have obtained care from HealthPartners;



Vol. 54 / Supplement MMWR 159

and 3) those events accompanied in the database by a com-
ment of “no investigation” or “not an outbreak.” This remain-
ing list included 110 eligible outbreaks.

When specific dates were unavailable, other dates were sub-
stituted for purposes of the comparison with the
HealthPartners data: three outbreaks lacked first exposure date,
so date of first onset was substituted; seven outbreaks lacked
the date the investigation was initiated, so the report date was
used for three and the date of first onset of symptoms was
used for the remaining four. All of these substitutions would
have reduced the chances of a finding a match with syndromic
surveillance signals because they all shortened the time-
window for comparison.

Comparison of Syndromic Surveillance
Signals and Known Outbreaks

The correspondence between outbreaks of gastrointestinal
illness reported by the health department and signals detected
in the ambulatory-care data were examined. Signals were
defined as clusters with recurrence intervals greater than or
equal to each of six threshold values ranging from 2 weeks
through 2 years. The date and ZIP code areas of outbreaks
identified by public health authorities were compared with
those signals detected in the ambulatory-care data. Signals and
known outbreaks were considered concordant if they satisfied
both geographic and temporal proximity requirements. The
geographic requirement stipulated that the closest point in
the significant ambulatory-care signal area and the centroid
of the outbreak ZIP code area be within 5 km of each other.
This distance was selected to allow some chance that affected
persons, effectively located at the centroid of their ZIP code
of residence, would be linked to an outbreak placed at the
centroid of the ZIP code where exposure was thought to
occur (e.g., a restaurant). The timing requirement, set a priori,
was that the signal in the ambulatory-care data occur in the
period from 1 week before the first known exposure of a case
in the outbreak determined by the health department to
1 week after the investigation was initiated. The rationale for
this interval was that some outbreaks might have started
before the first exposure known to the health department and
might have continued for at least several days beyond the start
of the health department’s investigation. This temporal crite-
rion might have been overly generous. For example, in point-
source outbreaks where first-exposure dates were known with
certainty, a more appropriate approach might have been to
eliminate from consideration any putative matching signals
occurring during the week before the first exposure.

If a signal was concordant with more than one outbreak,
only its association with the geographically closest outbreak
was kept. All the substitutions for missing exposure or inves-
tigation dates would have reduced the potential for concor-
dance by decreasing the eligible period scanned and would
have reduced the timeliness of any concordant signal by using
an earlier comparison date in lieu of the investigation start-
date.

Statistical Analysis of “Hits”
To determine whether more hits (signals concordant with

outbreaks) occurred than would be expected by chance in the
analysis of the Minnesota outbreaks, a permutation-based test
(17) was used to ascertain the distribution of the number of
hits to be expected by chance alone. The null hypothesis in
such an approach is that no relation exists between the out-
breaks found by the health department and the signals found
by the syndromic surveillance system, except by chance co-
occurrence. Under the null hypothesis, it was not assumed
that the signals would be either evenly distributed across the
map (because of variations in density of the population at
risk) or evenly distributed over time (because of known sea-
sonal patterns in illness). Therefore, the null hypothesis is that
the space-time scan statistic signals occurred randomly (not
evenly) in space-time, conditioned on the purely spatial and
purely temporal empirical distributions. The alternative
hypothesis is that signals occur in close proximity to the known
outbreaks in both space and time.

The temporal and spatial components of the health-plan–
based syndromic surveillance signals were randomly permuted
(i.e., each random data set included the same collection of
signal days and the same collection of signal locations and
sizes, but the pairing of the temporal and spatial attributes
was randomized or “permuted”). Therefore, the temporal and
spatial elements were no longer associated; however, the two
spatial attributes, location and size, always stayed together.
For each of 999 randomly permuted data sets, the number of
hits with the health department outbreaks was calculated in
exactly the same way as for the real signals, and then all 1,000
numbers were ordered from both the real and random data
sets. If hits were random, then the rank of the number of hits
from the real data would be equally likely to be any number
from one to 1,000, and the rank of the number of hits from
the real data would be in the top 5% (or x%) 5% (or x%) of
the time. This provides a p value for the null hypothesis that
the observed number of concordant signals arose solely
by chance, defined as p = rank / (number of random datasets
+ 1) (18). The test is not meaningful where the number of
signals is <5.
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Results

Syndromic Surveillance Signals
During two calendar years covering approximately 1.3 mil-

lion person-years, one gastrointestinal syndrome signal was
identified with a recurrence interval of at least 2 years and 58
signals with a recurrence interval of at least 2 weeks (Table 1).
The number of signals was only marginally more than what
would have been expected by chance and not statistically sig-
nificantly more than expected for any of the thresholds (one-
sided test, p = 0.22 for RI = 2 weeks, p>0.05 for all), raising
the question of whether any of these signals reflected a true
outbreak. The median number of health-plan cases in these
signals was four to nine; the median radius ranged from 0 km
(with one ZIP code area) to 10 km (with a median of 15 ZIP
code areas).

Known Outbreaks
During the same 2-year period, the health department iden-

tified 110 eligible gastrointestinal outbreaks, with a median
number of seven recognized cases (Table 2). Foodborne out-
breaks were most common, followed by person-to-person and
environmental sources. Approximately half of the outbreaks
were caused by viral pathogens such as caliciviruses (or
noroviruses, a genus within the calicivirus family), which gen-
erally cause self-limiting illness. The patients in most of the
outbreaks of gastrointestinal illness investigated by the Min-
nesota Department of Health rarely seek professional health
care.

TABLE 1. Number and size of signals of gastrointestinal illness detected in HealthPartners patients, by recurrence interval, based
on a 1-day adjusted space-time scan statistical technique — Minnesota, February 2001–January 2003

No. signals Median no.
Recurrence No. expected by cases in Median Median no.
interval signals chance health plan radius (km) ZIP codes

>2 years 1 1 4 0.0 1
>1 year 3 2 5 0.0 1
>6 months 6 4 9 10.0 15
>2 months 18 12 9 7.3 14
>1 month 30 24 9 8.9 14
>2 weeks 58 52 9 8.2 9

TABLE 2. Selected characteristics of the eligible outbreaks of gastrointestinal illness identified by the Minnesota Department of
Health, February 2001–January 2003

Range and median number
Mode of No. Range and median of of days between symptomatic
transmission            Etiology outbreaks recognized cases case and initiation of evaluation

Food Calicivirus, norovirus, astrovirus, other viral 55 Range: 2–76 Range: 0–33
gastroenteritis Median: 8 Median: 4

Clostridium perfringens 6 Range: 3–6 Range: 0–5
Median: 4 Median: 1.5

Bacillus cereus or Staphylococcus aureus 6 Range: 4–17 Range: 1–18
Median: 10.5 Median: 2

Salmonella 3 Range: 2–46 4, 23 (one missing)
Median: 29

Escherichia coli O157:H7 2 3, 5 13 (one missing)

Campylobacter 1 4 7

Scrombrotoxin 1 2 8

Unknown 18 Range: 2–10 Range: 0–16
Median: 3 Median: 2.5

Person-to-person Calicivirus or norovirus 6 Range: 9–720 Range: 0–30
Median: 23 Median: 2

E. coli O157:H7 3 Range: 3–27 3, 5 (one missing)
Median: 25

Salmonella 1 59 5

Unknown 5 Range: 3–21 Range: 0–10
Median: 11 Median: 1

Recreational water E. coli O157:H7 1 20 16

Unknown 2 4, 11 1, 78
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Comparison of Syndromic Surveillance
Signals and Known Outbreaks

The number of hits increased with more inclusive thresh-
olds. One (of one) signal was concordant with an outbreak at
the 2-year threshold; 17 (29%) were concordant with out-
breaks at the 2-week threshold (Table 3). Of the 110 out-
breaks, one had a concordant signal at the 2-year threshold;
this number increased to 14 (13%) at the 2-week threshold.
The probability that the observed number of concordant sig-
nals occurred by chance alone was in no instance significant.

The three unique instances of concordance between signals
and outbreaks at the more restrictive thresholds of 6 months
involved foodborne outbreaks of Bacillus cereus and probable
calicivirus (with 17 and 13 ill, respectively) and a person-to-
person outbreak of suspected viral gastroenteritis (17 ill).
However, all three were ruled out as true associations by the
health department on the basis of the circumstances and the
low numbers of affected persons seeking medical care.

Discussion
When evaluating a syndromic surveillance system, the two

most important features are the number of false signals and
the number of true outbreaks detected. With respect to the
former, the number of signals was roughly what would have
been expected by chance alone, suggesting that the modeling
did a good job of estimating the expected counts of illness
and that false alarms would not have occurred much more
often than the number predicted at the various thresholds.
This implies that health departments need not be concerned
about unexpectedly high numbers of false alarms from this
surveillance system and the consequent waste of resources to
investigate them.

Of the previously known outbreaks of gastrointestinal ill-
ness, none were found with certainty in this retrospective study.
The three most unusual signals (with recurrence intervals of
at least 6 months) that appeared linked to outbreaks were ul-
timately deemed unrelated by the health department. Instances

of concordance between signals and outbreaks where the sig-
nals where less strong (those with recurrence intervals of <6
months) were not investigated in depth, so the plausibility of
a true connection in those cases is unknown, although it could
be clarified through additional investigation of outbreak data
and patient-level data held at the health plan.

Sensitivity of the system was low at all thresholds. Among
the possible reasons for this finding is that approximately two
thirds of foodborne outbreaks in Minnesota are caused by
caliciviruses, which lead to a self-limiting illness for which the
affected typically do not seek medical care. Other possible
reasons for low sensitivity include the somewhat low propor-
tion (about 8%) of the Twin Cities population in the surveil-
lance system and the fact that points of exposure (e.g., a
lunch-time restaurant) might be far from the ZIP codes of
residence on which the signal detection method is trained.

Of the unlinked signals, although many might have been
false alarms, others might have represented undetected out-
breaks. For example, outbreaks where no laboratory specimens
are submitted can elude Minnesota’s enhanced surveillance
systems. Distinguishing between these two was not possible
in this study because such a determination requires case-by-
case investigation, possibly including specimen collection and
interviews, which would not likely be informative so long
after the events.

Conclusion
Prospective evaluation is the best way to understand the

usefulness of syndromic surveillance systems to enhance
existing public health surveillance because it allows immedi-
ate case-by-case investigation of exposure histories and course
of illness and the collection of clinical specimens. Performance
probably will vary depending on the type of acute illness in
question because of differences in such characteristics as pre-
dominant mode of transmission, speed of transmission,
severity of illness, and whether the disease is reportable to state
or local health departments. In any prospective evaluation, it
will be important to determine not only how often signals

TABLE 3. Relation between signals and 110 known outbreaks of gastrointestinal illness, by recurrence interval, based on 1-day
adjusted space-time scan statistical technique — Minnesota, February 2001–January 2003

No. signals concordant No. of the 110 outbreaks
with an outbreak Probability that observed with a concordant signal

Recurrence interval  (apparent predictive value positive)  no. occurred by chance (apparent sensitivity)

>2 years 1/1 (100%) NA* 1 (1%)
>1 year 2/3 (67%) NA* 2 (2%)
>6 months 3/6 (50%) 0.63 3 (3%)
>2 months 5/18 (28%) 0.87 5 (5%)
>1 month 10/30 (33%) 0.96 9 (8%)
>2 weeks 17/58 (29%) 0.98 14 (13%)
* The permutation test is not meaningful where the number of signals is <5.
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and true outbreaks are associated with each other but how
many detected outbreaks are of public health significance, how
many of those are also picked up by existing public health
surveillance systems, and how many of those doubly detected
outbreaks are identified earlier by the syndromic surveillance
system.
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Abstract

Introduction: In October of 2001, after letters processed in Trenton, New Jersey, resulted in multiple cases of anthrax,
emergency departments (EDs) in New Jersey experienced an increase in visits from patients concerned about possible exposure
to agents of biologic terrorism. Information about the effect of an actual biologic terrorism attack on the emergency depart-
ment population might be useful in the design of biosurveillance systems, particularly with regard to their performance during
the mitigation phase that occurs after an attack. In addition, such information might help identify issues that arise regarding
the public health response in the ED setting.

Objectives: The objectives of this report were to identify and characterize ED visits, by patients concerned with exposure to
biologic terrorism agents, in selected New Jersey hospitals after the anthrax attack in fall 2001.

Methods: A retrospective cohort design was used in this study. The setting was 15 New Jersey EDs within a 55-mile radius of
Trenton. Participants were consecutive patients evaluated by ED physicians for the following four periods in 2001: 1 month
before September 11; 1 month after September 11; 1 month after October 11; and for the second month after October 11.
Percentages of visits were calculated with a concern for exposure (CE) visits by using International Classification of Diseases,
Ninth Revision (ICD-9) descriptors: Feared Complaint–No Diagnosis (ICD-9 code v65.6) and Screening for Infectious
Disease (ICD-9 code v75.9) for all hospitals and for Trenton versus non-Trenton hospitals as a percentage of ED visits. Charts
were reviewed by using a structured data form.

Results: A total of 225,403 ED visits occurred during the 4 months, of which 698 were CE visits. The percentages of CE
visits for the four periods were 0.06%, 0.06%, 0.92%, and 0.10%, respectively. For the peak third period, the percentage was
increased for the two Trenton hospitals, 1.81%, versus 0.82% for the 13 non-Trenton hospitals. This report is a summary of
the 508 visits associated with concern for anthrax exposure during the peak third period: 47% reported exposure to powder,
13% were postal workers, 4% received chest radiographs, 65% had a nasal swab for anthrax, 13% had ED decontamina-
tion, and 32% received antibiotics.

Conclusion: An increase in CE visits occurred during the 1-month period after October 11, 2001. During the peak month,
a higher increase occurred in Trenton EDs. Considering the substantial variation in diagnostic evaluation and treatment,
readily available guidelines are needed.

Introduction
Media coverage after the September 11, 2001, attacks

included warnings regarding possible biologic terrorism. On
October 4, 2001, less than 1 month after the terrorist attacks
on the World Trade Center and Pentagon, the condition of a
man in Florida was diagnosed as respiratory anthrax; he had
no known exposure risk factors (1). On October 12, a case of
cutaneous anthrax was reported in New York City. At NBC
News, a person was exposed to a letter containing a suspi-
cious powder. The Federal Bureau of Investigation (FBI)

reported that four recovered envelopes containing Bacillus
anthracis spores were postmarked at the U.S. Postal Service
Trenton Processing and Distribution Center in Hamilton
Township, New Jersey. The investigation revealed that the
Hamilton Township Postal Facility handled two envelopes
containing B. anthracis that were mailed to news organiza-
tions in NYC on September 18, 2001, and two envelopes
mailed to U.S. Senate offices in Washington, DC, on
October 9, 2001.
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Concerns increased in New Jersey on October 18, when
two postal workers from the Trenton facility were confirmed
to have cutaneous anthrax. These exposures were presumed
to represent contact with letters or cross-contamination from
letters containing B. anthracis mailed from this location. A
total of 22 confirmed or suspect cases of anthrax infection
occurred; 11 were inhalation cases, and 11 were cutaneous
cases. Five persons died (2).

Multiple patients sought medical treatment at New Jersey
emergency departments (EDs) with concerns of possible
exposure (CE visits) after the media reports of October 12,
2001. Records of these visits, including physician notes, were
documented in an electronic format.

Syndromic surveillance techniques have been previously
reported by using a large existing computerized database of
ED visits (3). Techniques included using International Classi-
fication of Diseases, Ninth Revision (ICD-9) groups to identify
a subgroup of patient visits, examining time-series volume data
for these groups, and using electronic chart reviews, to exam-
ine characteristics of the subpopulation identified. Limited
information has been written regarding the use of such tech-
niques in the aftermath (mitigation phase) of an actual bio-
logic terrorist attack.

The objectives of this report were 1) to use these techniques
to determine the temporal and geographic aspects of CE vis-
its at 15 New Jersey EDs during the period surrounding the
anthrax attacks of 2001 and 2) to characterize the clinical pre-
sentations, diagnostic evaluations, and treatments provided,
based on a chart review of the electronic medical record.

Methods
A retrospective analysis of a computerized database was per-

formed of ED visits from one emergency physician group staff-
ing 15 New Jersey EDs within a 55-mile radius of Trenton.
The annual ED volume was 20,000–65,000 patients. These
hospitals included urban and suburban teaching and nonteach-
ing hospitals and two hospitals in Trenton. These hospitals
comprise approximately 30% of all northern New Jersey hos-
pitals and receive an estimated 35%-40% of all ED visits in
northern New Jersey. Consecutive patients evaluated by ED
physicians August 11–December 11, 2001, were included. The
ED physicians evaluate 85%–95% of the patients at these EDs.
Private physicians evaluate the remainder of the patients. The
physicians’ billing department coded the physicians’ charts
according to the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) codes. All cod-
ers were located at one central facility and trained and super-
vised similarly. Patients were included as concern for exposure

(CE) visits if the primary ICD diagnosis included the follow-
ing ICD-9 descriptors: Feared Complaint–No Diagnosis (ICD
code v65.6) and Screening for Infectious Disease (ICD-9 code
v75.9).

Percentages of CE visits were calculated for all hospitals and
for Trenton versus non-Trenton hospitals as a percentage of
ED visits. The following four periods in 2001 were used in
the calculation: 1 month before September 11; 1 month after
September 1, 1 month after October 12; and the second month
after October 12. These periods were chosen to offer suffi-
cient time to establish a baseline percentage before September
11 and to include a similar period after the anthrax cases
decreased to the baseline percentage. The student t test and
the Chi-square were used to test for statistical significance with
alpha set at 0.05. The Bonferroni correction was used when
multiple comparisons were made.

A chart review was conducted by using a structured data
form. The details were provided of the chart review for the
peak third period for those visitors who had a concern for
anthrax. The details characterized the mechanisms of expo-
sure, symptoms, diagnostics, and treatments. The Internal
Review Board at Morristown Memorial Hospital Residency
in Emergency Medicine, Morristown, New Jersey, approved
the study.

Results
For the four periods, 225,403 ED visits occurred, of which

698 (0.3%) were CE visits. The percentage of CE visits versus
time has been illustrated (Figure 1). A sharp increase occurred
on October 12, and a decrease occurred near the baseline 1
month later. The increase on October 12, coincides with the
first media news reports of an anthrax case in NYC. Of the
698 CE visits for the four monthly periods, 561 (80%)
occurred during the 1-month period after October 12.

The percentages of CE visits for the four periods, compared
with total visits were 0.06%, 0.06%, 0.92%, and 0.10%,
respectively. When the first period is used as the baseline, only
the third period indicated a statistically significant increased
percentage of CE visits (0.92%; p<0.001). For the peak third
period, the percentage was significantly increased for the two
Trenton hospitals, compared with the 13 non-Trenton hospi-
tals (1.81% versus 0.82%; p<0.001).

Periods 1 and 2 represent periods before the anthrax attacks
occurred and therefore indicate baseline characteristics for the
patients seeking medical treatment for CE. The chart review
in Periods 1 and 2 indicated that the majority of the visits
(89%) involved concern regarding one of the following five
categories: 1) fear of foreign bodies without findings; 2) motor-



Vol. 54 / Supplement MMWR 165

vehicle accidents; 3) falls without injury; 4) concern for sexu-
ally transmitted disease; and 5) possible toxic ingestion/
exposure with none identified. The first case-patient who
sought medical treatment for CE to anthrax occurred on
October 9.

Of the 57,981 ED visits during the third peak period, 561
visits were identified for CE by the ICD-9 codes (CE visits),
of which 508 were related to a concern for anthrax (CA) visit.
The details of the chart review for the peak third period are
summarized (Tables 1–4). These results summarize the 508
patient visits that were related to a concern for anthrax.

Demographic information is reported for the CA visits dur-
ing the peak period, October 12–November 11, 2004
(Table 1). Females comprised 277 (55%) of the 508 CA visits
during this period. The mean age in years was 39 ± 16.
Employees of the post office accounted for 64 patients, and
32 were hospital employees.

Based on information charted by the ED physi-
cian, 19% of all patients sought help before going to
the ED. Seeking help included contacting their pri-
mary physician, police department, FBI, postmas-
ter, or job supervisor. A total of 6% reported their
concern to the department of public health. In addi-
tion, 17% received assistance before going to ED,
which included receiving an antibiotic prescription
from their primary physician, having their suspected
material sent for analysis, and being decontaminated.

The mechanisms of exposure for the CA patients
during the peak period are presented (Table 2). Of
the 508 cases, 120 had documentation of working in
or visiting a post office. A total of 128 (25%) pa-
tients did not have a history suspicious for exposure
to anthrax or the exposure status was not reported.
These visits primarily consisted of complaints of fe-
ver, cough, chest pain, rash, insect bites, and myalgias.
An additional primary complaint was from persons

FIGURE 1. Percentage of visits for ICD-9* descriptors “Feared
Complaint–No Diagnosis” and “Screening for Infectious Disease,” as
a percentage of total daily visits† at 15 emergency departments —
New Jersey, August 11–December 11, 2001
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* International Classification of Diseases, Ninth Revision. The ICD-9 code for Feared
Complaint–No Diagnosis is v65.6. The ICD-9 code for Screening for Infectious Disease
is v75.9.

†N = 225,403 emergency department visits.

TABLE 2. Mechanisms of concern for exposure, by anthrax
visits to 15 emergency departments — New Jersey, October 12–
November 11, 2004*
Concern for exposure No. (%)

Worked in post office with known anthrax 20 (4)
Visitor to post office with known anthrax 41 (8)
Worked in post office with no known anthrax 44 (9)
Visitor to post office with no known anthrax 15 (3)
Exposure to powder associated with a letter 136 (27)
Exposure to powder not associated with a letter 103 (20)
No exposure or status unknown 128 (25)

* N = 508.

TABLE 3. Symptoms and diagnostics associated with concern
for anthrax visits to 15 emergency departments — New
Jersey, October 12–November 11, 2004*
Symptoms/Diagnostics No. (%)

Respiratory symptoms 70 (14)
Skin symptoms 52 (10)
Gastrointestinal symptoms 8 (2)
Chest radiograph 20 (4)
Nasal swab for anthrax 330 (65)

* N = 508.

TABLE 4. Treatments of concern for anthrax visits to 15
emergency departments — New Jersey, October 12–
November 11, 2004*
Treatment No. (%)

Patient decontaminated 56 (11)
Treatment with antibiotic started 161 (32)
Ciprofloxacin 114 (22)
Doxycycline 35 (7)
Treatment >14 days 30 (6)

* N = 508.

TABLE 1. Age and sex of persons who sought medical
treatment for concern for anthrax exposure at 15 emergency
departments — New Jersey, October 12–November 11, 2004*

Male Female Total
Age group (yrs) No. (%) No. (%) No. (%)

0–10 11 (2) 11 (2) 22 (4)
11–20 15 (3) 18 (4) 33 (7)
21–40 105 (20) 126 (25) 231 (45)
41–65 85 (17) 109 (21) 194 (38)

>65 15 (3) 13 (3) 28 (6)
Total 231 (45) 277 (55) 508 (100)

* N = 508.
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who worked near or traveled by a possible anthrax site and
wanted to be checked for anthrax. Examples of other docu-
mentation include 1) a hospital employee who was sent by
corporate health but did not think she was exposed, and 2) a
person who opened several letters from Iraq over the previous
year.

Respiratory symptoms were present in 70 (14%) patients,
and skin symptoms were present in 52 (10%) patients. GI
symptoms were present in eight (2%) case-patients. Chest
radiographs were done in 20 (4%) of the CA visits, and nasal
swab for anthrax was performed during 330 (65%) CA visits.
The percentage of visits where nasal swabs were performed
was similar until November 3 when a noticeable decline to
22% occurred for the rest of Period 3 (Figure 2).

ED decontamination of the patient occurred during 56 CA
visits (13%). Antibiotic treatment was initiated for 161 (32%)
CA visits. Of these 161 visits, 114 (71%) received ciprofloxacin,
and 35 (22%) received doxycycline. Of the 161 patients who
received an antibiotic, only 30 (19%) received a prescription
for an antibiotic course >14 days.

Although determining whether all calls were documented
is difficult, calls made to health or police departments were
made by the ED and documented for 90 (18%) of the visits.

Discussion
A marked increase in CE visits occurred after anthrax was

identified in New York City and New Jersey. The CE visits
returned to the baseline after 1 month. Despite initial warn-
ings from the media immediately after September 11, 2001, a
substantial increase did not occur in CE visits until the initial
anthrax case in New York City and the attendant media cov-
erage starting October 12. The number of visits increased sub-
stantially in the immediate vicinity of the contaminated postal
facility in Trenton.

These findings have implications for the design of
biosurveillance systems. Although there were only 22 cases of
anthrax, suspected or confirmed, 508 visits to the selected
EDs for CE occurred during the peak period. This finding
suggests that for detecting and trending of cases after a bio-
logic terrorist attack, using syndromic surveillance might be
obscured by patients with a concern rather than patients who
are actually victims of the attack.

In the chart review of CA patients for the peak third period,
a substantial variation occurred in the reasons patients sought
treatment with a CE to anthrax. Postal workers in a facility
that had known cases of anthrax were at maximum risk. Postal
workers in other facilities were at lower risk. Members of the
general public who had no history of exposure but still wanted
to be evaluated were at the lowest risk. Only 4% of the
patients received radiographs. This low rate indicates that the
majority of the patients were considered to be at little or no
risk for having active pulmonary anthrax.

A total of 65% of patients received a nasal swab for anthrax,
a fairly routine procedure for these patients. Routine nasal
swabs for anthrax detection were not recommended by CDC.
Instead, CDC recommendations during that period indicated
that culture of nasal swabs might be appropriate in the epide-
miologic investigation of a known outbreak but would not
rule out exposure to or infection with B. anthracis (4). Given
the substantial volume of swabs, the minimal evidence of com-
munication with public health departments, and the lower
use of prophylactic antibiotics, these swabs probably were
performed primarily for patient reassurance or in the mis-
taken belief that a culture of a nasal swab would rule out
anthrax. There was a drop-off in the percentage of patients
receiving nasal swabs for anthrax at the end of the one-month
peak period which might represent the time at which physi-
cians began following CDC recommendations. It might also
represent a decrease in general concern about anthrax.

Because of the substantial percentage of patients
who received a nasal swab for anthrax and because
the nasal swabs were not recommended, these find-
ings suggest that guidelines (5) were not effectively
reaching emergency physicians. These findings also
suggest that current systems need to be reinforced
and further developed to communicate recommen-
dations immediately to ED physicians to manage the
influx of victims of possible biologic terrorism.
Additional studies have examined the need for better
communication systems (6,7), including the use of
the Internet (8,9).

The percentage of patients who received antibiot-
ics was 32%. The CDC recommendation at the time
was that the basis for initiating antibiotic treatment

FIGURE 2. Percentage of visits for concern for anthrax exposure in
which nasal swabs were performed at 15 emergency departments,
by date — New Jersey, October 12–Novembver 11, 2001

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

Date

Oct Nov
12 14 16 18 20 22 24 26 28 30 1 3 5 7 9 11



Vol. 54 / Supplement MMWR 167

should be exposure or contact, not laboratory test results (5).
Whether the initiation of antibiotics was consistent with the
CDC recommendation cannot be determined from the data.

The same recommendations also called for 60 days of anti-
biotic prophylaxis. This report determined that only 19% of
patients in the series who received an antibiotic prescription
received one for >14 days. Sufficient data was not available to
determine the extent that these prescriptions were written as
“starter” prescriptions intended to be continued if deemed
appropriate by the follow-up physician.

No other reports specifically examine the volume or char-
acter of ED visits during this period. An epidemiologic study
by CDC in October 2002 sought to determine the extent of
the anthrax outbreak in New Jersey, assess potential sources of
B. anthracis exposure, and prevent additional cases by devel-
oping and implementing control measures (10). However, this
study did not assess the effects of the outbreak and media
exposure on New Jersey EDs.

In this study, methods were used that had been previously
developed for syndromic surveillance to identify and charac-
terize the effect of the anthrax attacks on EDs in the mitiga-
tion phase. The investigation was conducted on a large
electronic database in which ICD-9 groups were used to iden-
tify patient visits of interest, time-series data to detect volume
peaks, and a chart review of the affected patients. The level of
detail available yielded information that might be valuable to
public health preparations for the mitigation phase of a bio-
logic terrorism attack. The data indicated that syndromic sur-
veillance during the mitigation phase might have been
affected by a substantial volume of patients concerned about
exposure, although exposure was unlikely. The data also indi-
cates that communication between emergency medicine prac-
titioners and public health officials are vital during the
mitigation phase and that communication needs improvement.

Limitations
All patients examined in the EDs were not included in this

report, only those examined by ED physicians. However, this
report encompassed the majority of these patients. Some varia-
tion in coding styles might have led to a variation in how
patients were classified. However, this potential source of
error was mitigated, because ICD-9 coding is performed cen-
trally by a single group of coders who were trained in a similar
manner. This report did not include all ED visits in northern
New Jersey. However, because the volume represents approxi-
mately 30% of hospitals and 35%–40% of ED visits in north-
ern New Jersey, the sample was representative of the total
population of ED visits in northern New Jersey during this
period.

The chart review is limited by the retrospective nature of
the study. Certain characteristics that were present were pos-
sibly underestimated, because they were not documented in
the chart.

Conclusion
Techniques originally developed for syndromic surveillance

identified an increase in CE visits that occurred during the
1-month period after the identification and media coverage
of anthrax cases in New York City and at a Trenton postal
facility. During the peak month, a higher increase of CE visits
occurred in the Trenton EDs than in other EDs in the state. A
substantial variation occurred in the reasons that patients
sought medical treatment. Although the suspicion for anthrax
in these patients appeared to be low, the majority of patients
received a nasal swab for anthrax in excess of the guidelines
from CDC. This finding suggests the need for improved com-
munications during a biologic terrorist attack and readily avail-
able diagnostic and treatment guidelines.
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Abstract

Introduction: The Connecticut Department of Public Health (CDPH) has continuously monitored daily nonelective hospi-
tal admissions through a syndromic surveillance reporting system (HASS) since September 2001. Admission diagnoses are
categorized into 11 syndromes including one possible indicator of smallpox, fever with rash, and one possible indicator of
influenza and pneumonia.

Objectives: The objectives are to describe findings from systematic investigation of individual admissions attributed to fever
and rash and to determine the utility of monitoring pneumonia admissions as an indictor of severe influenza activity during
the 2003–04 influenza season.

Methods: The incidence of admissions for fever and rash illness was determined for a 12-month period, and results of clinical
discharge diagnoses were tabulated. Excess admissions for pneumonia by week during the influenza seasons beginning 2001–
03 were determined and compared. Trends in admissions from the 2003–04 season were compared with trends from labora-
tory and sentinel physician surveillance.

Results: A total of 57 admissions for fever and rash illness were reported from 32 acute-care hospitals and verified for an incidence
of 1.7 per 100,000 population. Specific clinical diagnoses were made for 29. Many were compatible with the initial clinical
presentation of smallpox. Excess admissions for pneumonia during the 2003–04 season occurred concurrently with sharp increases in
positive laboratory reports and percentages of visits to physician’s offices attributed to influenza-like illness. The 2003–04 influenza
season had many more excess admissions than the 2001–02 and 2002–03 seasons.

Conclusion: HASS is a useful surveillance tool for rapid detection of sentinel cases of smallpox. Monitoring excess pneumonia
admissions during the influenza season appears to be an effective and specific method for determining levels of influenza
activity and for quantification of influenza-related morbidity and impact on the hospital system.

Introduction
Syndromic surveillance systems are being implemented and

evaluated by federal, state, and local public health jurisdic-
tions and by academic institutions to determine their ability
to detect outbreaks of illness earlier than clinician and labora-
tory disease-specific reporting systems and their sensitivity to
detect outbreaks that might otherwise be missed (1–6). In
addition, they are being explored for their possible utility to
help monitor and respond to potentially large-scale events with
substantial morbidity (1–3,6).

In response to the September 11, 2001, World Trade Cen-
ter attacks, the Connecticut Department of Public Health
(DPH) initiated a hospital admissions syndromic surveillance
system (HASS) to monitor for a possible concurrent biologic
attack (7). The system has been continued since then with

two main objectives. The first is to increase the sensitivity and
timing of detection of initial cases of smallpox and severe acute
respiratory disease syndrome (SARS).This objective is carried
out by monitoring individual admissions with selected
unusual syndromes of concern (i.e., rash illness and fever
[possible smallpox] and pneumonia in a health-care worker
[possible SARS]). The second objective is to have a system
with readily available data to assess the magnitude and geo-
graphic distribution of severe illness requiring hospital admis-
sion brought to attention by other systems (e.g., to monitor
the impact and geographical distribution of influenza; to
assess whether evidence exists of wider activity if a case of
anthrax were diagnosed).

Among current syndromic surveillance systems, the HASS
is unique in two respects. First, it is intended to detect an
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initial, sentinel case of smallpox before a larger outbreak occurs.
Second, it monitors hospital admissions rather than outpa-
tient visits.

The objectives of this study were twofold. The first is to
describe the results of investigation of persons admitted with
fever and rash illness to assess the utility and workload of HASS
as a tool to monitor for possible smallpox. The second is to
examine trends in hospital admissions for pneumonia during
the 2003–04 influenza season to assess the utility of the HASS
as an influenza surveillance tool. The 2003–04 influenza sea-
son was unusual in that influenza activity nationally and in
Connecticut appeared early, became most intense during
November and December, and was largely over by mid-
January (8,9). The season also was associated with excess mor-
tality compared with the preceding 3 seasons (9).

Methods
Statewide, each of 32 acute-care hospitals reviews unsched-

uled admissions for the previous 24 hours, manually catego-
rizes them on the basis of admission diagnosis into 11
syndromes, and reports this information daily through an
Internet-based reporting system to DPH. The 11 syndromes
include fever with rash and pneumonia.

The public health response to the data received has several
steps. First, active follow-up begins the day of report of
admissions for rash illness and fever to determine the course
of illness, evolving differential diagnosis, and whether testing
is needed to rule out smallpox. Second, data is reviewed daily
to weekly by syndrome to determine unusual levels of activ-
ity. Finally, a comprehensive review is conducted if issues are
unresolved (e.g., examination of trends in pneumonia admis-
sions during the influenza season to determine how long they
remain elevated.

To describe the experience with fever and rash illness,
admission and follow-up data were reviewed for the 12-month
period, July 2003–June 2004. The number of cases and inci-
dence overall and by county were determined. The results of
verification of cases as to whether they presented with both
fever and rash and the final clinical diagnoses and their
potential to mimic the typical clinical presentation of small-
pox are described.

To examine the utility of the HASS for monitoring influ-
enza, weekly totals of admissions for pneumonia were exam-
ined for the state and three largest counties (each with
800,000–900,000 persons representing 77% of the state’s
population) for temporal trends during November 2003–
March 2004. In addition, findings were compared with the
weekly results from two other influenza monitoring systems

operating at the same time and to weekly results of pneumo-
nia admissions for the preceding 2 years for HASS. The two
additional influenza surveillance systems in use included
required reporting to DPH of the results of all positive labo-
ratory tests for influenza and a sentinel physician surveillance
system in which volunteer physicians reported daily the total
number of visits and the percentage attributed to influenza-
like illness (ILI, defined as temperature of >100°F [>38°C])
and either a cough or a sore throat. Finally, the burden of
excess admissions for pneumonia each week and overall were
tallied and compared over the 3 years. Excess admissions
were defined as the number of admissions for pneumonia above
the annual weekly average.

Results

Fever and Rash Illness
Overall, 78 cases of fever and rash illness were reported from

32 hospitals in HASS. Of these, 57 were verified as fever with rash.
Cases excluded usually had either fever or rash, but not both.

The 12-month incidence was 1.7 per 100,000 population.
The county-specific incidence for the three largest counties
was consistent, ranging from 1.5–1.7. The incidence in the
five smaller counties was wider, ranging from 0.8–3.5, with
each having no more than 2–4 cases.

By the time patients were discharged, 29 (51%) had a spe-
cific clinical diagnosis (Table 1). The most common diagnoses
were drug hypersensitivity (11%), varicella (7%), and urti-
caria (4%). Cases were diagnosed in which the initial presen-
tation was similar to that of smallpox (e.g., fever with diffuse
undifferentiated rash).

TABLE 1. Clinical diagnoses in persons hospitalized with fever
and rash — Connecticut, July 2003–June 2004
Diagnoses No. %

Drug hypersensitivity 6 11

Varicella 4 7

Urticaria 2 4

Other infectious* 12 21
(Ehrlichiosis, Kawasaki disease, parvovirus,
meningococcemia, Rocky Mountain spotted fever,
roseola, “tickborne disease,” toxic shock syndrome,
viral exanthem, cellulitis, sinusitis with rash, and
staphylococcal urosepsis)

Other noninfectious* 5 9
(Contact dermatitis, erythema nodosum, lymphoma
with rash, psoriasis, Stevens-Johnson syndrome)

No certain diagnosis 28 49
* One case for each listed diagnosis.
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Pneumonia
Throughout the 3 years, the average number of weekly

admissions for pneumonia reported through the HASS was
305. For both the 2001–02 and 2002–03 influenza seasons,
pneumonia admissions peaked in early January and then con-
tinued to be much higher than average either continuously
(2001–02) or intermittently (2002–03) through most of Feb-
ruary, with a decline to near baseline by early March (Figure 1).
This pattern paralleled known influenza activity for these years
(10), although it is unclear how many of the admissions were
influenza-related.

For the 2003–04 influenza season, the pattern was different
and was characterized by a sharp increase in mid-December to
a peak in early January that was much higher than peaks in
either of the two preceding years, then a rapid decline to near
baseline. The pattern for each of the three largest counties was
similar to the overall pattern for all 3 seasons.

On the basis of findings from two influenza surveillance
systems and excess hospital admissions for the 2003–04
influenza season, both the number of laboratory reports posi-
tive for influenza and the percentage of acute office visits due
to ILI show increasing activity beginning in mid-November,
followed by sharp increases in mid-December and peaks in
late December (Figure 2). Activity then fell nearly as sharply
as it rose in both systems. The excess number of pneumonia
admissions paralleled the activity of these influenza-specific
systems with a slight lag in reaching its peak and a more rapid
return to baseline.

For the 2003–04 season during the weeks of peak activity,
approximately 350 extra pneumonia admissions were
reported per week, an index of surge capacity needed by hos-
pitals (Figure 3). In addition, the 2003–04 influenza season
put an unusual seasonal stress on hospitals compared with the
preceding two seasons.

Discussion
Syndromic surveillance systems have attracted the interest

of public health officials and academia, particularly in the
context of monitoring for biologic terrorism (1,11,12). In the
absence of specific biologic terrorism events since the anthrax
attacks of 2001, the sensitivity and timeliness of syndromic
surveillance to detect biologic terrorism events compared with
clinician and laboratory reporting systems have not been
determined. The sustainability of syndromic surveillance sys-
tems will depend on whether their cost is worth their useful-
ness. If there are no biologic terrorism attacks, sustainable
syndromic surveillance systems for biologic terrorism will have
to have added value to the clinician and laboratory reporting
systems or have demonstrated alternative utility.

On the basis of this analyses, HASS has demonstrated util-
ity in monitoring for smallpox and has distinct added ben-
efits to other forms of influenza surveillance. The initial
manifestations of smallpox in a nonimmune person will prob-
ably be severe (i.e., prostrating febrile illness with generalized
nondescript rash). The rash will not evolve to a more charac-

FIGURE 1. Number of hospital admissions for pneumonia, by
month and week — Connecticut, November–March, 2001–02,
2002–03, and 2003–04 influenza seasons
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FIGURE 2. Percentage of physician visits for influenza-like
illness (ILI), number of laboratory-positive reports, and excess
hospital admissions for pneumonia, by week — Connecticut,
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teristic form for up to a week, but the severity of the initial
febrile illness probably will result in a medical visit and hospi-
tal admission for observation and supportive treatment. On
the basis of the diagnoses of the 57 cases described in this
report, HASS clearly detects such serious febrile rash illness.
Reports to HASS are timely because they occur the day after
admission and enable immediate follow-up by public health
epidemiologists even before a clinician is likely to suspect
smallpox. In addition, HASS detects single cases and can
assure that each is evaluated for possible smallpox. Although
completeness of reporting was not formally measured, the even
geographic distribution of fever and rash admissions suggests
reporting might be relatively complete. In addition, HASS is
an enhancement to clinician reporting of suspected smallpox.
Although it identified 57 suspect cases, only two cases of ill-
ness were reported to DPH as possible smallpox during this
period. One was an inpatient also detected by this system and
found to have viral exanthem, and the other was an outpa-
tient with chickenpox. Finally, the amount of epidemiology
staff work for follow-up of each reported case is readily man-
ageable, averaging about 4 hours for initial hospital contact
and follow-up calls. Most of the time is spent making initial
contact with the hospital and the managing physician.

The 2003–04 influenza season provided an opportunity to
examine the utility of HASS as an influenza monitoring tool.
The findings of this report indicate that nearly all excess hos-
pital admissions for pneumonia during the fall and winter of
2003–04 were related to influenza. Nearly all excess
activity occurred during November and December. No sus-
tained excess pneumonia activity was reported after early Janu-
ary when winter respiratory disease, including influenza, is
usually expected. On the basis of this experience, it is reason-
able to assume that most excess severe pneumonia activity
during any fall-winter season is most likely related to influ-
enza. Other notable characteristics of HASS as an influenza
surveillance tool are that it appears to be sensitive to high
levels of influenza activity, and it provides a timely measure of
the changing and overall burden influenza puts on hospitals.
Finally, HASS provides data for assessing the overall severity
of an influenza season. Connecticut intends to use HASS data
prospectively throughout future influenza seasons to deter-
mine when the influenza season becomes severe (continuing
and sustained increase in excess pneumonia admissions), when
it peaks (continuing decrease in excess admissions) and its
overall impact.

HASS is meeting the objective to provide a context to evalu-
ate levels of severe disease activity by syndrome, at least for
pneumonia and in the context of influenza. Because of con-
cerns about pandemic influenza and about hospital surge

capacity, this system should continue to be worth the cost of
operation. Although data collection is largely manual, it is
simple, requiring <15 minutes per hospital per day.

The Connecticut HASS is a unique surveillance system in
the United States. CDC’s Biosense system and most state and
local health departments that have such systems are conduct-
ing syndromic surveillance on the basis of outpatient visits
with a primary objective to identify outbreaks earlier. Limita-
tions of HASS include its inability to detect predominantly
outpatient outbreaks of illness and a lag time of one or more
days between initial patient presentation to the health care
system and admission to the hospital. However, the latter limi-
tation might not be of as much practical impact as it is in
theory. Users of outpatient syndromic surveillance systems are
finding that it is very difficult to effectively set thresholds to
identify levels of disease activity that merit full investigation,
and that investigation of all but the largest sustained signals is
very labor intensive and has little added value in the absence
of a biologic terrorism attack (1,2). As a result, increases in
syndrome-specific visits are monitored for one or more days
to determine if they are sustained before initiating an investi-
gation. In addition, these outpatient systems are limited in
their ability to facilitate follow-up of individual cases. Fur-
thermore, although outpatient systems have the potential to
enable monitoring for the outpatient burden of influenza,
numbers of outpatient visits do not directly measure the bur-
den of severe illness. A hospital admission-based system such
as that in Connecticut is of sufficient value relative to its cost
that it should be tried and evaluated elsewhere. HASS might
be of more practical long-term utility in meeting some bio-
logic terrorism and public health preparedness surveillance
objectives than syndromic surveillance systems that focus on
outpatient visits.
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Abstract

Background: Use of syndromic surveillance as a tool to detect outbreaks and potential biologic or chemical terrorist attacks
is increasing. Evaluating health departments’ use of syndromic surveillance is necessary to determine the value of this
methodology.

Methods: Syndromic surveillance signals detected by the New York City Department of Health and Mental Hygiene (DOHMH)
during November 2001–August 2004 were reviewed for diarrhea and vomiting syndromes, the methods used to investigate
such signals, and results of these investigations to determine if any unreported outbreaks were detected. Gastrointestinal (GI)
outbreaks reported to DOHMH also were reviewed to understand why they were not detected by DOHMH’s Emergency
Department (ED) syndromic surveillance system.

Results: During the study period, ED surveillance generated 98 citywide and 138 spatial GI signals. Multiple outbreaks
suspected to be caused by norovirus and rotavirus were identified, as well as a citywide increase in diarrheal illness. Of
98 citywide signals detected, 73 (75%) occurred during seasonal outbreaks. During the same period, 49 GI outbreaks were
reported to DOHMH; none was detected simultaneously by ED surveillance.

Conclusion: Only substantial, citywide syndromic signals were identified as outbreaks and routinely reported. GI outbreaks
did not generate syndromic signals. Syndromic surveillance signals occur frequently, are difficult to investigate satisfactorily,
and should be viewed as a supplement to, rather than a replacement for, well-maintained traditional surveillance systems that
rely on strong ties between clinicians and public health authorities.

Background
Syndromic surveillance is increasingly used as a tool to

detect both naturally occurring outbreaks and potential bio-
logic or chemical terrorist attacks (1). In the absence of etio-
logic information, these systems use constellations of
symptoms, complaints, or diagnostic codes to group patients
into syndrome categories. Data can be gathered from emer-
gency department (ED) logs (2–5), hospital admissions records
(6), ambulatory care center records (7,8), ambulance dispatch
records (9), or clinical laboratory submissions (10). Other data
sources can include over-the-counter (OTC) medication sales
(10–13), nurse hotline calls (14,15), and work and school
absenteeism records (16) to identify patients who have not
sought medical care. Although syndrome-based surveillance
has long been used to detect and track diseases for which etio-
logic diagnoses are made infrequently (e.g., influenza and
poliomyelitis) (17–20), since the 2001 anthrax attacks, such
systems have been used as early warning systems to detect bio-

logic or chemical terrorism (21–25). Syndromic surveillance
is based on the concept that illnesses caused by agents likely
to be used in a biologic or chemical terrorist attack (e.g., plague
or anthrax) will first manifest with nonspecific (prodromal)
symptoms (25). In principle, syndromic surveillance systems
should detect outbreaks of naturally occurring illness and those
caused by intentional attacks. The theoretic ability of these
systems to detect such attacks has been described (1,2,25);
however, to date, these systems have been useful primarily to
detect and monitor substantial seasonal outbreaks of influ-
enza, rotavirus, and norovirus (7,8). Whether syndromic sur-
veillance systems also can detect smaller, more localized
outbreaks or identify outbreaks that are not reported through
traditional surveillance is not known, and, despite their in-
creasing use, few systems have been evaluated (24). Having a
better understanding of the experiences of health departments
that use syndromic surveillance systems might help to
improve the usefulness of this methodology.
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Methods
Since November 2001, the New York City Department of

Health and Mental Hygiene (DOHMH) has operated an ED
syndromic surveillance system (2). Every day, EDs transfer
electronic data to DOHMH regarding the age, sex, home ZIP
code, date and time of visit, and chief complaint of patients
examined the previous day. A computer algorithm codes chief
complaints into four syndromes: vomiting, diarrhea, fever, and
respiratory; complaints that do not fit these categories are
coded as “other.” Data are analyzed daily for aberrations in
time and space, which are reported as either citywide or spa-
tial signals. Spatial signals indicate clustering in syndrome visits
by either hospital or patient home ZIP code.

For this report, DOHMH reviewed ED gastrointestinal (GI)
syndromic surveillance data collected during November 15,
2001–August 15, 2004, to determine whether GI syndromic
signals represented real disease clusters and whether syndromic
surveillance detected known GI outbreaks. During the study
period, the data collection system increased from 28 (42%) of
67 EDs, representing approximately 57% of ED visits in NYC,
to 48 (73%) of 66 EDs, representing approximately 90% of
ED visits (one ED had closed during that period).

To determine whether GI syndromic surveillance signals
represented real outbreaks, DOHMH reviewed 236 GI sig-
nals (e.g., vomiting or diarrhea) detected during November
15, 2001–August 15, 2004, together with any documented
signal investigations conducted during this period. An ana-
lyst and physician jointly decided whether to begin, and how
far to pursue, an investigation.

Multiple possible steps are involved in an investigation of
citywide or spatial signals. For a citywide signal, hospital-level
data are evaluated to determine whether one or multiple hos-
pitals account for the majority of cases to focus the investiga-
tion, and, if so, ED clinical staff at these hospitals are asked
whether they have noticed anything unusual and whether the
trend is continuing. They are also asked to be aware of new
patients reporting with the syndrome of concern and to
notify DOHMH if they notice clusters of patients with simi-
lar symptoms or young and otherwise healthy patients with
severe symptoms. For a spatial signal, the ED patient line list
is reviewed to determine the age and chief complaints of
patients in the cluster before the ED is called. For both citywide
and spatial signals, other syndromic surveillance data sources
(e.g., records of sales of OTC medications) are reviewed for
corroboration. If concern persists after the line list has been
reviewed and clinicians have been contacted, the midday
12-hour chief complaint log is requested from hospitals in
the signal to determine if the trend is continuing. Eight hos-
pitals can send midday logs electronically; other hospitals pho-

tocopy their paper logbooks for the period from midnight to
midday, black out identifying information, and send them to
DOHMH by facsimile. Faxed logs are then hand coded and
the proportion of syndrome visits compared with the signal
and 7-day baseline. Depending on the size and timing of the
signal, whether or not it is sustained, or other information
suggests that the signal indicates a true increase in illness, the
signals might raise greater concern. For such signals, medical
charts are abstracted by either hospital or DOHMH staff.
Occasionally, patients have been called and asked whether they
have improved; on one occasion, after a blackout in August
2003, a case-control study was conducted (26). Because a
common microbial pathogen suggests a link among patients,
an attempt was made to identify an etiologic diagnosis for
signals of greater concern. However, obtaining specimens was
challenging because the patient usually had been discharged
from the ED by the time a signal was detected. Efforts to
persuade EDs to augment their specimen collections have not
succeeded because these laboratory studies typically do not
affect clinical care and incur added effort, cost, and burden of
tracking results. DOHMH staff members have occasionally
gone onsite to collect specimens, but this activity is resource
intensive, and despite arranging specimen transport, compli-
ance has been low.

A total of 49 GI outbreaks investigated by DOHMH dur-
ing November 15, 2001–August 15, 2004, were reviewed to
determine whether syndromic surveillance can detect known
GI outbreaks. All outbreaks involved >10 persons with vom-
iting or diarrhea symptoms. Outbreaks were reported to
DOHMH from multiple sources (Table).

Results

Review of Syndromic Surveillance
Signal Investigations

During the study period, investigations detected 236 GI
signals, including 98 citywide and 138 spatial signals. Of these,
20 (8.4%) were documented in writing, including all investi-
gations that determined microbial etiology. Signal investiga-
tions determined that annual citywide outbreaks of diarrheal
illness were likely attributable to norovirus (typically during
fall and winter) and rotavirus (typically during spring).
Although no etiology was determined, one citywide increase
in diarrhea after the August 2003 blackout was believed to
have represented a true increase in diarrheal illness (26). No
other citywide GI signals were linked to disease outbreaks. A
total of 73 (75%) signals occurred during annual seasonal out-
breaks of norovirus and rotavirus (Figure 1). No spatial signal
was linked to an outbreak. However, chart reviews are often
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unrevealing because medical histories are only briefly docu-
mented, especially with regard to risk exposures, and labora-
tory work-ups performed during a typical ED visit are
minimal, especially for GI illness. No onsite signal investiga-
tions have demonstrated a connection among cases.

On November 13, 2002, as a result of citywide diarrheal
signals during October 27–28 and November 3–5 and citywide
vomiting signals during November 7–12, a health alert was
issued to physicians in the community. This alert noted that
in addition to the citywide signals, stool specimens collected
during October 2002, before the first citywide signal, were
positive for calicivirus. The alert asked physicians to increase
diagnostic testing to help DOHMH better understand these

trends and prevent illness. Physicians also were asked to
emphasize hand hygiene, proper cleaning of vomitus, and the
need for persons to stay home when ill. A similar alert was
issued on August 17, 2003, after the postblackout signal. This
alert also reminded providers to advise patients to discard per-
ishable food purchased before the blackout. In addition, a
press release with this message was issued.

During February 16–17, 2004, a citywide signal occurred
involving 1,803 observed cases of vomiting and 942 observed
cases of diarrhea, compared with an expected 1,487 and 729
cases, respectively. DOHMH piloted having a chain of pri-
mary care clinics assist in the specimen collection. Because
any citywide outbreak of diarrheal illness would likely have
been detected in outpatient clinics, DOHMH sent specimen
collection kits to five outpatient clinics with supplies for four
children with a chief complaint of vomiting or diarrhea. Three
specimens were requested per child: two rectal swabs* obtained
in the clinic for ova and parasite and for culture and sensitiv-
ity testing, and a stool collection cup for viral pathogens, which
was sent home with the family. Specimen transport from the
patient home was arranged for viral specimens. Of the 20 dis-
tributed kits, specimens on 10 children were returned to
DOHMH; however, a substantial proportion (percentages
varied by test) were inadequate for testing. Three were tested
for ova and parasites and were negative, nine were tested for
culture and sensitivity, and five were forwarded to the New
York State Department of Health’s Wadsworth Laboratory for

viral testing. Four tested positive for
calicivirus, a norovirus. On March 24,
2004, results were received by
DOHMH, 6 weeks after the citywide
signal investigation began. Evidence
from other outbreaks investigated at the
time in schools, restaurants, and insti-
tutional settings suggested that
norovirus was circulating in the com-
munity.

Review of GI Outbreak
Investigations

Of 49 GI outbreaks investigated dur-
ing November 15, 2001–August 15,
2004, none was detected by the ED
syndromic surveillance system. In 36

TABLE. Sources of reported gastrointestinal illness outbreaks* —
New York City, November 15, 2001–August 15, 2004
Source No.

Patient self-report 24
Health-care provider 7
Department of Education 6
Other health department 2
Restaurant 2
Analysis of reportable diseases 4
Combined reports from patient and
health-care provider 1

Combined analysis of reportable diseases
and report by health-care provider 1

Other city agency 1
Unknown caller to a city telephone hotline 1

Total 49

* Involving >10 persons with vomiting or diarrhea symptoms.

FIGURE 1. Emergency department visits for vomiting syndrome, all ages, by month
and year — New York City, November 2001–October 2004
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outbreaks, few or no patients went to the ED, and in two
outbreaks, a substantial proportion of the patients were visi-
tors to NYC who returned to other jurisdictions before the
onset of symptoms. In 11 outbreaks, patients reported to NYC
EDs, but, for multiple reasons, no signal occurred. In three
outbreaks, patients reported to NYC EDs not in DOHMH’s
system; in three outbreaks, patients reported over several days
or weeks; in two outbreaks, patients reported as a group and
were coded in the triage log by a group code (e.g., “school
incident”) that did not translate to a syndrome (27); and in
two outbreaks, a combination of these problems occurred. To
further understand why outbreaks might not have been
detected by the syndromic surveillance system, DOHMH con-
ducted a detailed retrospective examination of an outbreak at
a grade school that was reported by traditional means by the
ED physician the day it occurred. A traditional outbreak
investigation indicated that the outbreak involved 150 chil-
dren, 65 of whom reported to the same hospital ED in which
the reporting physician worked. However, this ED was not
included in the DOHMH system. Of 79 case-patients who
were interviewed, all reported vomiting, and 75% reported
diarrhea. One stool culture grew a norovirus.

Data were obtained from this ED for a 2-week period before and
during the outbreak, and routine daily analyses were run again to
explore whether the outbreak could have been detected by the sys-
tem. On the first day of the outbreak, a significant ZIP code signal
(six observed compared with 0.2 expected; p<0.001) was detected
for diarrhea syndrome in all age groups in the ZIP code in which
the school is located. Borderline clustering also was observed at
two hospitals in the hospital-based analysis (29 observed compared
with 16 expected; p = 0.08). As this hospital cluster was of border-
line significance, it likely would not have been investigated. The
significant ZIP code cluster is also unlikely to have triggered an
investigation because the number (six) of excess cases was not
unusual (ranked 25 of 138 spatial clusters). No signals occurred
the following day. More robust signals would have been generated
if a different set of analyses had been employed. For routine analy-
ses, ED visit records are examined separately for vomiting and
diarrhea; for each syndrome, all ages are analyzed together. An analy-
sis that combined diarrhea and vomiting into one syndrome would
have been more appropriate for this outbreak because certain chil-
dren were coded as having diarrhea, and others were coded as hav-
ing vomiting. Examining diarrhea and vomiting separately diluted
the signal into two smaller signals. In addition, analyses focused on
children aged 5–17 years generated a stronger series of signals on
the day of this grade school outbreak (hospital diarrhea signal: seven
observed, compared with one expected [p = 0.002]; ZIP code diar-
rhea signal: eight observed, compared with one expected [p = 0.009])
and on the following day (hospital diarrhea signal: nine observed,
compared with two expected [p = 0.01]; ZIP code diarrhea signal:

nine observed, compared with two expected [p = 0.007]; and ZIP
code vomiting signal: 13 observed, compared with four
expected [p = 0.01]) (Figure 2). However, each analysis added to the
daily routine would increase the total numbers of signals observed.
For example, when daily analyses were simulated for four age catego-
ries (0–4, 5–17, 18–59, and >60 years) and three GI syndrome
categories (diarrhea and vomiting alone or in combination), an
additional 296 GI signals were generated annually.

Discussion
In NYC, syndromic surveillance has proven useful prima-

rily for detecting and monitoring annual citywide outbreaks
of norovirus, rotavirus, and influenza. However the utility of
this information for preventing illness is uncertain (28). For
norovirus and rotavirus, the only public health intervention
that can be offered is outreach to child-care and school set-
tings regarding the importance of hand washing and of ensur-
ing that children stay home when ill. For norovirus, the
etiologic diagnosis can be difficult to make because commer-
cial testing is not readily available, so syndromic surveillance
might permit a better description of the disease epidemiol-
ogy. For influenza, syndromic surveillance might allow public
health officials to recognize the start of the season in a more
timely manner so vaccine prevention messages can be empha-
sized. However, surveillance systems that also include a labo-
ratory component are paramount to confirm that influenza
has arrived and to identify circulating strains.

Syndromic surveillance systems have also provided reassurance
during times of concern (e.g., the 2001 anthrax attacks) and states of

FIGURE 2. Number of emergency department visits by persons
aged 5–17 years, by syndrome code and date of visit — New
York City, November 1–December 31, 2002

0

5

10

15

20

25

30

35

1 8 15 22 29 6 13 20 27

Outbreak investigation*
Diarrhea, with or without vomiting
Vomiting, no diarrhea
Diarrhea or vomiting

Nov Dec
Date

N
u

m
b

e
r

* N = 55 persons for whom date of onset was known.



Vol. 54 / Supplement MMWR 179

elevated security alerts (e.g., during the 2004 Republican
National Convention) that an excess number of patients citywide
has not sought ED care for acute illnesses. Although envisioned as an
early warning system, syndromic surveillance has thus far functioned
more as a back-up system to traditional reporting. Constructing a
syndromic surveillance system that detects statistical aberrations in
the number of citywide ED visits has not been technically difficult.
What has proven difficult is determining a rational, timely and
resource-efficient response to signal investigation. By the time an
increase in citywide ED visits is investigated by using existing meth-
ods and the etiology is determined to be either a natural or an inten-
tional outbreak, the problem is likely to be widespread.

The NYC syndromic surveillance system originated in part
from the need to perform enhanced surveillance for
cryptosporidiosis because the NYC water supply is not fil-
tered. The 1993 cryptosporidiosis outbreak in Milwaukee was
detected by reports to the city health department of wide-
spread absenteeism and substantial increases in sales of OTC
antidiarrheal medications (29,30). Delay in detection of this
outbreak has been attributed to multiple shortcomings of dis-
ease surveillance. Cryptosporidiosis was not a reportable dis-
ease at the time. Patients with mild symptoms, especially those
who are immunocompetent, usually do not seek medical care
for diarrhea, and the majority of persons affected recover with-
out treatment. Diagnostic tests are seldom ordered for those
who do seek medical care, or the diagnosis is delayed because
Cryptosporidium is not considered in the differential diagno-
sis, and the specific test is not included in standard ova and
parasite examinations (30). Considering these issues, retro-
spective analyses of syndromic surveillance systems, includ-
ing surveillance of OTC medication sales, clinical lab
submissions for any test on a stool specimens, nursing home
surveillance, and ED surveillance have suggested that aberra-
tions would have been noticeable weeks before detection of
the waterborne outbreaks of cryptosporidiosis (10,30,31).
Because no such waterborne outbreaks have occurred in NYC,
whether such aberrations would have led to early detection
and intervention cannot be determined.

Syndromic surveillance has not been useful in detecting acute
localized GI outbreaks in NYC, in part because signal investiga-
tions to determine etiologic and epidemiologic links among
patients are difficult and time consuming. The primary problem
with using syndromic surveillance to prospectively detect out-
breaks is that analyses that are sensitive enough to detect smaller
outbreaks signal falsely so often that they generate too many sig-
nals from which to distinguish genuine outbreaks. Without
diagnostic or epidemiologic data, whether the apparent cluster
represents patients who are linked or even have the same etio-
logic cause for their symptoms cannot be determined easily.
Multiple studies have analyzed whether ICD-9–coded discharge

diagnoses yield better results for syndromic surveillance analyses
(32–34), but little diagnostic work-up is performed on ED
patients. Although less a problem during large-scale citywide out-
breaks, misclassification obscures limited, localized signals caused
by real outbreaks and can cause spurious signals composed of
unrelated cases. Enhancing existing syndromic surveillance sys-
tems might improve their usefulness by increasing the specificity
and positive predictive value of signal detection and investiga-
tion. Data streams containing laboratory and radiologic findings
on patients could help rapidly determine if a cluster is more con-
cerning to help prioritize signal investigations. The development
of rapid, multiplex, point-of-care diagnostic assays that allow cli-
nicians to rapidly include a natural cause such as influenza or
exclude potential biologic terrorist agents would greatly improve
the ability to determine whether an outbreak is occurring and its
cause. Such improvements will only help if ED clinicians order
the diagnostic tests; however, such tests might not be ordered for
persons who have mild or moderate illness.

Health departments receive reports of disease clusters from
multiple sources and set priorities regarding use of limited
staff resources. If insufficient information exists to initiate an
investigation, the decision is often made to observe whether
the signal continues the next day, thereby losing syndromic
surveillance’s theoretical advantage of timeliness. Regardless
of whether an investigation is begun immediately, the deci-
sion to launch a public health intervention (e.g., vaccination
or antibiotic prophylaxis) requires that an etiologic diagnosis
be determined. Syndromic surveillance might prove useful for
detecting a problem and quantifying its magnitude but, by its
very design, cannot determine the true etiology.

This evaluation is subject to at least two limitations. First,
the analysis reviewed only the ED syndromic surveillance sys-
tem and was focused on the system’s ability to detect GI out-
breaks. As localized respiratory outbreaks are reported less
commonly by traditional surveillance systems, experience with
fever and respiratory signals could not be evaluated. Second,
other systems using different data might have a greater ability
to detect outbreaks. A system using outpatient data is being
piloted in NYC.

Conclusion
Concerns about biologic terrorism have generated substan-

tial financial support for development of syndromic surveil-
lance detection systems (28,35) at the local, state, and national
levels. However, the utility of these systems has not been dem-
onstrated. The rareness of biologic terrorism means that
syndromic surveillance systems can be evaluated only by their
ability to detect naturally occurring outbreaks in a timely
manner. Given the increasing investments being made in
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syndromic surveillance, communities should examine their
systems and report their findings. Critical evaluations are
needed to determine whether the resources spent by public
health agencies conducting signal investigations, which can-
not then be used elsewhere, are worth the theoretical benefits
of detecting outbreaks more quickly.
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Abstract

Introduction: World Youth Day (WYD) is a biannual international Catholic event for persons aged 17–35 years.
During July 13–28, 2002, WYD activities took place in Toronto, Canada; 176,100 persons registered to participate,
and 800,000 persons attended an overnight vigil and papal mass. Because of the potential for imported communicable
disease and local disease outbreaks, Toronto Public Health, Health Canada, and WYD organizers developed a surveil-
lance network to facilitate timely public health response.

Objectives: This study assessed the effectiveness of the syndromic surveillance network established for WYD 2002.

Methods: The surveillance network collected data from multiple sources, including 1) all WYD medical facilities,
2) emergency departments (EDs), 3) pharmacies, and 4) 9-1-1 emergency calls. Surveillance activities were coordi-
nated from a downtown Toronto office staffed by physicians, epidemiologists, community medicine residents, and
administrators. Findings were communicated daily to public health and WYD authorities. Ten syndrome definitions
were developed on the basis of outbreak potential, public interest, and need for timely detection. Cumulative mean
count, two standard deviations from the rolling 7-day mean, and CUMSUM methods were used for the analysis.

Results: Although no substantial outbreaks occurred, enough activity was noted to indicate that an event would have
been detected if it had occurred. Activity included a case of malaria, a case of chickenpox, and an outbreak of foodborne
illness involving 18 persons. In addition, 3,332 (21%) of 15,717 ED visits, 4,394 (39%) of 11,250 calls to 9-1-1, and
approximately 35% of onsite clinic visits met syndrome definitions. Heat-related illness was the most prevalent event
documented, with an increased proportion of 9-1-1 calls and the most common syndrome (n = 105) above two
standard deviations from the rolling mean reported through EDs. Heat-related illness also was the most frequent onsite
clinic diagnosis received by WYD participants among >5,000 visits during 6 days.

Conclusion: For an event-specific syndromic surveillance network to be effective, multiple data sources and redun-
dancy are needed. A range of communication channels, back-up methods for data collection, and complementary
surveillance components were employed for this event. Substantial time, resources, and planning were required for the
implementation of this surveillance network. However, certain activities that are feasible for event-specific surveillance
are difficult to sustain on an ongoing basis because of a lack of resources. For this reason, monitoring 9-1-1 calls
appears to offer the greatest potential usefulness for ongoing public health surveillance.
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Abstract

Introduction: Staff of emergency and ambulatory care departments encounter data that have unique advantages for
timely outbreak detection. Patient age distribution might have an effect on timeliness and accuracy of prediction.

Objectives: This report identifies patient subpopulations on the basis of sites of care and patient age distribution,
which signal influenza epidemics earliest and most accurately.

Methods: Analyses performed included cross-sectional, time series analyses of seven patient populations comprising a
health maintenance organization providing ambulatory care, three emergency departments (EDs) at urban tertiary
care, and three community-based hospitals in eastern Massachusetts. Except for two EDs (one adult and one pediat-
ric), these hospitals serve all patient age groups. Patients having respiratory infection syndromes and who visited each
health-care setting during January 1, 2000–September 30, 2004, were identified and categorized by age (Figure).
Cross-spectral analyses and Poisson regression models were used to evaluate timelines and prediction for New England’s
influenza and pneumonia mortality, as reported to CDC.

Results: Patient age significantly influences timeliness of
signal for influenza and pneumonia mortality (p = 0.026),
with the pediatric ED patients presenting with influenza
earliest in the season. In the cohorts, children aged 3–4
years consistently presented to sites of care first (p<0.05).
By using regression models to predict mortality based on
the time-shifted surveillance data, all cohorts were identi-
fied as significant predictors of influenza mortality. How-
ever, patient age also significantly influences level of
prediction (p = 0.036). The age group of children aged <3
years can be used to predict significantly more of the varia-
tion than other age groups (p<0.05).

Conclusion: Patient age is a key determinant in the
timing of visits for respiratory infections. Pediatric pa-
tients seek ambulatory and emergency care before adult
patients. The earliest arriving group is preschool-aged
children (aged 3–4 years), who are considered predomi-
nant vectors in household spread of influenza. The age
group of children <3 years can be used to best predict
influenza mortality, again highlighting the importance
of treating pediatric patients as sentinels. Monitoring
pediatric patient subpopulations separately from other
subpopulations might enhance syndromic surveillance
systems.

FIGURE. Prediction and timeliness* of patients with
respiratory infection syndromes for signaling influenza and
pneumonia mortality, by site of care and patient age† (years)
— Eastern Massachusetts, 2000–2004

* Lead times to influenza mortality obtained by cross-spectral analysis
are plotted against the proportion of variance explained by poisson
regression.

† Data for both sites of care (blue circles) and age groups across sites
(black circles) are displayed.
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Abstract

Introduction: Evaluations from multiple perspectives are needed to determine whether syndromic classification of
chief complaints is useful for outbreak detection.

Objective: This study quantified the performance of a naïve Bayesian classifier, Complaint Classifer (CoCo), at syndromic
classification from chief complaints by using a three-stage evaluation process.

Methods: First, CoCo was evaluated to determine its level of technical accuracy in answering the question, “Can we accu-
rately classify a chief-complaint string into a syndromic category?” For example, the area under the ROC curve of CoCo
classifications were calculated into eight syndromes for 28,990 chief complaints from 30 hospitals in Utah during a 1-month
period (Olszewski RT. Bayesian classification of triage diagnoses for the early detection of epidemics. In: Proceeding of the
Florida Artificial Intelligence Research Society Conference; May 12–14, 2003; St. Augustine, FL. Menlo Park, CA: AAAI
Press; 2003:412–6). Standard classifications were made by a physician reading only the chief complaints. Second, CoCo was
evaluated to determine its performance at case classification to answer the question, “Does the syndromic classification from
the chief complaint accurately represent the patient’s clinical state?” For example, the sensitivity and specificity of the CoCo
classification of 527,228 patients over a 13-year period in a single hospital in Pittsburgh, Pennsylvania was measured (Chapman
WW, Dowling JN, Wagner MM. Classification of emergency department chief complaints into seven syndromes: a retro-
spective analysis of 527,228 patients. Ann Emerg Med. In press 2005.). Reference standard classifications were assigned by
syndromic groups of primary International Classification of Diseases, Ninth Revision (ICD-9) discharge diagnoses. Third,
CoCo was evaluated to determine its performance at outbreak detection to answer the question, “How timely and accurately
can we detect a public health outbreak by monitoring chief-complaint classifications?” For example, by using the Exponen-
tially Weighted Moving Average (EWMA) detection algorithm, the factors measured were timeliness, sensitivity, and specific-
ity of chief complaints classified by CoCo for predicting outbreaks of pediatric respiratory and gastrointestinal illness (Ivanov
O, Gesteland P, Hogan W, Mundorff MB, Wagner MM. Detection of pediatric respiratory and gastrointestinal outbreaks
from free-text chief complaints. In: Proceedings of the American Medical Informatics Association Annual Fall Symposium;
November 8–12, Washington, DC. Bethesda, MD: American Medical Informatics Association; 2003: 318–22.). Reference
standard classification comprised ICD-9 discharge diagnoses of pneumonia, influenza, and bronchiolitis for respiratory
illness and rotavirus and pediatric gastroenteritis for gastrointestinal illness.

Results: For technical accuracy, areas under the ROC curve ranged from 78% for botulinic syndrome to 96% for respi-
ratory syndrome. For case classification, sensitivity and specificity, respectively, were as follows: respiratory: 63%, 94%;
botulinic: 30%, 99%; gastrointestinal: 69%, 95%; neurologic: 67%, 93%; rash: 47%, 99%; constitutional: 46%, 97%;
and hemorrhagic: 75%, 99%. For outbreak detection, three respiratory and three gastrointestinal outbreaks were detected
by CoCo with 100% sensitivity and specificity. Time series of chief complaints correlated with hospital admissions and
preceded them by an average of 10.3 days for respiratory outbreaks and 29 days for gastrointestinal outbreaks.

Conclusion: Three stages of evaluation are useful in determining the performance of syndromic surveillance from chief
complaints. CoCo was evaluated to determine its ability to classify patients into prevalent syndromes (e.g., respiratory and
gastrointestinal) and into syndromes that are rare and difficult to characterize (e.g., hemorrhagic, botulinic, and constitu-
tional). Chief-complaint classification might be useful for detecting moderate to widespread outbreaks; however, to
increase sensitivity and specificity, the techniques in this report should be extended to other clinical information sources,
including chest radiograph and emergency department reports.
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Abstract

Introduction: Effective community surveillance is needed for the rapid identification of outbreaks of serious illness. In
the United Kingdom, surveillance of calls to NHS Direct, a national telephone health helpline, are used as a method of
rapid outbreak detection. A limitation of this syndromic surveillance approach is the lack of laboratory confirmation of
diagnosis after surveillance signals have been generated.

Objective: This report presents a pilot study to investigate the feasibility of virologic sampling conducted by NHS
Direct callers.

Methods: During December 2003–January 2004, NHS Direct nurses in two regions of England were asked to recruit
NHS Direct callers aged >12 years who had reported cold or influenza symptoms (i.e., “cold/flu” callers). Persons who
agreed to participate in the study were mailed a specimen kit. Callers were asked to take a swab from each nostril and
return the swabs by mail to the United Kingdom national influenza reference laboratory. Swabs were tested by multi-
plex polymerase chain reaction (PCR) for influenza viruses and, if identified as positive, were cultured for viable virus
isolation.

Results: During the study period, 686 cold/flu callers were eligible for the study. Although 67 of these were recruited
for the study, determining how many cold/flu callers were asked to participate but refused was impossible. Of the 67
specimen kits sent, 36 (54%) were returned to the laboratory. The mean time between the call to NHS Direct and
laboratory analysis of the specimen was 7.5 days. This period was shorter for positive samples (mean time: 6.12 days)
than negative samples (mean time: 7.9 days), although the difference was not significant (p = 0.13). Eight specimens
(22%) were positive on PCR for influenza virus. Five were antigenically characterized as Fuijian/411/2002-like influ-
enza A H3N2. Higher positivity rates might have been achieved if the sampling study had begun earlier in the year
before the peak of the influenza season.

Conclusion: This study demonstrates the possibility of community-based clinical surveillance that does not require
sampling by a health-care worker. This methodology will allow novel approaches to be developed to integrate syndromic
surveillance with virologic sampling. Therefore, the rapid follow up of syndromic surveillance signals might provide
confirmation of a specific common infection or provide evidence of a potentially more sinister cause.
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Abstract

Introduction: Detecting a disease outbreak is more difficult when the exposure occurs in a workplace but only the
patient’s home address is available for analysis. In these situations, application of the customary spatial scan statistic
designed by Martin Kulldorff does not account for possible differences between home and work addresses, thereby
reducing the power of detection.

Objectives: This study examined whether modifying Kulldorff ’s spatial scan statistic to take into account the move-
ment of persons between home and work can improve detection of disease outbreaks when exposure occurs in the
workplace.

Methods: The study region was partitioned into m cells Z(1),. . . ,Z(m). L(k,i) is the proportion of the population living
in cell Z(k) that works at cell Z(i). For each cell Z(i), i = 1,. . . ,m, consider the r nearest cells from Z(i), r = 1,. . . ,R as the
location of a possible outbreak that occurs during working hours. For each i and each r, build the m zones Y(1),. . . ,Y(m),
adjoining successively the residential cells indicating where the workers from the r nearest cells from Z(i) live, in decreasing
order of proportion of workers within these cells. The factors L(k,i) are used to compute the observed cases in the residen-
tial zones attributable to the contamination from workers at the r nearest neighbors of cell Z(i). This quantity, with the
corresponding expected number of cases, is used to build the modified spatial scan statistic, similar to the usual spatial scan
statistic. The modified scan statistic is computed m²R times, and the maximum value obtained indicates the most likely
pair of outbreak focus and associated residential area found. A Monte Carlo procedure is used to compute the p-value of
the most likely pair. The study region consisted of 158 ZIP codes located near Norfolk, Virginia. The following three
typical simulated clusters, with their corresponding ZIP codes, are representative of much more extensive simulations:
1) Cluster A: 23601, 23606, 23607, 23661, 23666, 23668, and 23669; 2) Cluster B: 23601, 23602, 23606, 23665,
23666, and 23693; and 3) Cluster C: 23666 and 23669.

Results: Power evaluations of 0.85 (A), 0.70 (B), and 0.53 (C) were obtained by using the modified scan statistic
compared with 0.68 (A), 0.52 (B), and 0.42 (C) obtained by using Kulldorff ’s spatial scan statistic.

Conclusion: Using a modified scan statistic that takes into account the movement of persons between home and work
might be a useful complementary tool for the early detection of outbreaks in the workplace. Through simulations, a
statistically significant increase in power was observed compared with the usual spatial scan statistic.
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Abstract

Introduction: Performance-critical anomaly detection for biomedical surveillance requires 1) reliable data that are
both geotemporally and demographically representative; 2) efficient, real-time, large-scale information-processing
capabilities; 3) comprehensive, tunable anomaly-detection algorithms; 4) a flexible platform for investigation and
management of anomalies; and 5) alert distribution and management.

Objectives: This study analyzed a reliable, high-performance, end-to-end, modular process for early event detection
that included data loading and transformation, statistical anomaly detection, and tools for user interaction.

Methods: The process architecture and implementation included three components: 1) a data layer, including mod-
ules for data loading, cleaning, normalization, coding, and aggregation; 2) an anomaly-detection layer, including
multiple methods for statistical anomaly detection and an anomaly case manager; and 3) a presentation layer, including
dynamic visualization of data (geographically, temporally, and logically) used in case investigation, publication, and
process monitoring. Specific statistical anomaly detection methods used included process-control techniques; SaTScan™
(a free software program used to calculate spatial, temporal, and space-time scan statistics); a square-root technique;
and a new adaptation of Bayesian shrinkage estimation (Kalman Filter Gamma Poisson Shrinker [KF GPS]) used to
monitor a stream of events organized into a periodic (daily) array of cross-classified counts with geographic and medi-
cal dimensions. Shrinkage estimates were obtained of ratios of observed counts to proportionally fit expected counts
that update smoothly with time after allowing for changes in marginal totals. KF GPS was used to model spatial
associations and dependencies among the medical measurements. The case manager was used to organize groups of
related anomalies into cases and to support collaboration, by providing a set of functions and software linkages for
persons with subject-matter, statistical, and analytic expertise to use to investigate and manage anomalies. Each case
could be resolved as an alert, deferred, or dismissed. The case manager included a logic-rich engine and two feature-
rich, configurable tools for case organization and dynamic data visualization. Similar technology used by AT&T for
telecommunications monitoring and case management in an environment in which >300 million calls are received
daily was adapted to health-care data, including laboratory test and emergency room data, with comparable perfor-
mance.

Results: In collaboration with Quest Diagnostics, Inc. (QDI), AT&T used a subset of QDI’s nationwide testing data
for December 2002–March 2004 for three syndromic groupings (respiratory, gastrointestinal, and heavy metals [lead])
in the New York City (NYC) metropolitan area and nationwide (lead only). The system computed approximately
600,000 scores, resulting in approximately 400 anomalies and their cases. Certain anomalies included a spike in overall
respiratory test requisitions in the area of Bensonhurst, Queens, NYC; a spike in mycobacteria requisitions in Orange
County, New York; and a change in data coding affecting viral tests in Bergen County, New Jersey.

Conclusion: This analysis demonstrated 1) the importance of end-to-end process architecture; 2) the utility of mul-
tiple algorithms, especially KF GPS, for anomaly detection; and 3) the effectiveness of using a case manager to inves-
tigate anomalies and reduce the burden of false positives. The system can handle massive data streams and allows rapid
anomaly detection through use of a suite of analytic, data management, and visualization tools.
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Abstract

Introduction: A terrorist attack might occur at places outside of residential areas (e.g., workplace, entertainment
venues, or shopping centers). Cluster analysis using available data on residential addresses alone will not yield the
probable place of exposure.

Objectives: The study aimed to facilitate early detection of terrorist incidents in areas outside of residential areas
(e.g., workplaces and shopping centers).

Methods:     An approach was suggested for estimating the probable location of exposure on the basis of the distribution
of the residential addresses on the assumption that persons tend to live closer to their place of work, or visit entertain-
ment venues or shopping centers closer to their place of residence than would be expected by chance. A two-stage
process of implementing available spatial statistics programs was proposed. In the first stage, a cluster analysis program
was employed by using residential addresses. The SaTScan™ software, developed at the National Cancer Institute, was
used with its space-time permutation model specifically developed for conducting continuous surveillance. If more
than one substantial cluster is identified, a possible incident outside of the residential area was considered. The mean
center and standard deviation are computed for those census tracts included in the substantial clusters to identify the
area where the exposure might have occurred. For this task, the CrimeStat II™ was used, a spatial statistic program
originally developed for analysis of crime locations. To narrow potential places of exposure, the cluster analysis should
be performed in the first stage by age groups such as infants, children, persons aged <19 years, the working age category
(19–65 years), and older persons (>65 years). Substantial clusters in the working age category alone could focus the
resulting investigation on workplaces. A geographical information system (GIS) program (ArcGIS™, ESRI™, Redlands,
California) was used for geocoding addresses and for other procedures needed to prepare data for cluster analysis and
for presenting the results. This approach was demonstrated through a series of simulations of deliberate dispersion of
anthrax spores in a large hospital where residential addresses of all the staff members were available. Simulated cases
among the staff were superimposed on background data of patient visits to community clinics for influenza-like illness.

Results:     A possible place of exposure was identified at a distance of approximately 1 kilometer from the hospital

Conclusion: The combination of multiple spatial statistics tools demonstrates promising capabilities for identifying
terrorist incidents outside of residential areas, even when only residential addresses are available.
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Abstract

Introduction: On October 25, 2003, one of the largest fires in California history began in San Diego County. Over a
period of three days, the air quality deteriorated to unhealthy and hazardous levels, prompting school cancellations and
the general public to stay at home. In response to the fires, smoke, and circulating ash, San Diego County Public Health
leveraged existing syndromic surveillance capabilities to assess impact on the county’s emergency medical system.

Objectives:     This surveillance capability was rapidly deployed to assess the impact of the fires on selected types of
emergency department visits.

Methods:     In response to the fire, two existing syndromic surveillance data sources were monitored: prehospital para-
medic transport chief-complaint data and local over-the-counter (OTC) medication sales data acquired from the
National Retail Data Monitor system. In addition, 15 emergency departments reported syndromic surveillance infor-
mation including asthma, bronchitis, emphysema, or other respiratory symptoms with no fever, eye irritation, smoke
inhalation, burns, chest pain, and diarrhea. Daily air-quality data was also acquired. The analytic methods included
time-series and process-control charts (e.g., P-Chart, U-Chart, CUSUM, and EWMA).

Results:     Information on 31,321 emergency department visits, 8,625 prehospital transports, and OTC data were
analyzed. Respiratory indicators demonstrated substantial increases during the days of greatest fire burn and unhealthy
air quality, with postfire levels approaching prefire levels when air quality improved. A marked increase in smoke
inhalation and eye irritation visits was also observed. No noticeable increase was noted among visits for chest pain or
diarrhea. The total number of emergency department visits initially declined during the fire period, which corre-
sponded to the days that students and employees were asked to remain at home. Air quality in San Diego deteriorated
substantially during the fires concurrent with substantial increases in asthma-related emergency department visits and
increases in local OTC sales of bronchial remedies, cold/cough syrup, and nasal products.

Conclusion: Existing syndromic surveillance capabilities were used to monitor the immediate impact of the wildfires
in San Diego County. These results demonstrated a real impact on selected medical services. Certain fire-related out-
comes were expected, especially related to asthma and other respiratory health outcomes and increased sales of selected
OTC products. In retrospect, this disaster served as an “outbreak,” validating the importance of syndromic surveillance
as a dual-use tool and highlighting the need for system flexibility. Syndromic surveillance is a useful tool during a
natural disaster, assisting future disaster preparations and generating hypotheses for long-term follow-up studies.
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Abstract

Introduction: Since 2002, as part of a national biologic terrorism preparedness program, the Israel Center for Disease
Control (ICDC) has been developing a syndromic surveillance system based on data from community clinics and
hospital emergency departments. Selected analytic tools are being evaluated for possible integration within this system.

Objectives: This study evaluated the performance of the What’s Strange About Recent Events (WSARE) algorithm
(http://www.autonlab.org/autonweb/showSoftware/159) for anomaly pattern detection when applied to records of
daily patient visits to clinics of a local health maintenance organization (HMO).

Methods: Data from an influenza B outbreak that occurred in June 2004 in an elementary school in a small (popula-
tion: approximately 7,000 persons) Israeli town were used. WSARE searches for groups with specific characteristics
(e.g., a recent pattern of place, age, and diagnosis associated with illness that is anomalous when compared with
historic patterns). The data set used was limited to 1) patients living in the county where the outbreak occurred;
2) a 35-day period during May–June 2004; and 3) records containing International Classification of Diseases, Ninth
Revision (ICD-9) codes for signs, symptoms, and syndromes associated with infectious morbidity. On average, the data
set included 510 records/day. Besides ICD-9 codes, data included date of visit to clinic, day of week, city/town code,
and patient’s age.

Results: Two successive significant anomalies (p<0.0001) were detected in the HMO data set that could signal the
influenza outbreak, both sharing three constituents: 1) the town code; 2) the age category of affected children; and
3) the ICD-9 code for viral infection, which was the most prevalent diagnosis assigned by HMO physicians identified
in an investigation by the regional health department. Had the data been available for real-time analysis, the first
anomaly could have been detected on day 2, when the outbreak was first reported to public health officials.

Conclusion: A centralized, comprehensive surveillance system can rapidly detect localized, fast-developing outbreaks.
Although early detection is hard to achieve in this instance, timely and reliable information produced by syndromic
surveillance is of great value in supporting outbreak management and placing it in the context of the background
morbidity in the country. However, had the outbreak occurred in winter, detection would have been more complex.
When the outbreak data were superimposed on winter background, only a single significant two-constituents anomaly
was detected at day 2 of the simulated outbreak, lacking the information to target on the specific age group of the
schoolchildren.

http://www.autonlab.org/autonweb/showSoftware/159
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Abstract

Emergency Department Surveillance System: The Bergen County Daily Electronic Disease Surveillance System
(DEDSS) is composed of three discrete components used to analyze public health data. The core of the system is the
Emergency Department Surveillance System (EDSS), which monitors hospital emergency department (ED) data for
syndromes based on chief complaint data. Data from six local hospitals are sent daily in batches by file transfer protocol
(FTP) to the department’s Internet webserver, loaded into a Microsoft™ structured query language (SQL) server, and
analyzed with SAS® (SAS Institute, Cary, North Carolina) software by using algorithms developed by Bergen County
and the New York City Department of Health. Substantial improvements have been made by using the SQL server
rather than the previous SAS database storage format.

First Watch™ System: In 2004, First Watch, a commercially available product, was added to DEDSS. The system
adds real-time monitoring of requests for advanced life support through the Mobile Intensive Care Communications
(MICCOM) paramedic dispatch center. First Watch monitors MICCOM’s computer-aided dispatch system for com-
plaint types.

Alerts are generated based on complaint types of interest to public health. The system monitors specified complaint-
type syndrome groupings (e.g., respiratory and gastrointestinal) for aberrations. Algorithms are based on a 1-year
baseline and compare totals of 1) individual calls in a syndrome category, 2) the ratio of syndrome calls to all calls, and
3) the cumulative sum (CUSUM) calculation of syndrome triggers. The system also includes a geocluster signal that
triggers when the number of calls for a syndrome exceeds eight calls in a 1-mile radius.

Provider Surveillance System (PROS): PROS monitors patient visit data from seven affiliated physician groups that
are geographically dispersed throughout Bergen and Passaic counties. The medical groups use an integrated electronic
clinical information system for all offices. The data collected include two levels of International Classification of Dis-
eases, Ninth Revision (ICD-9), diagnosis coding. Data are sent 4 days after the date of the patient visit to allow for
ICD-9 coding, which produces a more accurate syndrome grouping. Patients are grouped by syndromes based on the
CDC-recommended syndromic surveillance ICD-9 groupings. The Department of Defense Electronic Surveillance
System for the Early Notification of Community-Based Epidemics (ESSENCE) ICD-9 groupings for influenza-like
illness (ILI) is used for ILI surveillance. The combination of all three signaling systems will be evaluated and is expected
to provide a more effective, real-time picture of disease activity in the county than the original stand-alone ED system.
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Abstract

Introduction: San Diego County is the site of the BioNet Project, which seeks to improve the ability of the Navy
Region Southwest and San Diego County to respond to a biologic attack on its population and its critical infrastruc-
ture by improving, integrating, and enhancing disparate military and civilian detection and characterization capabili-
ties. BioNet is funded by the Department of Homeland Security. One component of this project is the comparison of
data sources available in San Diego County to understand their relative strengths and weaknesses for syndromic sur-
veillance purposes.

Objectives: This study quantitatively compared the different syndromic data sources (both military and civilian)
available in San Diego County both in terms of signal strength and timeliness.

Methods: Multiple types of data were compared, including emergency medical services (EMS), school nurse, school
absentee, physician outpatient encounters, over-the-counter (OTCs) pharmaceuticals, and prescription pharmaceuti-
cals. Three major historical disease outbreaks are used as points of comparison. The specific outbreaks are respiratory
disease caused by a major wildfire event in October 2003, influenza-like illness in December 2003, and a surge of
gastrointestinal illness in February 2004. Each data source is separately filtered to bring out the types of symptoms
associated with each of the outbreaks. The sources are compared both before and after smoothing with a moving 7-day
average, designed to eliminate certain idiosyncratic effects and to reduce noise. Finally, the data sources were compared
on the basis of timing and signal-to-noise ratio for their ability to capture these outbreaks. Additional time-series
comparisons were also used to determine whether the data sources trend together during nonoutbreak periods.

Results: The disease outbreaks are each observable in multiple data sources, but the most useful data source varies with
the event. EMS, military ambulatory encounters, OTCs, and school nurse reports were especially useful for different
illness events. For example, EMS data indicate the strongest signal-to-noise ratio for disease caused by wildfires; the
school nurse data give an early indication of influenza; and the military ambulatory encounter data provide the stron-
gest indication of an outbreak of gastrointestinal illness.

Conclusion: These results indicate that a system that integrates multiple syndromic data streams into a single prospec-
tive surveillance tool might enhance the ability of military and civilian authorities in San Diego County to detect
biologic terrorist or other disease outbreaks in a timely fashion.
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Abstract

Introduction: Key elements that can be measured objectively to evaluate the effectiveness of a surveillance system
include sensitivity, specificity, and timeliness. Statistical algorithms and data sources have been evaluated frequently;
however, factors that affect whether public health professionals will use a system (e.g., acceptability, generalizability,
flexibility, representativeness, and reliability) are more difficult to assess and are reported less frequently. Through the
Joint Services Installation Pilot Project (JSIPP), the Department of Defense provided nine military installations with
enhanced capabilities to detect and respond to weapons of mass destruction. The Department of Homeland Security is
funding BioNet to improve outbreak management in San Diego, California, by integrating military and civilian infor-
mation. Both programs implemented versions of the Electronic Surveillance System for the Early Notification of
Community-based Epidemics (ESSENCE) IV for medical surveillance and required evaluation within these environ-
ments.

Objectives: This study measured JSIPP and BioNet users’ perspectives of syndromic surveillance and the use of
ESSENCE IV.

Methods: For JSIPP, registered ESSENCE users were surveyed regarding system usage, utility of features, user friend-
liness, and suggested improvements. For BioNet, potential ESSENCE users were identified by program administrators
and surveyed before implementation to identify qualities and features they viewed as important to syndromic surveil-
lance.

Results: The JSIPP survey response rate was only 34% (17 of 50), probably because registered but infrequent users
were included in the survey population. The majority of respondents found the system easy to use and valued having
access graphics and summary statistics of disease trends. Seven (41%) of 17 reported concern about the inability to
obtain patient identifiers in a timely manner, which diminished their ability to investigate suspicious alerts. Barriers to
system use included dislike of the layout and difficulties in interpreting nonclinical data sources. The BioNet survey
response rate was 59% (13 of 22). Respondents ranked the usefulness of four elements of syndromic surveillance:
1) usefulness during an outbreak investigation; 2) ability to detect outbreaks rapidly; 3) reassurance that no ongoing
outbreaks are occurring; and 4) capability to generate summary reports. Major weaknesses included 1) difficulty in
interpreting and responding to alerts; 2) uncertainty in outbreak detection capability; 3) use of abstract data sources;
and 4) difficulty in sustaining a system for long-term use. Additional concerns included high false-positive rates,
timeliness, reliability, and cost.

Conclusion: Users often continue to have reservations about the utility of these systems. Feedback on which data
sources and system features users value can help system developers direct resources for development.
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Abstract

Introduction: Monitoring outpatient visits might enable more timely and sensitive syndromic surveillance than emer-
gency department visits because of higher daily volumes and the potential for capturing illness at an earlier stage.

Objectives: Data from all 11 public hospitals in New York City with outpatient and emergency departments (EDs)
were evaluated to compare the usefulness of these two data sources for monitoring communitywide respiratory and
gastrointestinal illness.

Methods: Historic data were obtained on outpatient and ED visits during November 1, 2001–May 31, 2004. Demo-
graphic characteristics of patients were compared. The seasonal and temporal trends of comparable syndrome catego-
ries (respiratory, fever/viral, asthma, and gastrointestinal) were examined and coded according to the International
Classification of Diseases, Ninth Revision (ICD-9), diagnosis code for outpatient visits and chief complaint for ED visits.
For each syndrome, timing and frequency were assessed for 1-, 2-, and 3-day temporal clusters with a 14-day baseline
period by using temporal scan statistics with SaTScan™ software.

Results: On weekdays, more patients visited outpatient clinics (mean: 3,727) than EDs (mean: 2,906). On weekends,
limited outpatient visits occurred (mean: 95); EDs had a slightly lower volume than on weekdays (mean: 2,492).
Compared with the ED population, the outpatient population included more patients aged <12 years and >65 years,
more females, and more minority patients and those on Medicaid. The temporal trends of the respiratory syndrome
from outpatient clinics and EDs were strongly correlated (r = 0.67), as were the fever/viral (r = 0.57) and asthma
(r = 0.60) syndromes, but less correlated for the gastrointestinal syndrome (r = 0.36). Citywide temporal clusters were
occasionally detected on the same day.

Conclusion: This evaluation of outpatient visits indicates that this data source might be potentially useful for syndromic
surveillance, particularly in conjunction with ED data. The demographic characteristics differ, allowing for the exami-
nation of complementary populations, and might explain certain differences in observed temporal clusters. Whereas
few outpatient visits occur on weekends, both data sources have comparable overall daily volumes. These data sources
could be examined simultaneously by using multivariate methods, which might increase the power to detect outbreaks.
Outpatient visit data include clinician and patient information as well as diagnoses, which substantially increases the
feasibility of cluster investigations. Using both outpatient and ED visit data as part of syndromic surveillance might
enhance the ability to detect and validate outbreaks.
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Abstract

Introduction: The Department of Health in New South Wales, Australia, expanded public health surveillance for the
2003 Rugby World Cup and for its ongoing counterterrorism response. Cup games were played in and around the
Sydney region.

Objectives: This study explains the development of an automated, near real-time, syndromic surveillance system in
which data are used that are already being collected in emergency department (ED) databases for routine patient
administration.

Methods: Demographic, triage, physician-assigned provisional diagnosis, and disposition information from 12 of 49
public hospital EDs in the greater Sydney metropolitan area was frequently and automatically transmitted, analyzed,
and reported in daily statistical summaries on Intranet websites beginning October 10, 2003. Diagnoses were catego-
rized by syndrome, disease, and injury. Presenting problem and nursing-assessment free text routinely entered by
nurses during patient triage were automatically classified into >30 syndrome categories by using automated preprocess-
ing techniques and naïve Bayesian automatic text classification methods. The diagnosis-based categories were used to
train the automatic classifier to associate words in the free text with syndrome categories. An adjusted cumulative sum
(CUSUM) accumulating day-of-week differences in daily counts was used to assess the statistical significance of disease
and injury trends. Public health personnel monitored the reports daily and notified the Rugby World Cup Public
Health Committee of unusual trends.

Results: During the tournament, October 10–November 22, health trends identified by the system were not sufficient
to cause concern among public health personnel but did provide reassurance that the health of the population was not
adversely affected. Data collection did not add to the work load of clinical staff in EDs, and surveillance downtime was
negligible. Since the games, this now ongoing surveillance system has rapidly identified a community-based epidemic
of gastrointestinal illness, an increase in recreational drug misuse, the annual influenza epidemic, and an increase in
episodes of acute asthma. Variation by syndrome occurred in the degree of correlation between daily visit counts from
automatically classified nurse text and the equivalent diagnosis groups used to train the classifier.

Conclusion: During the Rugby World Cup, the surveillance system complemented traditional public health surveil-
lance to provide a comprehensive assessment of health trends in the population. A substantial advantage of the system
has been its ongoing sustainability. Physician-assigned diagnoses are more specific than free text for some syndrome
and diagnostic categories. However, diagnoses are not available for analysis until at least the end of a patient’s ED visit,
and they are sometimes incomplete. Free text from patient triage is available for analysis early in an ED visit, and
depending on the scope of the text description, multiple text-based syndromes can be automatically assigned to a visit.
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Abstract

Introduction: When pathogens are dispersed by wind or water, the resulting disease clusters can be highly elongated in
shape, and tests for circular or square regions will have lower power to detect these high-aspect ratio clusters. One
possible solution is to search for rectangular clusters by using a variant of Kulldorff ’s (1997) spatial scan statistic to find
the most significant rectangular region and by computing the region’s statistical significance (p value) by randomiza-
tion. However, when data are aggregated to an N x N grid, an exhaustive search would require searching over all O(N4)
gridded rectangular regions (both for the original grid and for each Monte Carlo replication). Such a search is
computationally infeasible for certain large, real-world data sets.

Objectives:     This study attempted to accelerate the spatial scan statistic, enabling rapid detection of the most signifi-
cant rectangular cluster (and its p value) without a loss of accuracy.

Methods:     A fast spatial scan algorithm was presented that allowed computation of the same region and p value as the
exhaustive search approach, but hundreds or thousands of times faster. The algorithm divides the grid into overlapping
regions (using a novel overlap-kd tree data structure), bounds the maximum likelihood ratio of subregions contained in
each region, and prunes regions that cannot contain the most significant region. The resulting effect was searching over
all rectangular regions while only examining a fraction of these. The fast spatial scan was also extended to multidimen-
sional data sets, enabling the application of spatial scan statistics to other domains with more than two spatial dimen-
sions; in addition, these extra search dimensions allowed incorporation of temporal information (allowing fast
spatio-temporal cluster detection) and demographic information (e.g., patients’ age and sex).

Results:     The fast spatial scan achieves speedups from 20–2,000 times compared with the exhaustive search approach
on real and simulated data sets, including data from emergency department records and over-the-counter (OTC) drug
sales. For example, elongated clusters were detected in national OTC data in 47 minutes, compared with 2 weeks for an
exhaustive search. Theoretical and empirical results, including preliminary comparisons to Kulldorff ’s SaTScan soft-
ware, indicate that the fast spatial scan makes the detection of elongated clusters computationally feasible.

Conclusion:     In collaboration with the RODS Laboratory at the University of Pittsburgh, the fast spatial scan is being
applied to prospective disease surveillance nationwide, using daily OTC drug sale data from the National Retail Data
Monitor.
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Abstract

Introduction: The goal of syndromic surveillance systems is to detect and define biologic terrorism releases earlier than
previously possible. These systems have rarely been evaluated.

Objectives: This study measured a biologic terrorism surveillance system’s sensitivity and timeliness.

Methods: Models of an anthrax release in the Mall of America (Bloomington, Minnesota) were developed by using
ZIP code data from the U.S. Census Bureau; data on mall visitors; and data provided by HealthPartners Medical
Group, which covers 9% of the Twin Cities metropolitan population. For each infection level from 4% to 100%, 1,000
random dates during July 1, 2003–June 30, 2004, were selected with replacement for simulated releases. Timing of
symptoms after release was based on data from the 1979 Sverdlovsk anthrax release. Cases from the simulated outbreak
were added to respiratory visits recorded for those dates in HealthPartners’ data. Analysis was performed by using the
SaTScan™ space-time scan statistic (available at http://www.satscan.org) and Kleinman’s generalized mixed model.

Results: Timeliness and completeness of detection of events varied by infection rate (Figure). At a 40% infection rate,
first events were detected by day 2; 25% by day 6; 75% by day 7; and 100% by day 8. Sensitivity decreased to <20%
and timeliness increased to >40%. The system was most sensitive in summer, intermediate in fall and spring, and least
in winter because of increased background rates of illness in winter. Sensitivity is better if a greater portion of the
population is covered by the system.

Conclusion: This biologic terrorism surveillance system can detect a modeled anthrax release in the majority of
instances at a 20% infection rate and in all instances at a 40% infection rate.

FIGURE. Number of attacks detected, by days after attack and percentage
of mail customers infected, by number of days — Minnesota, 2003–2004
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Abstract

Introduction: The implementation of automated syndromic surveillance of physician office visits in three counties in
central Texas resulted in the addition of active clinician-based syndromic surveillance and a structured approach to
reactive surveillance. Historically, mandated notifiable disease reporting has been passive in these counties. Compli-
ance was inconsistent and triggered by final laboratory confirmation as opposed to first clinical suspicion.

During January–March 2003, three physician groups in these counties agreed to participate in the National Bioterror-
ism Syndromic Surveillance Demonstration Project (NBSSDP). During project implementation, three local health
departments (LHDs) and the physician groups recognized limitations of mandated disease reporting and automated
syndromic surveillance. The LDHs and infection-control practitioners (ICPs) applied the concept of syndromic sur-
veillance to clinician-initiated reporting.

Objective: This abstract describes how active clinician-based reporting and reactive syndromic surveillance enhanced
automated syndromic surveillance.

Methods: Active syndromic surveillance for specified concerns to public health (CPH) was initiated to include report-
ing of patients with signs or symptoms consistent with exposure to biologic or chemical agents, previously healthy
persons with acute onset of a severe undiagnosed illness, or any condition warranted by ICP. All ICPs agreed to report
immediately and to respond to a weekly e-mail verifying that they were “alive, well, and on-the-job.”

LHD staff and ICPs also formed the Surveillance Emergency Response Group, providing a structured approach to
reactive surveillance. Positive signals from surveillance triggers a request for ICPs to identify all inpatients with illnesses
or symptoms compatible with an implicated agent. When a severe cryptic illness is reported, this procedure is also used
to validate the absence of similar cases.

Results: During a 6-month period, three severe cryptic illnesses in previously healthy patients were reported. A reactive
surveillance drill, which simulated a biologic release of Yersinia pestis, was conducted to test the ICP response in identifying
and reporting patients in their facility with possible plague or pneumonia-like symptoms. For the 11 hospitals reporting,
the average response time in identifying and reporting patients was 36.4 minutes (range: 14–88 minutes).

Conclusion: The implementation of NBSSDP facilitated improvements needed in clinician-based syndromic surveil-
lance. By applying NBSSDP’s approach, ICPs could quickly survey their hospitals and identify patients meeting a
specified syndrome. Reporting CPH places minimal burden on ICPs and might contribute to the early detection of
disease outbreaks. Reactive surveillance can provide timely information in response to positive surveillance signals.
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Abstract

Introduction: The syndromic surveillance system used by Children’s Hospitals and Clinics (CHC) to detect disease
outbreaks uses reason-for-visit (e.g., chief complaint) information recorded when patients register at CHC facilities.

Objectives: A machine-learning approach that employs text categorization of reason-for-visit fields from patient
encounters was used to assess whether daily counts of disease syndromes based on International Classification of Dis-
eases, Ninth Revision (ICD-9) diagnostic codes correlated with daily counts of text categorizer-assigned syndromes.

Methods: Reason-for-visit text strings collected from CHC emergency departments and general pediatrics clinics were
used to define a set of pediatric-focused disease syndromes. Text-categorization programs that were based on common
algorithms available as modules in the Perl programming language (open source software available at http://www.perl.org)
were given previously categorized data from 2002. Data for 2003 were used to evaluate the agreement between CHC
syndromes assigned by ICD-9 codes and syndromes assigned by text categorizers. Spearman’s rank correlation coeffi-
cients were calculated to permit examination of the association between daily counts of ICD-9–assigned syndromes
and categorizer-assigned syndromes. Receiver operating characteristic (ROC) curves were plotted for certain catego-
rized data to examine the performance of the text-categorizer.

Results: From 2003 data, 102,435 reason-for-visit strings were classified into syndromes by using the associated prin-
cipal ICD9 codes and running Perl programs for the Support Vector Machine (SVM) and naïve Bayesian categorizers.
Spearman’s rank correlation coefficient values for daily counts of categorizer-assigned syndromes and ICD-9–based
syndromes demonstrated a correlation between the two. Spearman’s coefficients for the counts for SVM versus ICD-9
syndromes were 0.754 for the EENT (eyes, ears, nose, and throat) syndrome, 0.722 for the FEVER syndrome, 0.843
for the GASTROINTESTINAL syndrome, 0.923 for the INJURY syndrome, and 0.913 for the RESPIRATORY
syndrome. Correlation was also seen between EENT-ICD9 and RESPIRATORY-SVM syndromes and EENT-ICD-9
and FEVER-SVM syndromes. Similar correlation results were obtained for the naïve Bayesian categorizer. ROC curves
drawn for the naïve Bayesian categorizer-assigned scores (used as the test) against the ICD-9–assigned scores (used as
the standard) provide evidence of the categorizer’s high performance. Areas under ROC curves for the 13 syndromes
ranged from 0.966 (for the INJURY CHC syndrome) to 0.701 (for the EENT CHC syndrome).

Conclusion: Text categorization of reason-for-visit strings gives robust results and can be combined with a statistical or
algorithmic method of detection of extraordinary events to create an outbreak detection system. The code used is
available for public use at http://www.childrenshc.org/downloads/syndromesurveillance/syndromesurveillance.asp.

http://www.perl.org
http://www.childrenshc.org/downloads/syndromesurveillance/syndromesurveillance.asp
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Abstract

Introduction: During January 21–February 9, 2004, a norovirus outbreak occurred among University of North Caro-
lina (UNC) students, some of whom sought care at the UNC hospital’s emergency department (ED). Despite an
established ED-based syndromic surveillance system using CDC’s Early Aberration Reporting System (EARS), no
increases in gastrointestinal illness (GI) were detected during the outbreak period.

Objectives: This study used outbreak data to evaluate North Carolina’s syndromic surveillance system and GI case
definition.

Methods: The hospital ED electronically sent data for all visits to a state data repository. Recorded chief complaints,
vital signs, and triage nurse notes were searched electronically for key terms to assign ED visits to CDC syndrome
classifications. The GI case definition criteria required at least one constitutional symptom and one GI symptom. The
outbreak line-listing of 429 cases as determined by the local health department was reviewed, patient age distribution
examined, and hospital records used to identify ED patients by name. Data on these case-patients were reviewed and
each symptom recorded. On the basis of the symptom frequency, a modified GI case definition was drafted and tested
on the ED data from the time of the outbreak. The data were stratified by the age distribution of the known outbreak
cases. The number of GI cases that met the modified definition was examined for aberrations by using EARS.

Results: Of the 11 case-patients seen in the ED, one was identified with syndromic surveillance by using the original
GI case definition. Of the 42 remaining ED visits during the outbreak period that were classified as GI syndrome, eight
(19%) were misclassified as a result of lack of recognition of negation terms (e.g., no fever), and 34 (81%) were
classified correctly. Frequency analysis of the 11 known ED case-patients’ symptoms indicated nausea and vomiting,
11 (100%); diarrhea, nine (82%); abdominal pain, eight (73%); fever, two (18%); and body aches, one (9%). When
a modified GI case definition that did not require a constitutional symptom (e.g., fever) was used and syndromic cases
were stratified by age distribution for persons aged 17–22 years, all 11 cases were captured, and an aberration was
detected on January 21, the first day of the outbreak.

Conclusion: Automated systems must be monitored to ensure proper syndrome classification. For syndromic surveil-
lance to be used to detect both biologic terrorism–related and community outbreaks, case definitions must be con-
structed with careful consideration of different clinical presentations with different etiologies and illness severities.
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Abstract

Introduction: In September 2001, the District of Columbia Department of Health began a syndromic surveillance
program based on hospital emergency department (ED) visits. ED logs are faxed daily to the health department, where
staff code them by chief complaint and record the number of patients, in each hospital who die or experience sepsis,
rash, respiratory complaints, gastrointestinal complaints, unspecified infection, and neurologic or other complaints.

Objectives: This study evaluates the completeness, usefulness, and effectiveness of the syndromic surveillance system.

Methods: Data were received from nine hospitals in the first 32 months of the operation of the system (September 2001–
May 2004). These data were used to describe the operation of the completeness of the system (whether reports were sent
to health departments daily), by hospital, season and day of the week, and variability in patterns of symptom groups across
hospital and season. Three statistical detection algorithms also were applied retrospectively to identify departures from
normal patterns associated with the beginning of the winter influenza season and other disease outbreaks.

Results: Completeness varied by calendar quarter and hospital, ranging from no missing data for some hospitals and
quarters to 100% missing data. Data were missing primarily in weekly patterns and stretches of time that varied across
hospitals, which might reflect staff availability to fax data to the health department. In seven of nine hospitals from
which the data were more than 75% complete, with limited exceptions, the number and proportion of cases in each
symptom group were constant over time. The distribution of symptom groups were similar in all except one hospital,
possibly reflecting a different patient population. Day-of-the-week effects were apparent in certain hospitals but varied
substantially by symptom, group, and hospital. Application of various detection algorithms indicated that, particularly
when pooling data across seven hospitals, the syndromic surveillance data can be used to identify the onset of the
influenza season within 2–3 days. The data also can be used to determine indications of the “worried well” who sought
care during the 2001 anthrax attacks and a previously undetected series of gastrointestinal illness outbreaks that
occurred during a 4-month period in five different hospitals. No single symptom group or detection algorithm consis-
tently signaled each of the gastrointestinal events.

Conclusion: If problems with completeness of the data can be improved through a planned automatic electronic
reporting system, syndromic surveillance data might offer the potential for early detection of influenza and other
disease outbreaks. Additional research is needed, however, to characterize normal patterns in the data, identify the most
effective detection algorithms and symptom groups for various purposes, and characterize their sensitivity and specific-
ity when used prospectively in real time.
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Abstract

Introduction: Disease surveillance databases can range in size into the terabytes, making rapid, meaningful analysis
and conclusions about the data impracticable and expensive. Robust, automated, nontemplate-based real-time pro-
cessing techniques capable of monitoring large-scale disease, health-care, and environment tracking and surveillance
data sets are needed to discriminate between naturally occurring events and emergent diseases or biologic terrorist
attacks.

Objectives:     This study evaluated the ability of an automated anomaly detection processor to detect a simulated
anthrax attack during influenza season.

Methods:     This report describes the application of data-mining techniques in developing an Automated Anomaly
Detection Processor (AADP), which uses the Self Organizing Map clustering algorithm in conjunction with a Gaussian
Mixture Model and a Bayesian Analyzer probabilistic model to detect anomalous occurrences in health data sets.

The test case for the model is a data set from the BioWar Model (Carnegie Mellon University) and is based on real-life
census data, medical records, and social and behavioral patterns in Hampton, Virginia. The data files include sales
from 16 pharmacies in 25 product categories, absenteeism records from 34 school and 982 work sites, and medical
insurance records of the residents. The BioWar data are unique because they contain a simulated biologic weapons
attack and human response against a background of naturally occurring illness. In addition, two data files contain time
series of nonquantitative observables (e.g., International Classification of Diseases, Ninth Revision codes).

Results:     AADP identified a simulated biologic terrorism attack occurring during the influenza season. First detection
of the anthrax outbreak occurred approximately 4.7 days after the attack. AADPs for any pharmacies deemed to be
anomalous yielded a drill-down table identifying the relative contributions of the variables causing the anomaly. The
population of the pharmacy AADPs yielded an excessive number of anomalous pharmacies simultaneously after the
simulated attack began. Pharmacies began to turn anomalous initially adjacent to the attack site. Drill-down of the
anomalies indicated shared patterns of sales of several categories of pharmaceutical products. These results indicate a
systematic cause rather than a random correlation of probability of anomaly. In addition, anomalous periods of
extended absenteeism were detected soon after the attack.

Conclusion:     Development of AADP for biosurveillance adds a complementary method to extant surveillance systems
and can improve real-time alerting so assets can be vectored for further epidemiologic investigation and early interven-
tion. These results are prompting additional query of the anomalous events and inclusions of additional data streams to
improve early warning and response.

* This work is supported by the U.S. Army Medical Research and Materiel Command under Contract No. DAMD17-03-C-0061. Any
opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the U.S. Department of Defense.
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Abstract

Introduction: The threat of biologic terrorism (BT) requires the public health infrastructure to focus attention on
challenges posed by emerging and re-emerging infectious diseases. Validating real-time approaches to surveillance that
can provide timely alerts of epidemics is critical whether the epidemics occur naturally or through a BT attack.

Objectives: This research study implemented and evaluated the BioDefend™ syndromic surveillance system to deter-
mine if outbreaks and potential BT attacks could be detected 24–36 hours before routine surveillance and if syndromic
surveillance is a feasible approach for BT preparedness and early detection of infectious disease.

Methods:     The study was conducted in central Florida high-risk facilities (i.e., theme parks, hospitals, and a military
base). A 6-month period of baseline data was collected to identify normal illness trends and seasonality patterns and to
serve as the comparison for the test period. Internet-based data entry of provider-identified syndromes was linked to an
automated analysis tool that provided alerts through an e-mail–enabled device when substantial increases of syndromes
exceeded the pre-established thresholds. Thresholds are based on a 30-day rolling mean, and alerts were generated
when any syndrome exceeded three standard deviations above the 30-day rolling mean.

Results:     Outbreaks of public health importance were detected by comparing the BioDefend™ data with regional,
state, and national surveillance data. Two epidemics, one of gastroenteritis and one of influenza-like illness, were
detected by BioDefend™ >1 month before identification through routine surveillance. In addition, a small cluster of
cases (five) of fifth disease was identified among South American children visiting central Florida theme parks.

Conclusion:     This study indicated that health events can0 be recognized in near real-time through the use of auto-
mated analysis and notification. Early detection of events allowed for timely interventions, including vaccination
campaigns at military and civilian hospitals, and it demonstrated one way that syndromic surveillance can be an
effective tool for early detection of outbreaks in addition to its potential role in BT preparedness. The system continues
to be used in central Florida and was implemented for the 2005 Super Bowl.
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Abstract

Introduction: In October 2002, after the West Nile virus (WNV) epidemic in the United States and reports on a
changing epidemiology for flaviviruses in Europe, the National Institute for Public Health and the Environment
(RIVM) launched a project to study trends in neurologic infectious disease in the Netherlands.

Objectives: This study used a prospective syndromic approach to initiate surveillance for WNV by monitoring
patients with unexplained meningoencephalitis and conducting additional laboratory testing for WNV during June–
November, when mosquitoes are active in the Netherlands.

Methods: Because neurologic illness of possible viral etiology other than acute flaccid paralysis is not notifiable in the
Netherlands, RIVM 1) examined medical registration data from 103 (99%) of 104 Dutch hospitals covering
16 million persons to identify all discharge diagnoses for unexplained meningoencephalitis; 2) examined data from
11 laboratories covering 2.5 million persons to study trends in submissions of cerebrospinal fluid (CSF) for virologic
testing for common neurotropic viruses (e.g., herpes and enteroviruses); and 3) actively collected CSF samples from six
virologic laboratories for further exclusion of WNV infection.

Results: Hospital surveillance for 2002 and 2003 indicated that approximately 500 patients per year had meningitis or
encephalitis (unspecified viral or unexplained) diagnosed during June–November. In 2002, of 158 CSF submissions,
137 (87%) tested negative for common viruses; none of these samples had been tested for WNV. Samples that were
subsequently collected by RIVM for further WNV testing (150 in 2002, 294 in 2003, and 337 in 2004) tested
negative for antibodies to WNV. Because WNV can cause meningoencephalitis, a patient with unexplained menin-
goencephalitis might be infected by WNV. In 2003, a total of 500 hospital patients received such a diagnosis, but only
294 CSF samples were further tested for WNV. At this level of testing, the probability of detecting WNV meningoen-
cephalitis would have been 0.99 if five WNV-caused meningoencephalitis cases had occurred among the 500 hospital
patients but only 0.59 if one WNV-caused case had occurred.

Conclusion: No endemic WNV transmission has been detected in the Netherlands since 2002. CSF submission data
for 2003 and 2004 and hospital discharge data for 2004 are not yet available. On the basis of available data, no
substantial endemic transmission of WNV occurred. However, a limited outbreak of WNV meningoencephalitis might
not be detected. Ruling out WNV as an etiologic agent in all CSF samples when no common pathogen has been
detected will improve surveillance.
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Abstract

Introduction: Certain modeling techniques have been implemented to detect unusually high emergency department
(ED) visit rates on the basis of historical data, including parametric regression, autoregression, multiresolution wavelet
analysis, and additive modeling. An outbreak-detection strategy is informative only to the extent that its specificity is
known because the probability of a false alarm in the absence of an outbreak should be understood to allocate resources
appropriately in the event of an alert that triggers a public health investigation.

Objectives: This study demonstrated that the specificity of outbreak detection using current methods varies substan-
tially on multiple timescales. A modeling approach that provides constant specificity surveillance was developed.

Methods: Autoregressive, Serfling, trimmed seasonal, and wavelet-based outbreak detection models were evaluated for
changes in specificity over time. All model simulations used 12 years of historical respiratory syndrome ED visits at a
major pediatric hospital in an urban setting. Changes in specificity were detected by using error analyses modified for
binomial data and chi-squared analysis. Sensitivity was evaluated by adding synthetic 1-day outbreaks among 10
patients to the historical data. A new outbreak-detection method was developed that used generalized additive models
of both the ED visit mean and variance.

Results: The specificity of four previously published models (i.e., autoregressive, Serfling, trimmed seasonal, and
wavelet-based) was a nonconstant function of the day of the week, the month of the year, or the year of the study
(p<0.05). The seasonal changes in specificity led to a paradoxical increase in sensitivity to simulated outbreaks during
winter months when compared with summer months. The new method had constant specificity over all three time
scales (p<0.05) without a loss of sensitivity compared with previous models.

Conclusion: Interpretation of alarms using outbreak detection strategies is difficult because the specificity is
extremely variable. The fluctuations in specificity are caused by changes on the same time scales in the variance of the
ED use signal. For example, false alarms are more frequent during winter months when signal variance peaks. Previous
models adjust for changes with time of the expected number of ED visits but fail to adjust for the changing variance of
visits with the season, day-of-week, and long-term trend. The developed model accounts for changes with time of both
the expected number of ED visits and the variance of the number of visits. This enables surveillance of known, constant
specificity, enhancing the ability of public health practitioners to interpret the meaning of an alarm.
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Abstract

Introduction: The Maine Medical Center (MMC) Department of Epidemiology began conducting syndromic sur-
veillance on January 1, 2002, by using computerized chief complaints from the emergency department (ED).

Objective: Using an electronic spreadsheet and corresponding high-low graph, current patterns of chief complaints are
measured against historic rates in real time.

Methods: Chief complaints are classified into four syndromic surveillance categories: gastrointestinal, dermatologic,
neurologic, and respiratory. They are manually totaled by category, day, and week. Historic high, low, mean, and the
mean for the current week are entered into a computerized spreadsheet and graphed. The mean of the current week is
visually portrayed within the historic high, low, and mean (Figure). Graphs are returned to EDs monthly, and reviews
are conducted when historic rates are exceeded for 2 consecutive weeks.

Results: During fall 2002, the Maine Bureau of Health began receiving reports of gastrointestinal illness from sick callers. A
foodborne outbreak was confirmed by syndromic surveillance. Syndromic surveillance demonstrated that the 2003–04
influenza season extended longer and
peaked at a much higher rate than in
previous years. These are just two
examples of the usefulness of the sys-
tem in detecting public health events
in an ED with >80,000 visits each year.

Conclusion: The syndromic surveil-
lance in this report has the potential
to enhance public health surveillance
by detecting abnormalities in the vol-
ume of chief complaints that are of
public health concern. The flexibility
and utility of the system is enhanced
by its simplicity. Measurement of
individual chief complaints allows for
variation in case definitions and mini-
mal data manipulation. Use of exist-
ing software limits operating costs to
person time of approximately 40 min-
utes daily. Manual calculation is
required because of a lack of comput-
erized automation and Monday
through Friday staffing; weekend data
are not calculated until Monday.

FIGURE. Respiratory complaint visits to emergency departments in 2004
compared with the same weeks in 2002–2003*
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* Because the last week of each month comprises <7 days, the number of weeks in the year is
more than usual, because every week is not 7 days in this model. However, year-to-year, the
number of days in each week is the same to allow for comparison.

† The vertical lines are historic highs and lows. The bars comprise the average for that particular
week to the average of the same week in the previous years. If the current week is higher
than the usual mean, the bar goes up and the color is dark blue. If the current mean is less,
the bar goes down and the bar is colored light blue. The length of the bars indicate how far
away the usual mean is from the current mean. If the bar extends beyond the line in either
direction, it is beyond the historic high or low. The dark blue bars illustrate that the 2004
weekly average was higher than the 2002–2003 average. The light blue bars illustrate that
the 2004 weekly average was lower than the 2002–2003 average.
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