MMWR Morbidity and Mortality Weekly Report

Weekly

National HIV Testing Day June 27, 2009

June 27 is National HIV Testing Day, which promotes testing as an important strategy to prevent and control transmission of human immunodeficiency virus (HIV) in the United States. Knowing HIV status at an early stage of infection allows persons to receive appropriate monitoring, treatment, and supportive health care that can extend their lives. Early diagnosis of HIV infection can delay progression to acquired immunodeficiency syndrome (AIDS) and reduce transmission of HIV to others. Nonetheless, in 2006, an estimated 232,700 persons, 21\% of those living with HIV infection in the United States, were not aware of their HIV infection status (1).

To enable earlier diagnosis of HIV infection, CDC recommends that all persons aged 13-64 years be offered voluntary HIV testing routinely during health-care visits and that persons at greater risk for HIV be tested more frequently (e.g., at least annually for sexually active men who have sex with men) (2). CDC has increased HIV testing opportunities nationwide, notably in areas with the largest number of AIDS cases among African Americans, to reach those at highest risk for acquiring HIV (3). Additional information on HIV testing resources is available at http://www.hivtest.org.

References

1. CDC. HIV prevalence estimates-United States, 2006. MMWR 2008;57:1073-6.
2. CDC. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR 2006;55(No. RR-14).
3. CDC. A heightened national response to the HIV/AIDS crisis among African Americans. Available at http://www.cdc.gov/hiv/topics/aa/ resources/reports/heightendresponse.htm.

Late HIV Testing - 34 States, 1996-2005

Without effective antiretroviral therapy, most persons infected with human immunodeficiency virus (HIV) will progress to acquired immunodeficiency syndrome (AIDS) in approximately 10 years (1). Testing, diagnosis, and medical care soon after HIV infection and before developing AIDS can prevent unnecessary morbidity and mortality and reduce further HIV transmission. Persons who receive an AIDS diagnosis concurrently or soon after receiving their initial HIV diagnosis (e.g., ≤ 3 years) represent missed opportunities for prevention and treatment (2). A Healthy People 2010 developmental objective is to increase the proportion of new HIV infections diagnosed before progression to AIDS.* To characterize late HIV testing, CDC examined data from 1996-2005 from 34 states † with confidential namebased HIV and AIDS reporting (the most recent data available) to determine the percentage of persons who received an AIDS diagnosis ≤ 3 years after receiving their initial HIV diagnosis. The results indicated that, within 1 year of their HIV diagnosis, 38.3% of patients had received an AIDS diagnosis; another 6.7\%

[^0]
INSIDE

665 HIV Testing Among High School Students - United States, 2007
669 Progress Toward the 2012 Measles Elimination Goal Western Pacific Region, 1990-2008
673 Updated Recommendations for Use of Haemophilus influenzae Type b (Hib) Vaccine: Reinstatement of the Booster Dose at Ages 12-15 Months
675 QuickStats

The $M M W R$ series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2009;58:[inclusive page numbers].

Centers for Disease Control and Prevention

Thomas R. Frieden, MD, MPH
Director
Tanja Popovic, MD, PhD Chief Science Officer
James W. Stephens, PhD Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service
Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Christine G. Casey, MD
Deputy Editor, MMWR Series
Robert A. Gunn, MD, MPH
Associate Editor, MMWR Series
Teresa F. Rutledge
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Donald G. Meadows, MA
Jude C. Rutledge Writers-Editors Martha F. Boyd
Lead Visual Information Specialist Malbea A. LaPete Stephen R. Spriggs
Visual Information Specialists Kim L. Bright, MBA
Quang M. Doan, MBA Phyllis H. King
Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN
Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA
David W. Fleming, MD, Seattle, WA
William E. Halperin, MD, DrPH, MPH, Newark, NJ
King K. Holmes, MD, PhD, Seattle, WA
Deborah Holtzman, PhD , Atlanta, GA
John K. Iglehart, Bethesda, MD
Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR
William Schaffner, MD, Nashville, TN Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA
received an AIDS diagnosis from 1 to 3 years after their HIV diagnosis. Compared with whites, greater percentages of persons of all other racial/ethnic populations received an AIDS diagnosis ≤ 3 years after their initial HIV diagnosis. These findings underscore the need for comprehensive HIV testing programs that include both routine screening of persons aged 13-64 years and more frequent testing for persons at increased risk and, therefore, in greater need of periodic HIV testing.
HIV infection and AIDS are notifiable health conditions in all 50 states, the District of Columbia, and five U.S. territories. Although all states have had AIDS reporting since the early 1980s, states have implemented HIV infection reporting over time; national HIV surveillance ${ }^{\S}$ with uniform reporting was not implemented fully until 2008. CDC regards data from states with confidential, name-based, HIV surveillance systems sufficient to monitor trends and estimate risk behaviors for HIV infection after 4 years of reporting (3). The HIV and AIDS diagnosis data in this report were obtained from the 34 states with such reporting since December 2003.
A standardized Kaplan-Meier method was used to examine time from initial HIV diagnosis to AIDS diagnosis for persons receiving HIV diagnoses in the 34 states during 1996-2005. Patients were included in the analysis if the diagnoses of HIV and AIDS they received met the 1999 case definitions (4). Patients were followed up through 2006, and cases were reported to CDC by June 2008. Completeness of AIDS reporting is estimated to be $>85 \%$, and duplicate reports are estimated to be $<5 \%$ $(3,5)$. Estimates of the percentage of persons with HIV who had an AIDS diagnosis at 1 year and 3 years after their initial HIV diagnosis were calculated overall and by age group at HIV diagnosis, race/ethnicity, sex, HIV transmission category, and year of HIV diagnosis. Certain patients did not have a full 3 years of follow-up, but all had the minimum 1 year of follow-up. In time-to-event analyses, persons are followed starting at different times, but the results are analyzed at a single point in time. This analysis results in persons with varying lengths of follow-up but enables use of all available data. In this report, persons identified as Hispanic or Latino might be of any race. Persons identified as American Indian or Alaska Native, Asian, black or African American, Native Hawaiian or other Pacific Islander, white, or of multiple or unknown race all were non-Hispanic. Persons aged ≥ 13 years were classified according to CDC's standard HIV transmission categories. ${ }^{9}$

[^1]Of the 281,421 persons receiving diagnoses of HIV infection during 1996-2005, 45.0% had an AIDS diagnosis by 3 years after their initial HIV diagnosis (Table). At 3 years after HIV diagnosis, the percentage of persons with an AIDS diagnosis was greater among those who were older (63.2% for those aged ≥ 60 years and 57.5% for those aged $50-59$ years) when they received their initial HIV diagnosis than among those who were younger (31.6% for those aged $20-29$ years and 22.7% for those aged 13-19 years). Whites were least likely to have an AIDS diagnosis 3 years after their initial HIV diagnosis (42.6%), followed by persons identified as of multiple or unknown race (42.9\%), persons identified as black or African American (46.1\%), American Indian or Alaska Native (47.2\%), Hispanic or Latino (48.4\%), and Asian (50.4\%). Percentages of those with AIDS 3 years after their HIV diagnosis could not be calculated for Native Hawaiians or other Pacific Islanders because of small case numbers (Table).

At 3 years after their initial HIV diagnosis, 46.9% of men had an AIDS diagnosis compared with 41.5% of women. A similar pattern was observed by HIV transmission category. A greater percentage of male injection-drug users (IDUs) (49.9\%) had an AIDS diagnosis at 3 years than female IDUs (41.9\%) and a greater percentage of men with high-risk heterosexual contact (50.2\%) than women with high-risk heterosexual contact (40.9%). Among those who had male-to-male sexual contact, 47.8% had an AIDS diagnosis after 3 years and among those who had both male-to-male sexual contact and injection-drug use, 47.2% had an AIDS diagnosis.
Persons who received an HIV diagnosis in 2003 were less likely (44.5%) to have an AIDS diagnosis 3 years later than persons diagnosed with HIV in 1996 (49.1\%). In addition, persons who received an HIV diagnosis in 2005 were less likely (36.4%) to have an AIDS diagnosis 1 year later than persons diagnosed with HIV in 1996 (43.2\%).
Reported by: RL Shouse, MD, T Kajese, MSPH, HI Hall, PhD, LA Valleroy, PhD, Div of HIVIAIDS Prevention, National Center for HIVIAIDS, Viral Hepatitis, STD, and TB Prevention, CDC.
Editorial Note: Current estimates suggest that 21% of HIV infections in the United States are undiagnosed (6). To identify all HIV infections and to initiate early intervention effectively, CDC recommends routine screening for persons aged 13-64 years and pregnant women and retesting at least annually for all persons likely to be at high risk** for $\operatorname{HIV}(7)$. The prognosis for a patient diagnosed with AIDS has improved substantially since introduction of highly active antiretroviral medications

[^2](8); however, persons who receive a diagnosis late in their course of HIV infection often are more severely immunosuppressed and more likely to experience increased morbidity and shortterm mortality than persons with earlier diagnoses in addition to being more likely to transmit HIV when unaware of their infection (7,9).
These findings suggest that from 1996 to 2005 a substantial percentage of persons were diagnosed late in their HIV infection; 38.3% of persons with HIV diagnoses had an AIDS diagnosis within 1 year, and 45.0% had an AIDS diagnosis within 3 years. Because the probability of progression to AIDS following HIV infection in the absence of therapy is approximately 2% in the first 2 years and increases to approximately 50% at 10 years, a diagnosis of AIDS within 1 year of the initial HIV diagnosis suggests late testing for HIV infection and not more rapid advancement to AIDS (1). A diagnosis of AIDS within 3 years from initial HIV diagnosis suggests late testing but also might reflect limited access to medical care, suboptimal treatment, failure to adhere to treatment, or treatment failure. To optimize clinical management and selection and timing of therapy, the U.S. Department of Health and Human Services issued guidelines for use of antiretroviral agents in April 1998, with the most recent update in November 2008. ${ }^{\dagger \dagger}$
Understanding how factors such as late testing contribute to the high rates of HIV infection among minorities is important to reduce HIV transmission and morbidity and mortality in these populations. This analysis showed that, compared with whites, greater percentages of persons in other racial/ethnic populations had an AIDS diagnosis within 3 years of their initial HIV diagnosis. This finding follows recent reports that HIV incidence and prevalence are higher among minorities (especially blacks or African Americans and Hispanics or Latinos) and provides another facet of the disproportionate effects of HIV infection on these populations (3,6). Additional findings in this report showed that men (overall and within transmission categories including both sexes) were more likely than women and older persons were more likely than younger persons to receive a diagnosis of AIDS at 3 years after their HIV diagnosis. Women might receive testing for HIV infection more regularly than men because of more frequent health-care visits and being offered HIV testing as part of routine reproductive health care (e.g., family planning visits).
The findings in this report are subject to at least three limitations. First, the data used to examine time to AIDS diagnosis after initial HIV diagnosis only include data from the 34 states with confidential, name-based HIV surveillance since December 2003. The data from these 34 states account for approximately 66% of the nation's AIDS diagnoses but

[^3]TABLE. Percentages of persons who received a diagnosis of acquired immunodeficiency syndrome (AIDS) 1 year and 3 years after receiving their initial diagnosis of human immunodeficiency virus (HIV) infection,* by selected characteristics - 34 states, ${ }^{\dagger}$ 1996-2005

Characteristic	No. with HIV diagnosis	\%	AIDS diagnosis 1 year after HIV diagnosis		AIDS diagnosis 3 years after HIV diagnosis	
			\%	(95\% CI§)	\%	(95\% CI)
Age group at HIV diagnosis (yrs)						
<13	2,100	0.7	19.0	(18.8-19.2)	NAT	NA
13-19	8,303	3.0	16.1	(15.8-16.4)	22.7	(22.3-23.0)
20-29	60,089	21.4	24.7	(24.4-25.0)	31.6	(31.3-31.9)
30-39	99,657	35.4	38.5	(38.3-38.8)	45.3	(45.1-45.5)
40-49	74,934	26.6	45.3	(45.0-45.6)	51.9	(51.7-52.2)
50-59	26,989	9.6	51.3	(50.9-51.8)	57.5	(57.3-57.8)
≥ 60	9,349	3.3	57.0	(56.4-57.6)	63.2	(63.0-63.5)
Race/Ethnicity**						
American Indian or Alaska Native	1,463	0.5	39.0	(38.6-39.4)	47.2	(46.9-47.4)
Asian	1,598	0.6	44.6	(44.2-44.9)	50.4	t
Black or African American	148,146	52.6	38.7	(38.5-39.0)	46.1	(45.9-46.3)
Hispanic or Latino	42,098	15.0	42.0	(41.6-42.3)	48.4	(48.2-48.6)
Native Hawaiian or other Pacific Islander	144	0.1	39.1	(38.5-39.6)	NA	NA
White	85,149	30.3	37.1	(36.9-37.4)	42.6	(42.4-42.8)
Multiple or unknown race	2,823	1.0	34.9	(34.4-35.4)	42.9	(42.6-43.2)
Sex						
Male	200,882	71.4	40.2	(40.1-40.4)	46.9	(46.8-47.1)
Female	80,539	28.6	34.8	(34.6-34.9)	41.5	(41.4-41.6)
HIV transmission category						
Male-to-male sexual contact	100,231	35.6	40.9	(40.6-41.2)	47.8	(47.5-48.1)
Injection-drug use						
Male	20,970	7.5	42.0	(41.4-42.6)	49.9	(49.5-50.2)
Female	11,184	4.0	32.9	(32.3-33.4)	41.9	(41.5-42.3)
Male-to-male sexual contact and injection-drug use	9,494	3.4	38.2	(37.5-38.8)	47.2	(46.7-47.7)
High-risk heterosexual contact\$8						
Male	21,883	7.8	43.1	(42.6-43.6)	50.2	(49.9-50.5)
Female	39,218	13.9	34.0	(33.6-34.4)	40.9	(40.6-41.2)
Other ${ }^{\text {T17 }}$ or unknown	78,441	27.9	37.7	(37.3-38.0)	42.7	(42.4-42.9)
Year of HIV diagnosis						
1996	18,016	6.4	43.2	(42.6-43.7)	49.1	(48.7-49.6)
1997	16,882	6.0	41.5	(41.0-42.0)	47.1	(46.6-47.6)
1998	15,429	5.5	41.6	(41.0-42.1)	47.4	(46.9-47.9)
1999	23,295	8.3	40.6	(40.1-41.1)	46.9	(46.5-47.4)
2000	28,842	10.2	39.5	(39.0-39.9)	46.0	(45.5-46.4)
2001	38,818	13.8	36.4	(36.0-36.8)	43.8	(43.4-44.2)
2002	36,244	12.9	36.7	(36.3-37.2)	44.4	(44.0-44.8)
2003	33,826	12.0	37.7	(37.2-38.1)	44.5	(44.1-44.9)
2004	35,645	12.7	37.6	(37.2-38.1)	NA	NA
2005	34,424	12.2	36.4	(36.0-36.9)	NA	NA
Total	281,421	100.0	38.3	(38.2-38.5)	45.0	(44.9-45.1)

* Data were not adjusted for reporting delays and reflect estimates of the probablity that persons will have AIDS 1 year and 3 years after their initial HIV diagnosis, as determined by the Kaplan-Meier method.
† Alabama, Alaska, Arizona, Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Iowa, Kansas, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, West Virginia, Wisconsin, and Wyoming.
§ Confidence interval.
${ }^{1}$ Not available.
** Hispanic or Latino persons might be of any race; persons in all other categories are non-Hispanic.
${ }^{\mathrm{Ht}} \mathrm{Cl}$ not presented because the variance for this estimate is zero.
§§ Heterosexual contact with a person known to have HIV infection or an HIV risk factor (e.g., male-to-male sexual contact or injection-drug use).
${ }^{111}$ For example, receipt of blood or tissue transplant.
might not be nationally representative. Data from additional states are expected to be added in the future, including states (e.g., California) with high HIV prevalence and heavy concentrations of certain populations (e.g., Hispanics). Second, misclassification of the HIV diagnosis date might have occurred in certain cases. For example, some persons might have had positive results from anonymous, unreported HIV tests before they had a confidential HIV test which was reported to a health department, making the time from initial HIV diagnosis to AIDS diagnosis appear shorter than was actually the case. Finally, the reasons for late HIV testing cannot be discerned from the results of this study; therefore, in addition to promoting early testing, comprehensive strategies to improve medical care access, enhance compliance, and ensure appropriate timing and selection of effective therapy also should be considered.

To reduce late testing for HIV infection, health-care providers should fully implement both routine and risk-based HIV testing, and local public health officials should continue educational efforts regarding the importance of early HIV testing. In 2003, CDC launched an initiative, Advancing HIV Prevention: New Strategies for a Changing Epidemic. Priority strategies included making HIV testing part of routine medical care and implementing new models to diagnose HIV infection outside of clinical settings. From this initiative, CDC sponsored multiple projects that demonstrated the feasibility and yield of HIV screening programs in health-care, corrections, and community settings (10). Achieving earlier diagnosis and reducing HIV transmission will require providers, health departments, and community organizations to promote screening in healthcare settings and periodically retest persons with ongoing risk behaviors. Additionally, expansion of efforts within the social networks of persons who receive an HIV diagnosis can result in testing of others who are likely infected.

References

1. Brookmeyer R. Reconstruction and future trends of the AIDS epidemic in the United States. Science 1991;253:37-42.
2. Hall HI, McDavid K, Ling Q, Sloggett A. Determinants of progression to AIDS or death after HIV diagnosis, United States, 1996 to 2001. Ann Epidemiol 2006;16:824-33.
3. CDC. HIV/AIDS surveillance report, 2007. Vol. 19. Atlanta, GA: US Department of Health and Human Services, CDC; 2009. Available at http://www.cdc.gov/hiv/topics/surveillance/resources/reports.
4. CDC. 1999 guidelines for national human immunodeficiency virus case surveillance, including monitoring for human immunodeficiency virus infection and acquired immunodeficiency syndrome. MMWR 1999;48(No. RR-13).
5. Glynn MK, Ling Q, Phelps R, Li J, Lee L. Accurate monitoring of the HIV epidemic in the United States: case duplication in the national HIV/AIDS surveillance system. J Acquir Immune Defic Syndr 2008;47:391-6.
6. CDC. HIV prevalence estimates-United States, 2006. MMWR 2008;57:1073-6.
7. CDC. Revised recommendations for HIV testing of adults, adolescents, and pregnant women in health-care settings. MMWR 2006;55(No. RR-14).
8. Palella FJ, Delaney KM, Moorman AC, et al; HIV Outpatient Study Investigators. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998;338:853-60.
9. Sabin CA, Smith CJ, Gumley H, et al. Late presenters in the era of highly active antiretroviral therapy: uptake of and responses to antiretroviral therapy. AIDS 2004;18:2145-51.
10. Heffelfinger JD, Sullivan PS, Branson B, et al. Advancing HIV prevention demonstration projects: new strategies for a changing epidemic. Public Health Rep 2008;123(Suppl 3):5-15.

HIV Testing Among High School Students - United States, 2007

In the United States, an estimated 1.1 million persons were living with human immunodeficiency virus (HIV) infection in 2006, of whom an estimated 232,700 were undiagnosed and unaware they were HIV infected (1). Adolescents and young adults aged 13-24 years represented 4.4% of the total but disproportionately comprised an estimated 9.9% of the undiagnosed cases (1). Early diagnosis of HIV infection facilitates medical interventions and enables infected persons to reduce high-risk behavior and the likelihood of further HIV transmission. To determine the extent to which adolescents are being tested for HIV, data from the 2007 Youth Risk Behavior Survey (YRBS) (the most recent data available) were analyzed. The results indicated that nationwide, 12.9% of all high school students had ever been tested for HIV. The prevalence of HIV testing increased with increasing grade and decreased with increasing age at first sexual intercourse. Prevalence of HIV testing was higher among female students (14.8\%) than male students (11.1\%), higher among non-Hispanic black students (22.4%) than Hispanic (12.7%) and non-Hispanic white students (10.7\%), was higher among students who had ever had sexual intercourse (22.3%) than those who had never had sexual intercourse (4.0%), and among students who had ever had sexual intercourse. To decrease the number of undiagnosed HIV infections among adolescents and promote HIV prevention, CDC recommends that health-care providers offer HIV screening as part of routine medical care. High schools can support those screening efforts by including information on obtaining HIV testing in their HIV curricula.

YRBS, a component of CDC's Youth Risk Behavior Surveillance System,* estimates the prevalence of health risk behaviors among high school students through biennial national, state, and local surveys. The 2007 national survey obtained cross-sectional data representative of public- and private-school students in grades $9-12$ in the 50 states and

[^4]the District of Columbia. Students completed an anonymous, self-administered questionnaire that included a question about HIV testing. ${ }^{\dagger}$ Students from 157 schools completed 14,103 questionnaires. The school response rate was 81%, the student response rate was 84%, and the overall response rate was $68 \%{ }^{5}$ After quality control measures, data from 14,041 students were available for analysis; $12,120(86.3 \%)$ students answered the HIV testing question. A more detailed description of YRBS methods has been published (2).
For this analysis, data were weighted to adjust for nonresponse and oversampling of black and Hispanic students. Analyses were conducted on weighted data using statistical software to account for the complex sample design (2). T-tests were used to determine statistically significant differences in HIV testing by sex, race/ethnicity, whether students had been taught in school about acquired immunodeficiency syndrome (AIDS) or HIV infection, and whether students had ever had sexual intercourse.** The Cochran-Mantel-Haenszel trend test was used to determine statistically significant differences in HIV testing by grade and age when students had first sexual intercourse. ${ }^{\dagger \dagger}$ Race/ethnicity data are presented only for nonHispanic black, non-Hispanic white, and Hispanic students (who might be of any race).
The analysis showed that, nationwide, 12.9% of students had ever been tested for HIV (excluding tests for blood donation) (Table 1). Overall, the prevalence of HIV testing was higher among female students (14.8\%) than male students (11.1\%; $\mathrm{p}<0.001$), higher among non-Hispanic black students (22.4\%) than Hispanic students (12.7%; $\mathrm{p}<0.001$) and non-Hispanic white students (10.7%; $\mathrm{p}<0.001$), and increased by grade from 9.1% among 9 th-grade students to 18.9% among 12th-grade students ($\mathrm{p}<0.001$). HIV testing also was more common among students who had ever been taught in school about AIDS or HIV infection (13.2\%) than among those who had not ($9.7 \% ; \mathrm{p}<0.001$), and higher among students who ever had sexual intercourse (22.3%) than among students who had not (4.0\%; $\mathrm{p}<0.001$). Among students who had ever had sexual intercourse, the prevalence of HIV testing decreased by age at

[^5]TABLE 1. Percentage of high school students who were tested for human immunodeficiency virus (HIV),* by demographic, behavioral, and other characteristics - United States, Youth Risk Behavior Survey, 2007

| Characteristic | $\%$ | $(95 \%$ CI \dagger |
| :--- | ---: | ---: |$)$

* Determined from 12,120 valid responses to the question, "Have you ever been tested for HIV, the virus that causes AIDS [acquired immunodeficiency syndrome]? (Do not count tests done if you donated blood.)."
\dagger Confidence interval.
§ Determined by response to the question, "Have you ever been taught about AIDS or HIV infection in school?"
ๆ ${ }^{\text {I }}$ Determined by response to the question, "Have you ever had sexual intercourse?"
** Among students who had ever had sexual intercourse; determined by response to the question, "How old were you when you had sexual intercourse for the first time?"
first sexual intercourse, from 30.7\% among students who first had sexual intercourse before age 13 years to 12.6% among students who first had sexual intercourse at age 17 years or older ($\mathrm{p}<0.001$). The prevalence of HIV testing increased with increasing grade among non-Hispanic white female students ($\mathrm{p}<0.001$), non-Hispanic black female students ($\mathrm{p}<0.001$), Hispanic female students ($\mathrm{p}=0.02$), and non-Hispanic black male students ($\mathrm{p}=0.002$) (Table 2). Among students who ever had sexual intercourse, the prevalence of HIV testing increased with increasing grade among non-Hispanic white female students ($\mathrm{p}=0.02$), non-Hispanic black female students ($\mathrm{p}=0.003$), Hispanic female students ($\mathrm{p}=0.01$), and non-Hispanic black male students ($\mathrm{p}=0.002$). The prevalence of HIV testing was

TABLE 2. Percentage of all high school students and high school students who had ever had sexual intercourse who were tested for human immunodeficiency virus,* by race/ethnicity, sex, and grade — United States, Youth Risk Behavior Survey, 2007

Race/Ethnicity and grade	All high school students				High school students who ever had sexual intercourse			
	Female		Male		Female		Male	
	\%	(95\% Cl^{\dagger})	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
White, non-Hispanic	12.0	(10.2-14.2)	9.4	(8.1-11.0)	23.8	(20.9-26.9)	16.3	(14.3-18.6)
9	7.6	(5.0-11.3)	7.9	(5.1-12.0)	20.5	(12.4-32.0)	17.5	(10.5-27.7)
10	8.8	(6.8-11.2)	8.6	(6.1-12.1)	18.4	(14.2-23.4)	16.9	(11.5-24.2)
11	12.7	(8.6-18.3)	10.3	(7.6-13.9)	23.1	(16.5-31.3)	16.6	(12.3-22.0)
12	19.8	(15.8-24.6)	11.3 §	(8.7-14.5)	29.5	(24.3-35.3)	15.1 §	(11.3-19.7)
Black, non-Hispanic	27.2	(22.1-32.9)	17.3	(14.6-20.5)	38.7	(32.8-44.9)	21.4	(18.4-24.9)
9	17.2	(11.5-24.9)	9.9	(5.9-16.2)	30.9	(21.7-42.0)	10.8	(5.7-19.6)
10	24.7	(20.1-29.9)	18.5	(11.5-28.4)	35.4	(27.2-44.6)	23.0	(14.8-34.0)
11	30.7	(22.6-40.2)	18.1	(13.4-24.1)	37.4	(27.6-48.3)	20.6	(14.5-28.5)
12	41.4	(34.2-48.9)	27.9	(22.0-34.6)	49.4	(42.1-56.7)	33.4	(26.5-41.0)
Hispanic	13.8	(11.5-16.4)	11.5	(9.4-14.0)	21.3	(17.4-25.9)	17.1	(13.7-21.2)
9	11.8	(8.6-16.1)	8.9	(5.2-14.9)	15.3	(9.7-23.3)	15.7	(8.2-28.1)
10	9.1	(5.4-14.8)	11.2	(8.5-14.5)	15.9	(9.5-25.3)	17.5	(12.8-23.3)
11	15.4	(10.2-22.4)	12.0	(8.3-17.1)	27.2	(17.9-38.9)	16.5	(10.9-24.1)
12	20.5	(14.0-28.9)	16.18	(11.2-22.5)	24.9	(18.2-33.2)	$18.8{ }^{\S}$	(13.7-25.3)
Total	14.8	(13.0-16.8)	11.1	(9.9-12.4)	26.9	(24.4-29.6)	18.0	(16.5-19.6)

* Determined from 12,120 valid responses to the question, "Have you ever been tested for HIV, the virus that causes AIDS [acquired immunodeficiency syndrome]? (Do not count tests done if you donated blood.)."
${ }^{\dagger}$ Confidence interval.
§ Nonsignificant ($\mathrm{p} \geq 0.05$) trend by grade using Cochran-Mantel-Haenszel trend test.
highest among 12th-grade non-Hispanic black students who had ever had sexual intercourse; 49.4% of female and 33.4% of male students in this group had been tested for HIV.
Reported by: A Voetsch, PhD, A Balaji, PhD, J Heffelfinger, MD, KMiller, PhD, B Branson, MD, Div of HIVIAIDS Prevention, National Center for HIVIAIDS, Viral Hepatitis, STD, and TB Prevention; D Eaton, PhD, L Kann, PhD, Div of Adolescent and School Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: At the end of 2006, an estimated 48% of adolescents and young adults infected with HIV were unaware of their infection (1), representing missed opportunities for diagnosis, treatment, and reduction in the number of new HIV transmissions. The findings from this analysis indicate that in $2007,12.9 \%$ of high school students overall and 22.3% of students who ever had sexual intercourse had been tested for HIV. These results are similar to those of the 2000 National Survey of Teens on HIV/AIDS that determined that 10% of adolescents overall and 27% of sexually active adolescents aged 15-17 years reported ever being tested for HIV (3). ${ }^{\S s}$ The results for non-Hispanic black students are especially relevant, because, as of 2007, non-Hispanic blacks accounted for 72% of HIV diagnoses among adolescents aged 13-19 years (4). This analysis indicated that non-Hispanic black students

[^6]had the highest overall race/ethnicity-specific percentage of students tested (22%), and among all students who had sexual intercourse, non-Hispanic black students in 12th grade had the highest testing prevalence. These findings suggest that, with respect to race/ethnicity, students with the highest group risk are getting tested at higher rates.
Visits to health-care providers are opportunities for HIV testing. Data collected during 1994-1996 for the National Longitudinal Study of Adolescent Health reveal that two thirds of adolescents aged 15-17 years had a physical examination in the preceding 12 months (5). In the 2000 National Survey of Teens, two thirds of the adolescents who reported being tested for HIV had asked to be tested, and most had been tested in health-care settings, including general health clinics (50\%), private physician offices (31\%), and HIV clinics (9\%) (3).
In 2006, CDC recommended routine HIV screening for all patients aged 13-64 years (6). Certain persons at high risk for HIV should be tested at least annually: 1) injection-drug users and their sex partners, 2) persons who exchange sex for money or drugs, 3) sex partners of HIV-infected persons, and 4) men who have sex with men or heterosexual persons who have had more than one sex partner since their most recent HIV test or whose sex partners have had more than one sex partner since their most recent HIV test. In addition, all patients seeking treatment for STDs and those attending STD clinics should be
screened routinely for HIV during each visit for a new health concern，regardless of known or suspected risk behaviors for HIV infection．
The Society for Adolescent Medicine recommends offering testing and effective risk－reduction counseling and assistance as part of routine care of sexually active adolescents，especially those who live in high HIV prevalence areas（ 7 ）．The American College of Obstetricians and Gynecologists also recommends HIV screening for sexually active women aged <19 years（8）． Although the results of this report show that the prevalence of HIV testing was higher among female than male students and increased with increasing grade， 73% of female students who had sexual intercourse had never been tested for HIV．

Routine HIV screening in health－care settings，as recom－ mended，could increase the proportion of adolescents who are tested for HIV among those who receive medical care． Adolescents who have had sexual intercourse or are considering having sexual intercourse should know their HIV status and the HIV status of their sex partners（厅）．Previously published YRBS data for 2007 showed that 15% of high school students had had sexual intercourse with four or more persons during their lifetime（2）．Such students and adolescents at high risk for HIV infection should be tested at least annually（厅）．
The findings in this report are subject to at least three limita－ tions．First，these results apply only to adolescents who attend school and therefore are not representative of all adolescents． In 2005，of persons aged 16－17 years in the United States， approximately 4% were not enrolled in a high school program and had not completed high school（9）．Second，the extent of YRBS underreporting or overreporting of behaviors such as HIV testing or age at first sexual intercourse has not been determined．Third，rates of HIV infection and sexual behaviors vary geographically，and this national analysis cannot be applied to regions，states or cities．
HIV testing among sexually active adolescents is an impor－ tant strategy to reduce the incidence of HIV infection（厅）． The results of this analysis showed that students who had been taught about AIDS or HIV in school were more likely to have had an HIV test than were those who had not been taught about AIDS or HIV．Although approximately 90% of high school students have been taught about AIDS or HIV（2）， only 12.9% have had an HIV test．High schools can enhance their HIV prevention curricula by including information on locations and procedures for obtaining free，confidential HIV
testing．${ }^{9}$ In accordance with state and local policies，school health professionals could refer at－risk students for HIV preven－ tion，counseling，and testing services．Many schools collaborate with local health centers and community－based organizations to help students receive screenings and some school－based health clinics offer HIV testing on－site．＊＊＊Health－care provid－ ers，educators，and parents or guardians play critical roles in providing support and guidance to adolescents in making deci－ sions about the timing and frequency of HIV testing．Because adolescents might be sexually active but unwilling to discuss this information，health－care providers should provide HIV testing routinely to all patients aged ≥ 13 years in accordance with CDC recommendations．

[^7]
References

1．Campsmith M，Rhodes P，Hall I．Estimated prevalence of undiagnosed HIV infection in the United States at the end of 2006．［Abstract］．In： 16th Conference on Retroviruses and Opportunistic Infections；February 16－20，2009；Montreal，QC，Canada．Available at http：／／www．retro conference．org／2009／Abstracts／33682．htm．
2．CDC．Youth risk behavior surveillance－United States，2007．MMWR 2008；57（No．SS－4）．
3．Kaiser Family Foundation．National survey of teens on HIV／AIDS 2000. Menlo Park，CA：Kaiser Family Foundation；2000．Available at http：／／ www．kff．org／youthhivstds／3092－index．cfm．
4．CDC．HIV／AIDS surveillance in adolescents and young adults（through 2007）．Atlanta，GA：US Department of Health and Human Services， CDC；2009．Available at http：／／www．cdc．gov／hiv／topics／surveillance／ resources／slides／adolescents／index．htm．
5．Yu SM，Bellamy HA，Schwalberg RH，Drum MA．Factors associated with use of preventive dental and health services among U．S．adolescents． J Adolesc Health 2001；29：395－405．
6．CDC．Revised recommendations for HIV testing of adults，adoles－ cents，and pregnant women in health－care settings．MMWR 2006；55 （No．RR－14）．
7．D＇Angelo LJ，Samples C，Rogers AS，Peralta L，Friedman L．HIV infec－ tion and AIDS in adolescents：an update of the position of the Society for Adolescent Medicine．J Adolesc Health 2006；38：88－91．
8．ACOG Committee Opinion．Routine human immunodeficiency virus screening．Obstet Gynecol 2008；112（2 Pt 1）：401－3．
9．Laird J，Cataldi EF，KewalRamani A，Chapman C．Dropout and comple－ tion rates in the United States：2006．Washington，DC：National Center for Education Statistics，Institute of Education Sciences，US Department of Education；2008．Available at http：／／nces．ed．gov／pubs2008／2008053．pdf．

Progress Toward the 2012 Measles Elimination Goal - Western Pacific Region, 1990-2008

In 2003, the World Health Organization (WHO) Regional Committee of the Western Pacific Region (WPR) formally declared a measles elimination goal* (1), and in 2005, the committee established a target date of 2012 for regional measles elimination (2). Key strategies recommended by WHO for achievement of measles elimination include 1) very high ($\geq 95 \%$) vaccination coverage with 2 doses of measles-containing vaccine (MCV1 and MCV2) through routine vaccination and/or supplemental immunization activities (SIAs) ${ }^{\dagger}$; 2) highquality case-based ${ }^{\S}$ measles surveillance; and 3) access to an accredited measles laboratory network for testing of suspected measles cases and identification of measles virus genotypes. This report describes progress toward measles elimination in the WPR through 2008. Measles likely has been eliminated or nearly eliminated in 24 of the 37 countries and areas in the WPR (referred to in this report as countries). However, large numbers of measles cases continue to be reported from several countries. During 2008, a total of 131,441 confirmed measles cases (98.4 per million population) were reported from China and 11,015 cases (86.1 per million population) from Japan, two countries that account for 82% of the region's population and $>97 \%$ of its confirmed measles cases. Intensified efforts by WPR countries, particularly China and Japan, will be required to achieve the 2012 goal.

Routine Vaccination

Among the 37 countries in the WPR, 36 report administrative and, if available, survey data and their estimates of vaccination coverage among infants annually to WHO and the United Nations Children's Fund (UNICEF). The other country, Pitcairn Islands (with a population of approximately 50 persons), does not report data to WHO/UNICEF and is not included in this report. Based on these and other data

[^8]available from published literature, WHO/UNICEF make their estimates of actual vaccination coverage for WHO member states (3). Regional MCV1 coverage by year was determined using WHO/UNICEF estimates of vaccination coverage and, when these estimates were not available (such as in certain areas of member states), coverage was determined using country estimates and weighting by country population size. Because China includes 75% of the region's population, its data are reported separately.
The history of measles elimination in the WPR can be divided into three periods: the period of measles control (1990-1995), the period of accelerated measles control (1996-2002), and the period of measles elimination (from 2003 to the present).** This report uses these three periods to describe progress toward measles elimination. Among the 35 WPR countries reporting (i.e., all WPR countries except China and Pitcairn Islands), mean regional MCV1 coverage was 80.8% during the period of measles control (1990-1995), increased to 89.0% during the period of accelerated control (1996-2002), and reached 91.6% during the period of measles elimination (2003-2008) (Figure). The WHO-estimated mean MCV1 coverage in China was $85.5 \%, 84.4 \%$, and 88.8% during the same periods, but increased from 85% in 2003 to 94% in 2007 (data were not available for 2008). Among 36 countries (including China) reporting dose schedules in 2008, MCV1 was scheduled for administration at age <9 months in two (5.6%) countries, age 9 months in five (13.9\%) countries, ${ }^{\dagger \dagger}$ age 12 months in 26 (72.2%) countries, and age 15 months in three (8.3%) countries (Table 1).
Before 2003, few countries reported MCV2 coverage to WHO/UNICEF. During 2003-2008 (the period of measles elimination), the number of reporting countries varied annually from 16 to 24 . These country estimates were used to determine the regional weighted MCV2 coverage by year. Mean MCV2 coverage (excluding China) during 2003-2008 was 84.2%. China's reported MCV2 coverage ranged from 84.1% to 96.4% during 2003-2007, with a mean of 92.5%. As of 2008, among the 30 countries that had scheduled

[^9]FIGURE. Number of reported measles cases and coverage with first dose of measles-containing vaccine (MCV1) - World Health Organization, Western Pacific Region, 1990-2008*

*The history of measles elimination in the Western Pacific Region can be divided into three periods: the period of measles control (1990-1995), the period of accelerated measles control (1996-2002), and the period of measles elimination (from 2003 to the present). Measles control aims to reduce the number of measles cases and deaths by 1) high ($\geq 90 \%$) coverage with a single dose of measles vaccine; 2) measles surveillance in every district with aggregate data reporting; and 3) case management with vitamin A and treatment for measles complications. Accelerated measles control aims to prevent measles outbreaks by providing a second dose of measles vaccine, often through campaigns, and conducting active measles surveillance with laboratory confirmation of suspected outbreaks. Measles elimination aims to interrupt transmission of measles by 1) very high ($\geq 95 \%$) coverage with 2 doses of measles vaccine through routine vaccination systems or SIAs; 2) high-quality case-based surveillance; and 3) access to an accredited measles laboratory network for confirmation of suspected measles cases and identification of measles genotypes.
administration of MCV2, 12 countries (40%) administered MCV2 at age 13-23 months, three (10%) at age 2 years, eight (26.7%) at age 4 years, one (3.3%) at age 5 years, five (16.7%) at age 6 years, and one (3.3%) at age 7 years.

Supplemental Immunization Activities

During the periods of measles accelerated control (19962002) and elimination (2003-2008), many countries conducted SIAs. Approximately 94.4 million children and adolescents in 28 WPR countries (excluding China) were vaccinated through SIAs. In China, SIAs during 2003-2008 reached approximately 101 million children and adolescents in 14 provinces (Table 2). SIA coverage generally has been higher since the region established an elimination goal. Excluding China, SIAs reached 87% of the target population in 25 countries during the period of measles accelerated control (1996-2002) and increased to 94% of the target population in 28 countries during the period of measles elimination (2003-2008). In China, SIA coverage by year during 2003-2008 was $95 \%-99 \%$, with the exception of 2005. SIAs in the WPR were frequently used to provide vitamin A, oral polio vaccine, and anti-helminthics in addition to MCV.

Surveillance Activities

By 2008, all countries in WPR conducted case-based measles surveillance, supported by the measles and rubella laboratory network (LabNet), a network of 382 laboratories. Standard indicators for high-quality measles surveillance include 1) two or more suspected measles cases per 100,000 discarded as nonmeasles; 2) $\geq 80 \%$ of suspected measles cases with adequate investigations (i.e., investigations within 48 hours of rash onset that include all essential data elements); 3) $\geq 80 \%$ of suspected measles cases with clinical specimens collected within 28 days of rash onset; and 4$) \geq 80 \%$ of specimens with laboratory results available within 7 days after receipt in the laboratory $(4,5)$. In 2008, the region's indicator achievements were 1.6, 47%, 62%, and 76%, respectively (6).
Genotypes of endemic measles virus identified among measles patients in the WPR since 2007 include D5 in Japan, D9 in Lao People's Democratic Republic, Malaysia, and New Zealand, and H1 in China, Hong Kong (China, Special Administrative Region [SAR]), and Vietnam. In addition, genotypes B3, D4, D8, and G3 were identified among measles patients; some of these genotypes were imported from other regions.

Monitoring Measles Incidence

Suspected measles cases can be confirmed by the laboratory (e.g., presence of anti-measles immunoglobulin M (IgM) antibodies in clinical specimens), by epidemiologic linkage to another confirmed case, and by clinical criteria (i.e., cases that satisfy the measles clinical case definition ${ }^{\S \S}$ and cannot be discarded as nonmeasles by laboratory or other criteria). Since 1990, the largest annual number of measles cases reported from the WPR (excluding China) was 106,172 (255.6 per million population) in 2000. In 2008, excluding China, 14,724 cases (32.6 per million) were reported, a decrease of 86%. (Figure). China reported 131,441 measles cases (98.4 per million) in 2008. A large outbreak in Japan resulted in over 18,000 (140.7 per million) reported cases in 2007 and 11,015 (86.1 per million) in 2008 (7). Excluding China and Japan, 3,564 measles cases (11.8 per million) were reported from the rest of the region in 2008. In descending order, the majority of these were from Cambodia (1,765), Philippines (880), Malaysia (333), Vietnam (258), and Lao People's Democratic Republic (117) (6).

[^10]TABLE 1. Coverage with first dose of measles-containing vaccine (MCV1), by country/area - World Health Organization, Western Pacific Region, 2003-2008

Country/Area	Age at 1st dose (MCV1)	Age at 2nd dose (MCV2)	MCV1 coverage (\%)*					
			2003	2004	2005	2006	2007	2008
Australia	12 mos	4 yrs	94	93	94	94	94	94
Brunei Darussalam	15 mos	4 yrs	99	99	97	97	97	100
Cambodia	9 mos	None	65	80	79	78	79	89
China	8 mos	18-24 mos	85	86	86	93	94	NA ${ }^{\dagger}$
Hong Kong (China)	12 mos	6 yrs	83	95	95	95	95	95
Japan	1 yr	5-7 yrs	99	99	99	99	98	97
Lao People's Democratic Republic	9 mos	None	42	36	41	48	40	52
Macau (China)	12 mos	18 mos	90	91	91	90	90	90
Malaysia	12 mos	7 yrs	94	71	90	90	90	94
Mongolia	$8-11 \mathrm{mos}$	14-21 mos	95	96	99	99	98	97
New Zealand	15 mos	4 yrs	84	83	82	82	79	NA
Papua New Guinea	$9 \mathrm{mos}^{\S}$	None	42	37	49	55	47	54
Philippines	9 mos	None	80	80	93	92	92	86
Republic of Korea	$12-15 \mathrm{mos}$	4-6 yrs	96	99	99	99	92	92
Singapore	$1-2 \mathrm{yrs}$	6-7 yrs	93	95	96	93	95	95
Vietnam	9 mos	6 yrs	93	97	95	93	83	92
Pacific island countries								
American Samoa	12 mos	4-6 yrs	89	NA	80	90	89	86
Cook Islands	12 mos	15 mos	99	99	99	99	98	95
Federated States of Micronesia	12 mos	13 mos	91	85	96	83	92	NA
Fiji	12 mos	6 yrs	91	62	70	99	81	94
French Polynesia	12 mos	2 yrs	NA	NA	99	96	99	NA
Guam	12 mos	4-6 yrs	84	82	81	85	NA	NA
Kiribati	12 mos	6 yrs	72	56	85	61	93	72
Marshall Islands	12 mos	13 mos	90	70	86	96	94	NA
Nauru	12 mos	15 mos	53	67	80	99	99	100
New Caledonia	12 mos	2 yrs	NA	NA	NA	99	99	99
Niue	15 mos	4 yrs	86	99	99	99	99	100
Northern Mariana Islands	12 mos	4 yrs	92	82	84	84	71	100
Palau	12 mos	15 mos	99	99	98	98	91	97
Samoa	12 mos	13 mos	99	25	57	54	63	45
Solomon Islands	12 mos	None	70	72	70	84	78	60
Tokelau	12 mos	15 mos	41	82	100	100	100	92
Tonga	12 mos	18 mos	99	99	99	99	99	100
Tuvalu	12 mos	18 mos	95	97	62	84	95	93
Vanuatu	12 mos	None	48	59	70	99	65	100
Wallis and Futuna	12 mos	24 mos	100	NA	NA	NA	86	NA

* World Health Organization estimates were used for member states through 2007. National estimates were used for areas and jurisdictions of member states and for Papua New Guinea through 2007, and for all countries and areas in 2008. Vaccination schedule as of 2008.
\dagger Not available.
§ Papua New Guinea also administers a dose at age 6 months that is considered supplementary to MCV1 administered at age 9 months.

Country Measles Elimination Status

Several WPR countries have achieved or nearly achieved the indicator targets suggesting substantial progress toward measles elimination. In 2006, Republic of Korea declared measles eliminated after having successfully implemented WHO-recommended strategies (8). In Australia, measles incidence has ranged from 0.5 to 6.1 per million since 2002; case investigations and genotype analysis indicated that the majority of these cases were imported or import-related (9). Reported routine vaccination coverage in Australia is high; however, sensitivity of suspected measles reporting is uncertain because surveillance performance is not monitored nationally. In

Macau (China, SAR), fewer than five cases per year have been reported since 2001, corresponding to an annual incidence of zero to 8.3 per million; case investigations and genotype analysis of specimens during this period indicate that most of these cases were imported. In 2008, surveillance performance in Macau (China, SAR) satisfied all key indicator targets. All 21 Pacific island countries have reported zero measles cases in 2007 and 2008.
Reported by: Unit of Expanded Programme on Immunization, World Health Organization Regional Office of the Western Pacific, Manila, Philippines. Vaccines and Biologicals Dept, World Health Organization, Geneva, Switzerland. Global Immunization Div, Div of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC.

TABLE 2. Supplementary immunization activities, by country/area, target age group, type of vaccine, and year - World Health Organization, Western Pacific Region, 1996-2008

Country/Area	Year	Target age group	Type of vaccine	Persons vaccinated	
				No.	(\%)
Australia	1998	5-12 yrs	M *	1,335,000	(75)
Cambodia	2002-2004	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	2,439,029	(100)
	2007	9-59 mos	M	1,530,097	(105)
China	2003	$8 \mathrm{mos}-12 \mathrm{yrs}$	M	819,732	(99)
	2004	$8 \mathrm{mos}-12 \mathrm{yrs}$	M	7,791,796	(98)
	2005	$8 \mathrm{mos}-14 \mathrm{yrs}$	M	19,826,098	(75)
	2006	$8 \mathrm{mos}-14 \mathrm{yrs}$	M	5,900,000	(95)
	2007	$8 \mathrm{mos}-14 \mathrm{yrs}$	M	20,100,000	(99)
	2008	$8 \mathrm{mos}-14 \mathrm{yrs}$	M	46,554,324	(98)
Hong Kong (China)	1997	1-19 yrs	M	873,000	(97)
Japan	2008-2012	$13 \mathrm{yrs}, 18 \mathrm{yrs}$	MR ${ }^{\dagger}$	NA§	NA
Lao People's Democratic Republic	2000-2001	9-59 mos	M	602,662	(86)
	2007	9 mos -14 yrs	M	2,088,328	(96)
Malaysia	2004	7-15 yrs	M	4,457,862	(93)
Mongolia	1996	$9 \mathrm{mos}-10 \mathrm{yrs}$	M	543,869	(98)
	2000	$9 \mathrm{mos}-8 \mathrm{yrs}$	M	352,740	(96)
	2007	2-10 yrs	M	401,263	(97)
New Zealand	1997	2-10 yrs	M	300,000	(75)
Papua New Guinea	1997	9-59 mos	M	514,366	(76)
	2003-2005	$6 \mathrm{mos}-10 \mathrm{yrs}$	M	1,533,815	(76)
	2008-2009	$6 \mathrm{mos}-6 \mathrm{yrs}$	M	NA	NA
Philippines	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	22,950,000	(85)
	2004	$9 \mathrm{mos}-7 \mathrm{yrs}$	M	17,475,136	(95)
	2007	9-48 mos	M	8,216,421	(95)
Republic of Korea	2001	8-16 yrs	MR	5,614,327	(96)
Vietnam	2002-2003	9 mos-10 yrs	M	15,326,103	(99)
	2004	12-18 yrs	M	1,544,001	(95)
	2007	$1-20 \mathrm{yrs}$	M	3,729,848	(97)
	2008	7-20 yrs	M	1,008,690	(97)
Pacific island countriesCook Islands	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	5,545	(85)
	2006	1-14 (mos)/35 (females)	MR	7,458 ${ }^{11}$	NA
Fiji	1997	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	203,398	(81)
	2001	$9 \mathrm{mos}-5 \mathrm{yrs}$	M	103,200	(86)
	2006	$6 \mathrm{mos}-4 \mathrm{yrs}$	MR	89,763	(98)
Federated States of Micronesia	2004	12-59 mos (Chuuk)	MMR	19,000 ${ }^{+}$	NA
French Polynesia	1998	8-12 yrs	M	19,250	(77)
Guam	2003	$12 \mathrm{mos}-4 \mathrm{yrs}$	MMR**	19,000 ${ }^{+}$	NA
Kiribati	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	23,475	(86)
	2006	$1-14$ yrs (males)/19 yrs (females)	MR	39,715	(93)
Marshall Islands	1998	NA	M	NA	NA
	2003	6 mos-40 yrs	MMR	37,111	(83)
	2004	$13 \mathrm{mos}-18 \mathrm{yrs}$	MMR	NA	NA
Nauru	1997	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	2,540	(100)
	2003	9 mos -19 yrs	M	3,3501	NA
New Caledonia	1997	6-10 yrs	M	18,023	(90)
Niue	1997	$9 \mathrm{mos}-15 \mathrm{yrs}$	M	788	(99)
	2003	5-11 yrs	MMR	101	(36)
Palau	1998	NA	M	NA	NA
Samoa	1998	9 mos -15 yrs	M	72,236	(97)
	2003	1-18 yrs	MR	47,489	(88)
	2005	9-35 mos	MR	11,610 ${ }^{\text {¹ }}$	NA
	2008	12-69 mos	MR	20,806	(91)
Solomon Islands	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	124,543	(81)
	2003	$9 \mathrm{mos}-2 \mathrm{yrs}$	M	44,407	(92)
	2006	$1-4 \mathrm{yrs}$	M	60,002	(97)
Tokelau	1998	$9 \mathrm{mos}-16 \mathrm{yrs}$	M	568	(100)
	2003	-§	-§	837	(98)
Tonga	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	33,331	(94)
Tuvalu	1998	1-14 yrs	M	3,033	(100)
	2005	12 mos-34 yrs	MR	5,508 ${ }^{11}$	NA
Vanuatu	1998	$9 \mathrm{mos}-14 \mathrm{yrs}$	M	73,958	(95)
	2002	$8 \mathrm{mos}-5 \mathrm{yrs}$	M	NA	(70)
	2006	$1-12 \mathrm{yrs}$	M	61,9171	(99)

[^11]Editorial Note: The WPR has made progress toward the 2012 regional goal of measles elimination as evidenced by increasing routine and SIA measles vaccination coverage and declining measles incidence in the presence of improving case-based, laboratory-supported measles surveillance systems. Nevertheless, in the region overall and in many countries, surveillance does not yet meet elimination standards, leading to underreporting or misclassification of cases. Moreover, countries such as Cambodia, Lao People's Democratic Republic, Papua New Guinea, and others face challenges to achieving the 2012 goal because of general weaknesses of public health services that result in low routine vaccination coverage. In such countries, continuing periodic SIAs to attain high MCV coverage while working to strengthen routine vaccination systems will be critical to achieve the goal. Ensuring that all suspected measles cases are identified, reported and fully investigated by providing training, adequate operational costs, and laboratory support is urgently needed to monitor progress toward and ultimately validate achievement of measles elimination. Monitoring of circulating measles genotypes also is needed to validate interruption of endemic measles virus transmission.
Challenges also exist in China and Japan, which together accounted for 82% of the region's population and more than 97% of its reported measles cases in 2008. Both countries have made renewed commitments and plans for achieving the 2012 regional goal. China has strengthened routine measles vaccination by scheduling earlier administration of MCV2 (at age 18-24 months instead of 7 years), providing incentives to health-care workers for immunizing children, and requiring proof of receiving 2 doses of measles vaccine at school entry. Japan is implementing a national measles elimination plan established in December 2007 (7).
Efforts to eliminate measles help strengthen health systems and reduce child mortality from pneumonia, diarrhea, and micronutrient deficiencies that occur after measles infection, thereby helping to achieve the United Nations' Millennium Development Goal No. 4 (to reduce by two thirds, from 1990 to 2015 , the mortality rate in children aged <5 years). 99 achieve measles elimination and Millennium Development Goal No. 4, intensified and innovative efforts will be required by WPR countries and measles elimination partners*** to implement recommended strategies and target potentially new high-risk groups (e.g., young adults) revealed by epidemiologic analysis of surveillance data.

[^12]
References

1. World Health Organization. Fifty-fourth session of the Regional Committee for the Western Pacific. Summary record of the fifth meeting. Resolution WPR/RC54.R3. Expanded programme on immunization: measles and hepatitis B. Manila, Philippines: World Health Organization; 2003. Available at http://www.wpro.who.int/rcm/en/archives/rc54/rc_ resolutions/wpr_rc54_r03.htm.
2. World Health Organization. Fifty-sixth session of the Regional Committee for the Western Pacific. Summary record of the eighth meeting. Resolution WPR/RC56.R8. Measles elimination, hepatitis B control, and poliomyelitis eradication. Manila, Philippines: World Health Organization; 2005. Available at http://www.wpro.who.int/nr/rdonlyres/185af547-3c1a-4510-96f2-94d4402355e9/0/rc56_r08.pdf.
3. World Health Organization. WHO-UNICEF estimates of MCV coverage. Available at http://www.who.int/immunization_monitoring/en/global summary/timeseries/tswucoveragemcv.htm.
4. World Health Organization Regional Office of the Western Pacific. Monitoring measles surveillance and progress towards measles elimination. Measles Bulletin 2007;1:1-3. Available at http://www.wpro.who.int/nr/ rdonlyres/7be6353c-7d82-4368-a300-57db3f38148d/0/measbulletin issue13.pdf.
5. World Health Organization Regional Office of the Western Pacific. Field guidelines for measles elimination. Geneva, Switzerland: World Health Organization; 2004. Available at http://www.wpro.who.int/nr/ rdonlyres/0f24b92e-ae2c-4c9b-b73b-e16acb833c35/0/fieldguidelines_ for_measleselimination.pdf.
6. World Health Organization Regional Office of the Western Pacific. Tables 2a and 2b. Measles Bulletin 2009;3:3-4 Available at http://www. wpro.who.int/nr/rdonlyres/fe4ce60a-5418-4a39-a666-0ce86aa4465e/0/ measbulletinvol3issue1.pdf.
7. CDC. Progress toward measles elimination—Japan, 1999-2008. MMWR 2008;57:1049-52.
8. CDC. Elimination of measles-South Korea, 2001-2006. MMWR 2007;56:304-7.
9. Heywood AE, Gidding HF, Riddell MA, et al. Elimination of endemic measles transmission in Australia. Bull World Health Organ 2009;87:64-71.

Updated Recommendations for Use of Haemophilus influenzae Type b (Hib) Vaccine: Reinstatement of the Booster Dose at Ages 12-15 Months

On December 13, 2007, certain lots of Haemophilus influenzae type b (Hib) vaccine marketed as PedvaxHIB (monovalent Hib vaccine) and Comvax (Hib-HepB vaccine), and manufactured by Merck \& Co., Inc., were recalled voluntarily, and the company temporarily suspended production of these vaccines. To conserve the limited supply of Hib-containing vaccines, CDC, in consultation with the Advisory Committee on Immunization Practices (ACIP), the American Academy of Family Physicians (AAFP), and the American Academy of Pediatrics (AAP), on December 18, 2007, recommended that vaccination providers temporarily defer the routine Hib
vaccine booster dose administered to most healthy children at age 12-15 months (1-5).
Production of Merck Hib vaccine products is still suspended. However, two other Hib-containing vaccines manufactured by Sanofi Pasteur have been available for use in the United States during this shortage: monovalent Hib vaccine (ActHIB) and DTaP-IPV/Hib (Pentacel). Beginning in July 2009, the manufacturer of these two vaccines will increase the number of doses of these two products available for use in the United States, which will result in the supply being sufficient to reinstate the Hib vaccine booster dose.

Reinstatement of Hib Booster Dose

Effective immediately, CDC, in consultation with ACIP, AAFP, and AAP, is recommending reinstatement of the booster dose of Hib vaccine for children aged 12-15 months who have completed the primary 3-dose series. Infants should continue to receive the primary Hib vaccine series at ages 2,4 , and 6 months. Children aged 12-15 months should receive the booster dose on time. Older children for whom the booster dose was deferred should receive their Hib booster dose at the next routinely scheduled visit or medical encounter. Although supply is sufficient to reinstate the booster dose and begin catch-up vaccination, supply is not yet ample enough to support a mass notification process to contact all children with deferred Hib booster doses.

Sufficient vaccine will be available to administer the primary series at ages 2,4 , and 6 months and a booster dose on time to children aged 12-15 months. As part of delivering the booster dose to those children for whom it was deferred at the next routinely scheduled appointment or medical encounter, practices should discuss with parents the reasons for the change in recommendation and might consider 1) reviewing electronic or paper medical records or immunization information system records to identify children in need of a booster dose before physician encounters, 2) evaluating children's vaccination status during their scheduled visit, and 3) sharing immunization schedules with parents to make them aware of this plan.

Use of Combination Vaccines

During the Hib shortage, children received protection from certain vaccine preventable diseases in their primary vaccination series through various permutations of available combination vaccines (e.g., DTaP-IPV/Hib [Pentacel] and DTaP-IPV-HepB [Pediarix]) and monovalent vaccines (e.g., ActHib, HepB, and IPV). Therefore, a mismatch might exist between patient vaccination needs and the available stock of different vaccine formulations (e.g., combination products versus single-antigen vaccines) in local provider offices. This situation presents a challenge for providers to administer vaccines to ensure appropriate coverage while minimizing extra
doses of unneeded vaccine. For example, if a provider is using DTaP-IPV/Hib (Pentacel) vaccine to protect infants against Hib disease, the provider should ensure that adequate stock of monovalent HepB vaccine is available to complete the HepB vaccine series.* Children who need the Hib booster and who already have received 4 doses of DTaP should receive monovalent Hib vaccine (ActHIB) as their Hib booster dose. However, if DTaP-IPV/Hib is the only Hib-containing vaccine available, this combination product can be used to complete the series of Hib vaccination, even if the child already has received all the necessary doses of DTaP and IPV.

Information Regarding ActHIB or Pentacel

Vaccination providers with questions about their supplies of monovalent Hib vaccine (ActHIB) or DTaP-IPV/Hib (Pentacel) purchased with nonpublic funds should contact Sanofi Pasteur's customer service department (telephone, 800-822-2463). Sanofi Pasteur will work directly with physicians to increase allotments of Hib-containing vaccines on the basis of previous purchasing patterns or practice birth cohort and estimates of additional vaccine doses needed. For public vaccine supplies, including Vaccines for Children Program vaccine, providers should contact their state/local immunization program to obtain vaccine.
This recommendation reflects CDC's assessment of the existing national Hib vaccine supply and will be updated if the supply changes. Updated information about the national Hib vaccine supply is available at http://www.cdc.gov/vaccines/vac-gen/ shortages/default.htm.
Details about the routine Hib schedule are available at http:// www.cdc.gov/vaccines/recs/schedules/default.htm\#child. Adverse events following receipt of any vaccine should be reported to the Vaccine Adverse Event Reporting System (VAERS) at http://vaers.hhs.gov.

[^13]
References

1. CDC. Interim recommendations for the use of Haemophilus influenzae type b (Hib) conjugate vaccines related to the recall of certain lots of Hib-containing vaccines (PedvaxHIB and Comvax). MMWR 2007;56:1318-20.
2. CDC. Continued shortage of Haemophilus influenzae type b (Hib) conjugate vaccines and potential implications for Hib surveillance-United States, 2008. MMWR 2008;57:1252-5.
3. American Academy of Pediatrics. Haemophilus influenzae infections. In: Pickering LK, Baker CJ, Kimberlin CW, Long SS, eds. Red book: 2009 report of the Committee on Infectious Diseases. 28th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2009:314-21.
4. CDC. Invasive Haemophilus influenzae type b disease in five young children-Minnesota, 2008. MMWR 2009;58:58-60.
5. CDC health advisory. Invasive Haemophilus influenzae type b disease in young children and importance for all young children to receive 3 dose primary series with available Hib-containing vaccine. Available at http:// www2a.cdc.gov/han/archivesys/viewmsgv.asp?alertnum $=00281$.

QuickStats

FROM THE NATIONAL CENTER FOR HEALTH STATISTICS

Age-Adjusted Death Rates Per 100,000 Population* for the Three Leading Causes of Injury ${ }^{\dagger}$ Death — United States, 1979-2006

* Age-adjusted to the 2000 U.S. standard population.
\dagger Injuries are from all manners, including unintentional, suicide, homicide, undetermined intent, legal intervention, and operations of war. Poisoning deaths include those resulting from drug overdose, those resulting from other misuse of drugs, and those associated with solid or liquid biologic substances, gases or vapors, or other substances such as pesticides or unspecified chemicals.
§ In 1999, International Classification of Diseases, 10th Revision (ICD-10) replaced the previous revision of the ICD (ICD-9). This resulted in approximately 5% fewer deaths being classified as motor-vehicle traffic-related deaths and 2% more deaths being classified as poisoning-related deaths. Therefore, death rates for 1998 and earlier are not directly comparable with those computed after 1998. Little change was observed in the classification of firearm-related deaths from ICD-9 to ICD-10.

Motor-vehicle traffic, poisoning, and firearms were the three leading causes of injury deaths in the United States in 2006. Age-adjusted death rates for motor-vehicle traffic-related deaths and deaths from firearms decreased from 1979 to 2006, whereas the rate for poisoning more than doubled during the same period. From 2005 to 2006, the age-adjusted poisoning death rate increased 13%, whereas motor-vehicle traffic and firearm death rates remained unchanged.

SOURCES: National Vital Statistics System, mortality data, available at http://www.cdc.gov/nchs/deaths.htm (for 2006 rates); and CDC WONDER, compressed mortality file, underlying cause-of-death, available at http://wonder.cdc.gov/ mortsql.html (for 1979-2005 rates).

TABLE I. Provisional cases of infrequently reported notifiable diseases (<1,000 cases reported during the preceding year) - United States, week ending June 20, 2009 (24th week)*

| | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

See Table I footnotes on next page.

TABLE I. (Continued) Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) United States, week ending June 20, 2009 (24th week)*
-: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2008 and 2009 are provisional, whereas data for 2004, 2005, 2006, and 2007 are finalized.
${ }^{\dagger}$ Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. The total sum of incident cases is then divided by 25 weeks. Additional information is available at http://www.cdc.gov/epo/dhpsi/phs/files/5yearweeklyaverage.pdf.
§ Not reportable in all states. Data from states where the condition is not reportable are excluded from this table, except starting in 2007 for the domestic arboviral diseases and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
${ }^{7}$ Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** The names of the reporting categories changed in 2008 as a result of revisions to the case definitions. Cases reported prior to 2008 were reported in the categories: Ehrlichiosis, human monocytic (analogous to E. chaffeensis); Ehrlichiosis, human granulocytic (analogous to Anaplasma phagocytophilum), and Ehrlichiosis, unspecified, or other agent (which included cases unable to be clearly placed in other categories, as well as possible cases of E. ewingii).
t† Data for H. influenzae (all ages, all serotypes) are available in Table II.
§§ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
III Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. Seventy-six influenza-associated pediatric deaths occurring during the 2008-09 influenza season have been reported.
*** No measles cases were reported for the current week.
$\dagger t \dagger$ Data for meningococcal disease (all serogroups) are available in Table II.
§§§ These cases were obtained from state and territorial health departments in response to the pandemic influenza A (H1N1) virus infections and include both confirmed and probable cases in addition to those reported to the National Notifiable Diseases Surveillance System (NNDSS). Because of the volume of cases and the method by which they are being collected, a 5 -year weekly average for this disease is not calculated.
ITIII In 2008, Q fever acute and chronic reporting categories were recognized as a result of revisions to the Q fever case definition. Prior to that time, case counts were not differentiated with respect to acute and chronic Q fever cases.
${ }^{* * * *}$ No rubella cases were reported for the current week.
${ }^{\dagger t+\dagger}$ Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals June 20, 2009, with historical data

[^14]
Notifiable Disease Data Team and 122 Cities Mortality Data Team

 Patsy A. HallDeborah A. Adams Rosaline Dhara
Willie J. Anderson Michael S. Wodajo
Lenee Blanton
Pearl C. Sharp

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Chlamydia ${ }^{\dagger}$					Coccidiodomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 week		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	8,223	22,755	25,700	488,139	537,362	242	134	352	3,922	3,075	57	110	482	2,030	1,919
New England	869	772	1,655	18,261	16,059	N	0	1	1	1	1	5	23	106	152
Connecticut	-	243	1,306	5,195	4,302	N	0	0	N	N	-	0	13	13	41
Maine§	37	48	72	1,164	1,142	N	0	0	N	N	-	1	6	13	10
Massachusetts	799	326	949	9,219	7,812	N	0	0	N	N	-	2	13	35	44
New Hampshire	2	32	63	591	926	-	0	1	1	1	-	1	4	17	31
Rhode Island§		55	244	1,543	1,347	-	0	0	-	-	-	0	3	2	3
Vermont ${ }^{\text {§ }}$	31	21	53	549	530	N	0	0	N	N	1	1	7	26	23
Mid. Atlantic	1,994	2,852	6,734	70,488	69,108	-	0	0	-	-	9	13	35	246	229
New Jersey		425	879	10,184	10,555	N	0	0	N	N	-	0	4	1	16
New York (Upstate)	564	563	4,563	13,628	12,417	N	0	0	N	N	3	4	17	61	66
New York City	1,148	1,077	3,130	28,089	26,723	N	0	0	N	N	-	1	8	29	45
Pennsylvania	282	793	1,072	18,587	19,413	N	0	0	N	N	6	7	15	155	102
E.N. Central	1,149	3,437	4,382	73,020	89,825	1	0	3	17	26	12	24	126	480	476
Illinois	1	1,104	1,356	22,254	26,712	N	0	0	N	N	-	2	13	38	46
Indiana	362	398	713	10,519	10,099	N	0	0	N	N	-	3	17	78	65
Michigan	616	835	1,321	21,016	21,767		0	3	7	19	-	5	13	92	90
Ohio	81	775	1,300	11,696	21,254	1	0	2	10	7	11	8	59	161	106
Wisconsin	89	385	494	7,535	9,993	N	0	0	N	N	1	8	46	111	169
W.N. Central	503	1,324	1,547	29,535	30,473	-	0	1	2	-	11	17	68	305	280
lowa	-	192	257	4,277	3,971	N	0	0	N	N	-	4	30	66	62
Kansas	53	182	401	4,160	4,151	N	0	0	N	N	2	1	8	34	23
Minnesota	-	264	316	5,155	6,747	-	0	0	-	-	9	4	14	76	69
Missouri	324	498	583	12,060	11,202	-	0	1	2	-	-	3	13	53	63
Nebraska§	60	98	254	2,160	2,280	N	0	0	N	N	-	2	8	30	40
North Dakota	-	25	60	324	839	N	0	0	N	N	-	0	10	1	1
South Dakota	66	56	85	1,399	1,283	N	0	0	N	N	-	2	9	45	22
S. Atlantic	910	4,424	5,730	82,650	105,305	-	0	1	4	2	8	21	49	397	329
Delaware	107	73	180	2,224	1,644	-	0	1	1	-	-	0	1	1	6
District of Columbia	-	129	228	3,124	3,151	-	0	0	-	-	-	0	2	-	7
Florida	-	1,384	1,596	31,560	33,490	N	0	0	N	N	-	8	35	121	143
Georgia	2	725	1,909	10,703	18,795	N	0	0	N	N	6	6	19	169	101
Maryland§	-	436	772	9,498	10,665	-	0	1	3	2	-	1	5	15	10
North Carolina	-	618	1,814		9,921	N	0	0	N	N	2	1	16	47	11
South Carolina§	33	534	887	9,730	12,068	N	0	0	N	N	-	1	6	18	15
Virginia§	746	609	903	14,098	14,078	N	0	0	N	N	-	1	4	21	26
West Virginia	22	68	101	1,713	1,493	N	0	0	N	N	-	0	3	5	10
E.S. Central	627	1,695	2,166	39,333	37,532	-	0	0	-	-	-	3	9	59	50
Alabama§		473	600	9,862	11,585	N	0	0	N	N	-	1	6	17	19
Kentucky	184	238	380	4,770	5,057	N	0	0	N	N	-	1	4	16	10
Mississippi	-	440	841	10,917	8,375	N	0	0	N	N	-	0	2	4	6
Tennessee§	443	564	796	13,784	12,515	N	0	0	N	N	-	1	5	22	15
W.S. Central	353	2,851	3,985	63,511	68,281	-	0	1	-	2	2	8	271	68	89
Arkansas§	138	2,854	, 419	6,661	6,438	N	0	0	N	N	-	1	10	12	16
Louisiana	190	401	1,114	8,137	9,332	-	0	1	-	2	-	1	5	7	19
Oklahoma	25	184	1,753	2,716	5,978	N	0	0	N	N	2	2	16	35	16
Texas§	-	1,963	2,509	45,997	46,533	N	0	0	N	N	-	3	258	14	38
Mountain	656	1,359	2,145	27,730	33,696	206	93	295	2,871	2,110	9	8	38	139	159
Arizona	97	434	627	6,780	11,248	206	91	294	2,836	2,052	3	1	10	16	22
Colorado	336	331	1,109	8,688	8,299	N	0	0	N	N	6	2	12	45	30
Idaho§	184	69	314	1,766	1,559	N	0	0	N	N	-	1	5	17	30
Montana§	39	59	88	1,431	1,414	N	0	0	N	N	-	0	4	14	20
Nevada§	-	174	365	4,103	4,612	-	1	3	28	30	-	0	4	6	6
New Mexico§	-	159	540	2,846	3,151	-	0	2	2	18	-	2	23	27	31
Utah	-	85	251	1,175	2,745	-	0	1	5	8	-	0	6	1	10
Wyoming§	-	32	97	941	668	-	0	1	-	2	-	0	2	13	10
Pacific	1,162	3,660	4,607	83,611	87,083	35	38	172	1,027	934	5	9	42	230	155
Alaska	90	93	199	2,138	2,157	N	0	0	N	N	-	0	1	2	1
California	577	2,867	3,584	66,082	67,649	35	38	172	1,027	934	1	6	14	121	85
Hawaii	-	114	247	2,442	2,657	N	0	0	N	N	-	0	1	1	1
Oregon§	251	199	631	4,433	4,711	N	0	0	N	N	-	1	40	74	33
Washington	244	400	557	8,516	9,909	N	0	0	N	N	4	2	7	32	35
American Samoa	-	0	8	-	62	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-	-				-	-	-	-		-	-	-	-
Guam	-	4	9	-	86	-	0	0	-	-	-	0	0	-	-
Puerto Rico	202	130	269	3,479	3,245	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	9	22	173	322	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Chlamydia refers to genital infections caused by Chlamydia trachomatis.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II．（Continued）Provisional cases of selected notifiable diseases，United States，weeks ending June 20，2009，and June 14， 2008 （24th week）＊

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae，invasive All ages，all serotypes ${ }^{\dagger}$				
	Currentweek	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	139	319	641	6，472	6，862	1，583	5，765	7，164	113，836	150，376	17	50	124	1，269	1，484
New England	6	27	64	424	583	85	98	301	2，195	2，235	－	3	16	78	82
Connecticut		5	14	76	137		49	275	960	946	－	0	12	24	18
Maine ${ }^{\text {s }}$	5	4	12	85	50	2	2	9	64	44	－	0	2	12	8
Massachusetts		10	27	150	250	82	38	112	959	1，013	－	1	5	32	41
New Hampshire		2	10	38	54	1	1	6	51	57	－	0	2	5	6
Rhode Islands		1	8	23	37	－	5	16	138	157	－	0	7	2	3
Vermont ${ }^{\text {S }}$	1	3	15	52	55	－	1	4	23	18	－	0	1	3	6
Mid．Atlantic	41	60	116	1，204	1，339	352	595	1，138	13，690	14，936	7	11	25	270	264
New Jersey		8	21	85	217		92	127	2，056	2，483		1	7	31	43
New York（Upstate）	22	23	81	502	437	69	114	664	2，390	2，798	5	2	20	65	74
New York City	6	15	30	321	385	228	208	577	5，190	4，580	2	2	11	65	46
Pennsylvania	13	17	46	296	300	55	185	267	4，054	5，075	－	4	10	109	101
E．N．Central	19	47	90	921	1，058	287	1，157	1，627	22，231	31，804	2	7	27	164	238
Illinois		10	32	156	281	1	370	499	6，624	9，040		2	9		74
Indiana	N	0	11	N	N	96	154	256	3，450	4，076	－	1	22	28	41
Michigan	2	12	22	256	236	158	294	493	6，674	7，941	－	0	3	12	14
Ohio	14	16	31	346	352	8	245	482	3，515	7，791	2	1	6	52	77
Wisconsin	3	10	19	163	189	24	101	149	1，968	2，956	－	1	5	9	32
W．N．Central	15	26	143	600	676	141	299	393	6，331	7，617	1	3	15	75	108
lowa	7	6	18	122	118		32	53	695	692	－	0	0		2
Kansas	1	3	11	54	51	28	40	83	972	1，008	－	0	2	10	14
Minnesota	－	0	106	137	191		47	78	841	1，497	－	0	10	18	23
Missouri		8	22	183	184	86	142	184	2，991	3，626	－	1	4	31	47
Nebraskas	7	3	10	67	90	17	27	51	626	630	1	0	2	13	15
North Dakota		0	16	4	10		2	7	21	50	－	0	4	3	7
South Dakota	－	2	11	33	32	10	8	20	185	114	－	0	0	－	－
S．Atlantic	23	66	108	1，579	1，140	211	1，470	2，142	23，177	36，513	1	13	27	368	
Delaware	－	1	3	13	18	32	16	35	399	529	－	0		3	3
District of Columbia	－	0	5		26	－	54	89	1，294	1，125	－	0	2		3
Florida		31	57	783	509	－	415	507	9，054	11，325	－	5	10	135	95
Georgia	20	14	67	465	256	－	261	876	3，576	6，832	1	2	9	75	77
Maryland§		5	10	95	107	－	121	212	2，468	2，790	－	1	6	41	61
North Carolina	N	0	0	N	N	－	261	647		4，662	－	1	17	44	38
South Carolinas		2	8	41	57	11	169	316	3，034	4，461	－	1	5	24	35
Virginia§	3	8	31	164	137	165	156	308	3，114	4，434	－		6	28	53
West Virginia	－	1	5	18	30	3	11	26	238	355	－	0	3	18	13
E．S．Central	1	8	22	140	186	190	525	771	11，283	13，607	－	3	6	74	83
Alabamas		4	12	59	102		158	216	2，794	4，620			4	19	13
Kentucky	N	0	0	N	N	57	80	153	1，404	1，973	－	0	2	8	${ }^{6}$
Mississippi	N	0	0	N	N		143	253	3，331	3，110	－	0	1		11
Tennessee§	1	4	13	81	84	133	159	301	3，754	3，904	－	2	5	47	53
W．S．Central	7	8	22	139	127	94	924	1，307	18，122	23，327	2	2	22	56	71
Arkansas ${ }^{\text {8 }}$	3	2	8	51	49	37	86	167	2，006	2，013	－	0	2	8	6
Louisiana	－	2	10	40	46	50	146	421	2，429	4，273	－	0	1	8	7
Oklahoma	4	3	18	48	32	7	71	437	1，322	2，189	2	1	20	40	52
Texas ${ }^{8}$	N	0	0	N	N	－	577	725	12，365	14，852	－	0	1	－	6
Mountain	9	26	62	458	545	46	190	374	3，551	5，589	3	4	11	120	175
Arizona		3	10	85	51	22	55	82	796	1，658		1	7	46	72
Colorado	9	9	27	156	206	19	62	293	1，411	1，719	3	1	5	35	32
Idahos	－	3	14	44	60	4	3	13	46	72	－	0	2	2	8
Montana§	－	2	9	40	28	1	2	6	38	53	－	0	1	1	1
Nevada§		2	8	33	47	－	32	86	752	1，154		0	2	10	10
New Mexicos	二	2	8	33	41	－	23	52	414	627	－	1	3	15	27
Utah		7	18	47	94	－	5	15	63	264		0	2	11	25
Wyoming§	－	1	4	20	18	－	2	8	31	42	－	0	2	－	－
Pacific	18	54	130	1，007	1，208	177	566	755	13，256	14，748	1	2	17	64	85
Alaska	6	2	10	33	30	11	14	24	338	232	1	0	3	8	11
California	7	35	59	712	849	121	476	657	11，265	12，121	－	0	3	12	31
Hawaii	－	0	4	5	14		13	19	265	270	－	0	2	13	9
Oregon§	－	7	73	131	199	19	22	48	462	588	－	0	16	28	32
Washington	5	9	74	126	116	26	50	81	926	1，537	－	0	2	3	2
American Samoa	－	0	0	－	－	－	0	1	－	2	－	0	0	－	－
C．N．M．I．	－			－	－										－
Guam Puerto Rico	－	0 3	${ }^{0}$	$\overline{25}$	72	－	${ }_{4}^{2}$	15 16	101	25 130	二	0	1	二	－
U．S．Virgin Islands	－	0	0	－	－	－	2	7	54	60	N	0	0	N	N

[^15]U：Unavailable．－：No reported cases．N：Not reportable．Cum：Cumulative year－to－date counts．Med：Median．Max：Maximum．
＊Incidence data for reporting year 2008 and 2009 are provisional．
${ }^{\dagger}$ Data for H ．influenzae（age＜ 5 yrs for serotype b，nonserotype b，and unknown serotype）are available in Table I．
§ Contains data reported through the National Electronic Disease Surveillance System（NEDSS）．

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A			$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	B			$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$					
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$			Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$		Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	15	37	89	764	1,243	6	68	196	1,396	1,742	34	49	152	692	894
New England	-	2	8	32	60	-	1	4	16	40	-	2	18	20	45
Connecticut	-	0	4	10	11	-	0	3	6	13	-	0	5	10	8
Maine§	-	0	5	1	3	-	0	2	7	8	-	0	2	-	1
Massachusetts	-	1	3	14	30	-	0	2	1	12	-	1	7	6	17
New Hampshire	-	0	2	3	5	-	0	2	2	3	-	0	5	1	6
Rhode Island§	-	0	2	3	10	-	0	1	-	3	-	0	14	2	9
Vermont ${ }^{\text {® }}$	-	0	1	1	1	-	0	1	-	1	-	0	1	1	4
Mid. Atlantic	4	5	13	85	137	4	6	17	134	222	13	13	60	180	215
New Jersey	-	1	5	5	31	-	1	5	22	64	-	1	14	11	27
New York (Upstate)	2	1	4	24	31	2	1	11	33	32	7	5	24	69	57
New York City	1	2	6	26	41	-	1	4	27	48	-	2	12	20	26
Pennsylvania	1	1	4	30	34	2	2	8	52	78	6	5	35	80	105
E.N. Central	-	4	12	86	184	1	10	21	185	227	5	9	41	118	178
Illinois	-	1	5	19	67	-	2	7	24	87	-	2	13	8	25
Indiana	-	0	3	7	10	-	1	18	34	14	-	1	6	8	15
Michigan	-	1	5	31	68	-	2	8	58	68	1	2	16	24	49
Ohio	-	1	4	24	21	1	2	13	53	47	4	4	18	73	80
Wisconsin	-	0	3	5	18	-	0	3	16	11	-	0	6	5	9
W.N. Central	1	2	16	54	157	-	2	16	68	35	1	2	8	25	42
lowa	-	1	5	12	76	-	0	3	10	11	-	0	2	8	8
Kansas	-	0	1	5	9	-	0	2	4	6	-	0	1	2	1
Minnesota	-	0	12	12	16	-	0	11	11	3	1	0	4	2	4
Missouri	-	0	3	14	18	-	1	5	33	13	-	1	7	9	19
Nebraska§	1	0	2	10	36	-	0	2	9	2	-	0	3	3	9
North Dakota	-	0	2	-	-	-	0	1	-		-	0	3	1	-
South Dakota	-	0	1	1	2	-	0	1	1	-	-	0	1	-	1
S. Atlantic	4	7	15	184	149	1	19	32	450	449	2	8	22	157	180
Delaware	-	0	1	2	3	1	0	2	15	11	-	0	1	1	5
District of Columbia	U	0	0	U	U	U	0	0	U	U	-	0	2	-	7
Florida	-	4	8	93	67	-	7	11	144	153	-	3	7	66	62
Georgia	3	1	4	29	26	-	3	9	63	80	1	1	5	23	16
Maryland§	-	0	4	16	18	-	2	6	39	40	-	2	9	24	44
North Carolina	-	1	9	20	9	-	0	19	115	47	-	0	7	29	8
South Carolina§	-	0	3	11	6	-	1	5	17	33	-	0	1	2	4
Virginia§	1	1	6	13	17	-	2	10	34	47	1	1	5	12	21
West Virginia	-	0	1	-	3	-	1	6	23	38	-	0	3	-	13
E.S. Central	-	1	5	18	37	-	8	13	139	172	1	2	5	38	57
Alabama§	-	0	2	6	5	-	2	7	43	46	-	0	2	5	7
Kentucky	-	0	2	3	14	-	2	7	39	48	-	1	3	17	27
Mississippi	-	0	2	5	2	-	1	3	6	16	-	0	1	1	1
Tennessee§	-	0	4	4	16	-	2	8	51	62	1	0	4	15	22
W.S. Central	-	4	43	73	125	-	11	98	197	358	5	2	21	40	32
Arkansas§	-	0	1	4	3	-	1	5	14	23	-	0	2	2	5
Louisiana	-	0	2	2	7	-	1	4	17	50	-	0	2	1	3
Oklahoma	-	0	6	1	3	-	2	17	48	38	-	0	6	3	3
Texas§	-	3	37	66	112	-	6	75	118	247	5	1	19	34	21
Mountain	2	3	31	65	98	-	3	10	57	85	-	2	8	36	37
Arizona	1	1	28	37	41	-	1	5	25	33	-	0	3	19	9
Colorado	1	0	2	11	19	-	0	3	9	12	-	0	2	1	3
Idaho§	-	0	1	-	13	-	0	2	2	3	-	0	1	-	2
Montana§	-	0	1	3	-	-	0	1	-	-	-	0	2	4	3
Nevada§	-	0	3	6	3	-	0	3	12	20	-	0	2	6	6
New Mexico§	-	0	1	5	14	-	0	2	4	7	-	0	2	-	3
Utah	-	0	2	3	5	-	0	3	3	6	-	0	2	5	11
Wyoming§	-	0	0	-	3	-	0	1	2	4	-	0	1	1	-
Pacific	4	8	25	167	296	-	7	36	150	154	7	3	9	78	108
Alaska	-	0	1	3	2	-	0	1	3	5	-	0	1	2	1
California	2	6	25	126	238	-	5	28	112	109	3	3	9	59	82
Hawaii	-	0	2	3	6	-	0	1	3	3		0	1	1	4
Oregon§	-	0	5	10	20	-	0	9	16	19	-	0	3	6	10
Washington	2	1	4	25	30	-	1	8	16	18	4	0	3	10	11
American Samoa	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
C.N.M.I.	-	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	7	-	-	0	0	-		-	0	0	-	-
Puerto Rico	-	0	2	7	14	-	0	5	2	25	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional.
${ }^{\dagger}$ Data for acute hepatitis C, viral are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All groups				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	223	486	1,915	4,051	6,912	4	23	46	392	410	4	18	48	453	671
New England	18	86	837	491	2,598	1	0	5	10	22	-	0	4	15	17
Connecticut	-	21	264	-	1,121	-	0	4	1	5	-	0	1	1	1
Maine ${ }^{\text {§ }}$	9	5	73	86	54	-	0	1	1	1	-	0	1	2	3
Massachusetts	-	20	403	117	985	-	0	4	6	11	-	0	3	9	12
New Hampshire	2	14	145	217	309	1	0	1	1	2	-	0	1	1	1
Rhode Island§	7	0	78	13	105	-	0	1	-	1	-	0	1	1	-
Vermont§	7	5	41	58	24	-	0	1	1	2	-	0	1	1	-
Mid. Atlantic	191	210	1,401	2,409	2,589	-	5	17	94	107	1	2	5	49	74
New Jersey	16	30	231	509	1,248	-	0	4	-	19	-	0	1	2	9
New York (Upstate)	87	96	1,368	830	493	-	0	10	19	13	-	0	2	11	19
New York City	8	6	54	-	154	-	3	11	58	61	1	0	2	9	13
Pennsylvania	88	51	338	1,070	694	-	1	3	17	14	1	1	4	27	33
E.N. Central	-	10	205	99	437	-	3	7	48	67	1	3	8	77	112
Illinois	-	0	13	4	27	-	1	5	15	33	-	1	6	17	41
Indiana	-	0	8	9	2	-	0	1	7	3	-	0	4	19	15
Michigan	-	1	10	10	1	-	0	3	9	9	-	0	3	12	14
Ohio	-	0	6	7	7	-	0	2	14	16	1	0	3	23	26
Wisconsin	-	10	187	69	400	-	0	3	3	6	-	0	1	6	16
W.N. Central	-	6	336	56	118	-	1	10	25	20	-	1	9	38	59
Iowa	-	1	9	14	45	-	0	3	5	2	-	0	1	4	11
Kansas	-	0	4	8	4	-	0	2	2	3	-	0	2	7	2
Minnesota	-	2	326	28	66	-	0	8	10	6	-	0	4	8	17
Missouri	-	0	1	2	1	-	0	2	5	5	-	0	2	13	18
Nebraska§	-	0	2	3	1	-	0	1	2	4	-	0	1	4	9
North Dakota	-	0	10	-	-	-	0	0	-	-	-	0	3	-	1
South Dakota	-	0	1	1	1	-	0	1	1	-	-	0	1	2	1
S. Atlantic	13	63	223	887	1,069	3	6	16	138	99	-	3	9	88	89
Delaware	3	11	36	234	324	-	0	1	1	1	-	0	1	2	1
District of Columbia		0	7	-	17	-	0	2	-	-	-	0	0	-	-
Florida	-	1	6	16	13	-	1	7	36	22	-	1	4	32	32
Georgia	1	0	6	18	14	1	1	4	30	26	-	0	2	16	12
Maryland§	-	27	163	393	511	-	1	8	34	30	-	0	1	4	11
North Carolina	6	1	6	23	2	1	1	7	18	2	-	0	5	15	3
South Carolina§	-	0	3	11	10	-	0	1	1	3	-	0	1	6	14
Virginia§	3	14	61	158	133	1	1	4	17	14	-	0	2	9	13
West Virginia	-	1	17	34	45	-	0	1	1	1	-	0	2	4	3
	-	0	5	8	16	-	0	2	12	8	-	0	3	16	36
Alabama§	-	0	1	1	6	-	0	1	3	3	-	0	1	4	3
Kentucky	-	0	2	1	1	-	0	2	5	3	-	0	1	3	7
Mississippi	-	0	1	-	-	-	0	1	-	-	-	0	1	1	9
Tennessee§	-	0	3	6	9	-	0	2	4	2	-	0	1	8	17
W.S. Central	-	2	21	11	35	-	1	10	11	22	1	1	12	40	70
Arkansas§	-	0	0	1		-	0	1	,		,	0	2	5	10
Louisiana	-	0	1	-	-	-	0	1	1	2	-	0	3	9	17
Oklahoma	-	0	2	-	-	-	0	2	1	2	-	0	3	2	9
Texas§	-	2	21	11	35	-	1	10	9	18	1	1	9	24	34
Mountain	-	1	13	14	13	-	0	3	4	12	1	1	4	37	38
Arizona	-	0	2	1	2	-	0	2	1	4	-	0	2	7	5
Colorado	-	0	1	2	2	-	0	1	1	3	1	0	2	11	8
Idaho§	-	0	2	5	2	-	0	1	1	-	-	0	1	4	4
Montana§	-	0	13	1	1	-	0	0	-	-	-	0	2	4	4
Nevada§	-	0	2	5	2	-	0	1	-	4	-	0	2	3	7
New Mexico§	-	0	2	-	3	-	0	1	-	1	-	0	1	3	4
Utah	-	0	1	-	-	-	0	1	1	-	-	0	1	1	4
Wyoming§	-	0	1	-	1	-	0	0	-	-	-	0	2	4	2
Pacific	1	3	13	76	37	-	3	10	50	53	-	4	14	93	176
Alaska	-	0	2	1	1	-	0	1	1	2	-	0	2	2	3
California	-	2	6	67	26	-	2	8	38	41	-	2	8	58	137
Hawaii	N	0	0	N	N	-	0	1	1	2	-	0	1	3	1
Oregon§	-	0	4	5	10	-	0	3	5	4	-	0	10	21	20
Washington	1	0	12	3	-	-	0	3	5	4	-	0	6	9	15
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	2	-	1	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	1	2	-	0	1	-	2
U.S. Virgin Islands	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional.
\dagger Data for meningococcal disease, invasive caused by serogroups A, C, Y, and W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	64	242	1,697	5,037	3,429	37	70	120	1,477	1,804	9	36	179	440	356
New England	1	18	35	215	392	2	8	15	140	176	-	0	2	4	1
Connecticut		0	4	12	30	2	3	10	59	86	-	0	0	-	-
Maine ${ }^{\dagger}$	1	1	10	54	14	-	1	5	20	28	-	0	2	4	-
Massachusetts	-	12	30	105	307	-	0	0			-	0	1	-	-
New Hampshire	-	1	5	32	10	1	1	7	17	17	-	0	1	-	-
Rhode Island ${ }^{\dagger}$	-	1	6	5	25	-	0	3	17	14	-	0	2	-	1
Vermont ${ }^{\dagger}$	-	0	2	7	6	1	1	6	27	31	-	0	0	-	-
Mid. Atlantic	7	24	64	450	399	9	17	30	284	360	-	1	29	14	43
New Jersey	-	4	12	56	71	-	0	0	-	-	-	0	6	-	32
New York (Upstate)	5	6	41	84	122	9	8	20	166	183	-	0	29	1	3
New York City	-	0	21	44	42	-	0	2	-	10	-	0	3	10	5
Pennsylvania	2	11	33	266	164	-	7	17	118	167	-	0	2	3	3
E.N. Central	28	44	238	1,075	668	2	2	28	42	53	-	1	15	18	23
Illinois	-	14	45	234	72		1	20	6	23	-	1	10	9	18
Indiana	-	2	158	87	21	-	0	6	6	1	-	0	3	1	1
Michigan	4	9	21	227	89	2	1	9	19	19	-	0	1	2	2
Ohio	24	14	57	485	444	-	0	7	11	10	-	0	4	6	2
Wisconsin	-	4	10	42	42	N	0	0	N	N	-	0	0	-	-
W.N. Central	1	31	872	893	281	3	5	17	120	120	-	4	33	58	82
lowa	1	4	21	68	40	-	0	5	9	10	-	0	1	1	5
Kansas	-	2	12	83	28	3	1	6	51	39	-	0	1	1	-
Minnesota	-	2	808	165	63	-	0	11	20	18	-	0	0	-	-
Missouri	-	14	51	479	112	-	1	8	17	12	-	3	32	52	73
Nebraska ${ }^{\dagger}$	-	4	32	86	26	-	0	2	-	17	-	0	4	4	1
North Dakota	-	0	24	1	1	-	0	9	4	13	-	0	1	-	-
South Dakota	-	0	10	11	11	-	0	4	19	11	-	0	0	-	3
S. Atlantic	1	26	71	661	321	19	26	90	669	862	6	18	72	239	89
Delaware	-	0	3	6	5	-	0	0				0	5	3	5
District of Columbia	-	0	2	-	1	-	0	0	-	-	-	0	1	-	2
Florida	-	8	34	240	79	-	0	74	74	138	-	0	3	4	3
Georgia	-	3	9	79	26	-	5	52	154	185	2	1	9	13	20
Maryland ${ }^{\dagger}$	-	3	10	37	46	-	6	13	130	214	-	1	7	18	16
North Carolina	-	0	65	174	61	N	4	4	N	N	4	10	55	166	11
South Carolina ${ }^{\dagger}$	1	2	10	61	46	-	0	0	-	$\overline{70}$	-	1	9	12	9
Virginia ${ }^{+}$	-	3	24	59	52	16	11	24	258	270	-	2	15	22	18
West Virginia	-	0	2	5	5	3	1	6	53	55	-	0	1	1	5
E.S. Central	9	12	33	306	112	-	3	7	59	80	3	4	23	71	63
Alabama ${ }^{\text {a }}$	-	3	19	111	19	-	0	0	-	-	-	1	8	12	15
Kentucky	-	5	15	101	19	-	1	4	25	13	-	0	0	-	1
Mississippi	1	1	5	18	49	-	0	2	-	2	-	0	3	4	3
Tennessee ${ }^{\dagger}$	8	2	14	76	25	-	2	6	34	65	3	3	19	55	44
W.S. Central	4	40	389	752	354	-	0	9	26	51	-	2	161	28	42
Arkansas ${ }^{\dagger}$		2	38	33	37	-	0	5	21	33	-	0	61	13	1
Louisiana	-	2	7	36	17	-	0	0	,	-	-	0	2	-	3
Oklahoma	-	0	45	13	12	-	0	9	4	16	-	0	98	5	28
Texas ${ }^{\dagger}$	4	35	304	670	288	-	0	1	1	2	-	1	6	10	10
Mountain	8	15	31	370	436	-	2	9	45	27	-	1	3	7	12
Arizona	-	3	10	83	122	N	0	0	N	N	-	0	2	2	4
Colorado	7	4	12	133	68	-	0	0	-	-	-	0	1	-	-
Idaho ${ }^{\dagger}$	1	1	5	38	20	-	0	2	-	1	-	0	1	-	-
Montana ${ }^{\dagger}$	-	0	4	9	58	-	0	4	13	1	-	0	1	3	1
Nevada ${ }^{\dagger}$	-	0	3	6	16	-	0	5	-	1	-	0	2	\square	-
New Mexico ${ }^{\dagger}$	-	1	10	30	24	-	0	2	14	17	-	0	1	1	1
Utah	-	3	19	70	121	-	0	6	1	1	-	0	1	1	2
Wyoming ${ }^{\dagger}$	-	0	2	1	7	-	0	4	17	6	-	0	2	-	4
Pacific	5	22	98	315	466	2	4	13	92	75	-	0	1	1	1
Alaska	-	3	21	28	38	-	0	2	9	12	N	0	0	N	N
California	-	5	23	41	243	2	4	12	83	61	-	0	1	1	-
Hawaii	-	0	3	13	5	-	0	0		-	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	3	48	99	72	-	0	2	-	2	N	0	1	-	1
Washington	5	6	76	134	108	-	0	0	-	-	-	0	0	-	-
American Samoa	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	\bigcirc	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	1	1	-	-	1	5	15	27	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
Incidence data for reporting year 2008 and 2009 are provisional.
† Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	375	881	2,318	13,917	15,232	36	75	255	1,184	1,411	145	430	1,268	6,450	7,709
New England	1	31	189	673	1,068	-	3	27	70	106	-	3	13	61	104
Connecticut	-	0	163	163	491	-	0	27	27	47	-	0	8	8	40
Maine§	1	2	8	45	59	-	0	3	9	3	-	0	6	2	3
Massachusetts	-	21	51	263	399	-	1	11	15	35	-	2	9	40	51
New Hampshire	-	3	33	129	57	-	1	3	15	10	-	0	1	1	2
Rhode Island§	-	2	9	50	33	-	0	1	-	7	-	0	1	7	7
Vermont ${ }^{\S}$	-	1	7	23	29	-	0	6	4	4	-	0	2	3	1
Mid. Atlantic	39	84	201	1,599	1,905	-	6	27	86	144	8	54	93	1,180	949
New Jersey	-	14	55	122	447	-	1	12	14	53	-	19	38	249	234
New York (Upstate)	21	29	65	439	448	-	3	12	36	39	6	7	23	94	283
New York City	2	20	49	418	458	-	1	5	30	20	-	10	23	196	383
Pennsylvania	16	29	78	620	552	-	0	8	6	32	2	18	38	641	49
E.N. Central	45	90	194	1,807	1,911	7	12	74	195	193	25	86	132	1,278	1,353
Illinois	1	26	50	459	591	-	1	10	29	34		16	34	276	449
Indiana	1	7	53	121	166	-	1	14	19	16	-	3	39	27	357
Michigan	6	18	38	389	343	-	3	43	54	41	1	5	24	113	42
Ohio	35	27	49	595	523	6	3	17	48	45	17	42	80	659	356
Wisconsin	2	14	30	243	288	1	3	16	45	57	7	9	42	203	149
W.N. Central	30	52	148	1,092	1,008	14	12	58	186	214	5	14	49	348	410
Iowa	6	7	16	170	173	3	3	21	48	51		3	12	41	73
Kansas	4	7	29	140	131	1	1	7	16	15	3	3	11	111	6
Minnesota	15	11	69	263	260	8	2	21	52	38	2	3	25	33	104
Missouri		12	48	209	269		2	11	41	64	2	3	33	151	126
Nebraska§	5	5	41	188	101	2	1	30	26	29	-	0	3	9	
North Dakota	-	0	30	14	18	-	0	28	-	1	-	0	9	1	27
South Dakota	-	3	22	108	56	-	0	4	3	16	-	0	1	2	74
S. Atlantic	141	252	457	3,688	3,645	5	14	48	251	255	39	47	85	985	1,588
Delaware	,	2	9	29	58	-	0	2	5	7	1	0	8	38	6
District of Columbia	-	0	2	-	34	-	0	1	-	4	-	0	2	-	8
Florida	-	102	174	1,597	1,591	-	3	10	75	66	-	11	26	201	432
Georgia	34	37	96	640	627	-	1	8	25	24	7	13	30	268	653
Maryland§	-	16	36	226	284	-	2	11	28	39	-	4	12	119	29
North Carolina	89	23	106	609	345	4	2	21	62	24	27	5	27	207	47
South Carolina§	5	17	57	230	317	-	1	3	9	17	2	4	22	63	323
Virginia§	13	20	88	290	298	1	3	27	39	53	2	4	59	84	71
West Virginia	-	4	10	67	91	-	0	3	8	21	-	0	3	5	19
E.S. Central	10	54	140	829	938	1	5	12	79	102	10	26	58	441	984
Alabama§		16	49	234	253	-	1	3	17	35		5	12	73	232
Kentucky	-	10	18	161	155	-	1	7	21	20	-	2	25	113	173
Mississippi	-	13	57	197	265	-	0	1	6	3	-	1	6	14	226
Tennessee§	10	14	62	237	265	1	2	6	35	44	10	14	48	241	353
W.S. Central	31	133	1,328	948	1,623	1	5	139	49	134	40	92	967	1,206	1,520
Arkansas§	12	13	39	186	162		0	5	7	23	9	10	27	158	168
Louisiana	-	11	54	126	313	-	0	1	-	4	-	7	26	60	287
Oklahoma	19	14	102	217	196	1	0	82	7	12	6	4	61	93	44
Texas§		91	1,199	419	952	-	4	55	35	95	25	63	889	895	1,021
Mountain	28	55	110	1,011	1,263	3	10	40	135	170	10	27	54	465	280
Arizona	9	20	43	389	342	-	1	4	18	25	9	17	35	340	124
Colorado	18	12	20	225	350	1	3	18	60	48	1	3	11	41	30
Idaho§	1	3	12	66	66	2	2	15	20	33	-	0	2	3	5
Montana§	-	2	7	49	42	-	0	3	6	17	-	0	5	11	1
Nevada§	-	4	14	104	86	-	0	3	8	8	-	2	13	30	87
New Mexico§	-	6	25	83	223	-	1	4	15	19	-	3	12	37	21
Utah	-	6	19	73	121	-	1	9	7	15	-	0	3	3	9
Wyoming§	-	1	5	22	33	-	0	2	1	5	-	0	1	-	3
Pacific	50	119	537	2,270	1,871	5	11	31	133	93	8	30	82	486	521
Alaska	1	1	4	2,25	1,87	-	0	1	-	3	-	0	1	2	-
California	22	88	516	1,722	1,388	1	5	15	80	51	7	25	75	386	447
Hawaii		5	15	103	91	,	0	2	2	3	-	0	3	8	18
Oregon§	-	7	73	156	156	-	1	8	11	11	-	1	10	16	25
Washington	27	11	85	264	218	4	3	16	40	25	1	2	13	74	31
	-	0	1	-	1	-	0	0	-	-	-	0	2	3	1
C.N.M.I.	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	1	2	-	5	-	0	0	-	-	-	0	2	-	11
Puerto Rico	2	12	40	78	247	-	0	0	-	-	-	0	4	1	8
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional.
† Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Streptococcal diseases, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Cum } \\ 2008 \\ \hline \end{array}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	63	96	239	2,877	3,197	6	33	122	872	999
New England	1	5	28	155	234	-	1	12	23	51
Connecticut		0	21	43	66	-	0	11		
Maine§	-	0	3	10	17	-	0	1	1	1
Massachusetts	-	2	10	60	115	-	1	2	15	39
New Hampshire	-	0	4	26	16	-	0	1	5	7
Rhode Island§	-	0	8	4	10	-	0	2	-	4
Vermont§	1	0	3	12	10	-	0	1	2	-
Mid. Atlantic	18	18	38	561	670	1	4	33	129	125
New Jersey	-	1	6	5	121	-	1	4	14	35
New York (Upstate)	8	6	25	210	210	1	2	17	68	55
New York City	-	4	12	117	129	-	0	31	47	35
Pennsylvania	10	6	18	229	210	N	0	2	N	N
E.N. Central	2	17	42	581	638	1	6	18	130	184
Illinois	-	5	12	160	175	-	1	5	15	53
Indiana	-	3	23	96	81	-	0	13	15	20
Michigan	-	3	11	96	112	-	1	5	42	51
Ohio	1	4	13	153	174	1	1	6	43	33
Wisconsin	1	2			96	-	1	4	15	27
W.N. Central	24	6	37	254	238	-	2	11	68	47
Iowa		0	0	-	-	-	0	0	-	-
Kansas	1	1	5	36	26	N	0	1	N	N
Minnesota	21	0	34	105	109	-	0	7	31	11
Missouri		2	8	61	60	-	1	4	26	21
Nebraska§	1	1	3	29	23	-	0	1	3	5
North Dakota	1	0	4	7	8	-	0	3	4	5
South Dakota	1	0	3	16	12	-	0	2	4	5
S. Atlantic	10	22	46	627	629	-	6	16	177	194
Delaware	-	0	1	8	6	-	0	0	-	-
District of Columbia	-	0	2	-	7	N	0	0	N	N
Florida	-	5	12	154	143	-	1	6	43	36
Georgia	3	5	13	146	141	-	2	6	47	52
Maryland§	-	3	10	86	115	-	1	3	36	38
North Carolina	3	2	12	67	77	N	0	0	N	N
South Carolina§	2	1	5	40	39	-	1	6	28	32
Virginia§	2	3	9	100	77	-	0	4	15	31
West Virginia	-	1	4	26	24	-	0	2	8	5
		4					1	6		
Alabama§	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	5	20	22	N	0	0	N	N
Mississippi	N	0	0	N	N	-	0	2	-	7
Tennessee§	1	3	8	92	88	-	1	6	34	46
W.S. Central	2	9	79	257	260	2	6	46	162	148
Arkansas§		0	2	9	7		0	4	16	9
Louisiana	-	0	3	9	11	-	0	3	13	7
Oklahoma	1	3	20	89	62	1	1	7	31	45
Texas ${ }^{\S}$	1	6	59	150	180	1	4	34	102	87
Mountain	4	9	22	259	353	1	4	16	131	169
Arizona	1	3	7	79	120	-	2	10	76	77
Colorado	3	3	10	107	88	1	1	4	25	39
Idaho§	-	0	2	3	10	-	0	2	6	2
Montana§	N	0	0	N	N	N	0	0	N	N
Nevada§	-	0	1	4	6	-	0	1	-	2
New Mexico§	-	2	7	44	90	-	0	4	13	25
Utah	-	1	6	21	34	-	0	4	11	23
Wyoming§	-	0	1	1	5	-	0	1	-	1
Pacific	1	3	9	71	65	1	1	3	18	28
Alaska	1	0	4	10	15	1	0	3	13	17
California	N	0	0	N	N	N	0	0	N	N
Hawaii	-	3	8	61	50	-	0	2	5	11
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	-	0	8	-	22	N	0	0	N	N
C.N.M.I.	-	\bigcirc	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-
Puerto Rico	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional.
\dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	All ages					Aged < 5 years									
	Previous Current 52			$\begin{aligned} & \text { Cum } \\ & 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$
	week	Med	Max				Med	Max				Med	Max		
United States	13	56	276	1,636	1,879	5	9	21	252	273	68	260	452	5,615	5,592
New England	-	1	48	29	38	-	0	5	1	4	3	5	15	144	144
Connecticut	-	0	48	-	-	-	0	5	-	-	-	1	5	29	10
Maine§	-	0	2	7	12	-	0	1	-	-	-	0	2	1	5
Massachusetts	-	0	1	1	-	-	0	1	1	-	3	4	11	100	112
New Hampshire	-	0	3	5	-	-	0	0	-	-	-	0	2	10	6
Rhode Island§	-	0	6	7	13	-	0	1	-	2	-	0	5	4	6
Vermont§	-	0	1	9	13	-	0	0	-	2	-	0	2	-	5
Mid. Atlantic	1	4	14	95	195	1	0	3	19	16	26	33	51	843	782
New Jersey	-	0	0	-	-	-	0	0	-	-	-	4	13	101	94
New York (Upstate)	-	1	10	40	37	-	0	2	10	5	3	2	8	50	60
New York City	-	1	4	2	81	-	0	2	-	-	17	22	36	529	489
Pennsylvania	1	1	8	53	77	1	0	2	9	11	6	5	12	163	139
E.N. Central	6	10	41	356	408	1	1	7	50	56	6	24	44	456	498
Illinois	N	0	0	N	N	N	0	0	N	N	-	9	19	119	185
Indiana	-	2	32	108	144	-	0	6	16	17	-	2	10	73	65
Michigan	-	0	2	16	14	-	0	1	2	2	4	4	18	113	94
Ohio	6	7	18	232	250	1	1	4	32	37	-	6	28	128	132
Wisconsin	-	0	0	-	-	-	0	0	-	-	2	1	4	23	22
W.N. Central	-	3	161	85	135	-	1	4	20	24	2	6	14	135	187
lowa	-	0	0	-	-	-	0	0	-	-	-	0	2	10	8
Kansas	-	1	5	37	56	-	0	2	13	3	2	0	3	13	16
Minnesota	-	0	156	-	16	-	0	4	-	16	-	2	6	29	44
Missouri	-	1	5	37	58	-	0	1	5	2	-	3	10	69	113
Nebraska§	-	0	0	-	-	-	0	0	-	-	-	0	2	11	6
North Dakota	-	0	3	9	2	-	0	0	-	-	-	0	1	2	-
South Dakota	-	0	2	2	3	-	0	2	2	3	-	0	1	1	-
S. Atlantic	3	25	53	785	746	1	4	14	114	114	15	62	262	1,331	1,186
Delaware	-	0	2	10	2	-	0	0	-	-	-	0	3	14	6
District of Columbia	N	0	0	N	N	N	0	0	N	N	-	3	9	81	61
Florida	-	15	36	481	398	-	3	13	79	70	-	20	31	428	456
Georgia	3	8	25	217	264	1	1	5	28	37	-	14	227	252	208
Maryland§	-	0	1	4	4	-	0	0	-	1	-	6	16	125	144
North Carolina	N	0	0	N	N	N	0	0	N	N	14	8	19	248	136
South Carolina§	-	0	0	-	-	-	0	0	-	-	1	2	6	47	41
Virginia§	N	0	0	N	N	N	0	0	N	N	-	5	16	134	129
West Virginia	-	2	13	73	78	-	0	3	7	6	-	0	1	2	5
E.S. Central	3	5	25	177	210	2	1	3	26	38	6	22	36	491	472
Alabama§	N	0	0	N	N	N	0	0	N	N	-	8	17	179	205
Kentucky	,	1	5	48	49	,	0	2	7	9	-	1	10	24	44
Mississippi	-	0	3	-	24	-	0	1	-	8	-	3	18	87	59
Tennessee§	3	3	22	129	137	2	0	3	19	21	6	8	19	201	164
	-	1	6	52	70	-	0	3	10	12	6	48	80	1,072	919
Arkansas§	-	0	5	33	12	-	0	3	7	3	6	4	35	91	54
Louisiana	-	1	5	19	58	-	0	1	3	9	-	14	40	223	217
Oklahoma	N	0	0	N	N	N	0	0	N	N	-	1	7	27	40
Texas§	-	0	0	-	-	-	0	0	-	-	-	30	44	731	608
Mountain	-	2	7	55	76	-	0	3	11	8	-	9	18	136	302
Arizona	-	0	0	-	-	-	0	0	-	-	-	3	11	21	154
Colorado	-	0	0	-	-	-	0	0	-	-	-	2	5	42	84
Idaho§	N	0	1	N	N	N	0	1	N	N	-	0	2	3	1
Montana§	-	0	1	-	-	-	0	0	-	-	-	0	7	-	-
Nevada§	-	1	4	26	36	-	0	2	6	3	-	1	7	49	35
New Mexico§	-	0	0			-	0	0	-	-	-	1	5	20	13
Utah	-	1	6	22	40	-	0	3	4	5	-	0	2	-	13
Wyoming§	-	0	2	7	-	-	0	1	1	-	-	0	1	1	2
Pacific	-	0	1	2	1	-	0	1	1	1	4	47	66	1,007	1,102
Alaska	-	0	0	-	-	-	0	0	-	-	-	0	1	-	-
California	N	0	0	N	N	N	0	0	N	N	2	43	60	922	1,001
Hawaii	-	0	1	2	1	-	0	1	1	1	-	0	3	14	11
Oregon§	N	0	0	N	N	N	0	0	N	N	1	0	3	16	5
Washington	N	0	0	N	N	N	0	0	N	N	1	3	9	55	85
American Samoa	N	0	0	N	N	N	0	0	N	N	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	6	3	11	102	75
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional.
\dagger Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 20, 2009, and June 14, 2008 (24th week)*

Reporting area						West Nile virus disease ${ }^{\dagger}$									
	Varicella (chickenpox)					Neuroinvasive					Nonneuroinvasive ${ }^{\text {§ }}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	51	350	711	7,791	18,007	-	0	75	-	12	-	0	77	1	27
New England	-	15	46	148	922	-	0	2	-	-	-	0	1	-	1
Connecticut	-	9	21	-	458	-	0	2	-	-	-	0	1	-	1
Maine ${ }^{\text {l }}$	-	0	11	-	153	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	-	-	-	0	1	-	-	-	0	0	-	-
New Hampshire	-	4	11	105	153	-	0	0	-	-	-	0	0	-	-
Rhode Island ${ }^{\text {I }}$	-	0	0	-	-	-	0	1	-	-	-	0	0	-	-
Vermont ${ }^{\text {] }}$	-	3	17	43	158	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	17	38	58	883	1,414	-	0	8	-	-	-	0	4	-	-
New Jersey	N	0	0	N	N	-	0	2	-	-	-	0	1	-	-
New York (Upstate)	N	0	0	N	N	-	0	5	-	-	-	0	2	-	-
New York City	-	0	0	-	-	-	0	2	-	-	-	0	2	-	-
Pennsylvania	17	38	58	883	1,414	-	0	2	-	-	-	0	1	-	-
E.N. Central	27	151	254	3,814	4,443	-	0	8	-	-	-	0	3	-	-
Illinois	-	33	73	822	620	-	0	4	-	-	-	0	2	-	-
Indiana	-	0	19	151	-	-	0	1	-	-	-	0	1	-	-
Michigan	8	49	90	1,196	1,871	-	0	4	-	-	-	0	2	-	-
Ohio	9	42	91	1,326	1,466	-	0	3	-	-	-	0	1	-	-
Wisconsin	10	13	51	319	486	-	0	2	-	-	-	0	1	-	-
W.N. Central	-	22	114	609	723	-	0	6	-	1	-	0	21	1	4
lowa	N	0	0	N	N	-	0	2	-	-	-	0	1	-	-
Kansas	-	6	22	171	293	-	0	2	-	1	-	0	3	-	1
Minnesota	-	0	0	-	-	-	0	2	-	-	-	0	4	-	-
Missouri	-	11	51	400	405	-	0	3	-	-	-	0	1	-	-
Nebraskal	N	0	0	N	N	-	0	1	-	-	-	0	6	-	-
North Dakota	-	0	108	38	-	-	0	2	-	-	-	0	11	-	3
South Dakota	-	0	4	-	25	-	0	5	-	-	-	0	6	1	-
S. Atlantic	1	57	136	1,166	2,790	-	0	4	-	2	-	0	4	-	-
Delaware	-	0	5	2	15	-	0	0	-	-	-	0	1	-	-
District of Columbia	-	0	3	-	17	-	0	2	-	-	-	0	1	-	-
Florida	-	28	67	818	1,032	-	0	2	-	-	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	1	-	-	-	0	1	-	-
Maryland"	N	0	0	N	N	-	0	2	-	-	-	0	3	-	-
North Carolina	N	0	0	N	N	-	0	1	-	1	-	0	1	-	-
South Carolina ${ }^{\text {If }}$	-	6	39	82	538	-	0	0	-	-	-	0	1	-	-
Virginiall	-	8	60	28	778	-	0	0	-	-	-	0	1	-	-
West Virginia	1	10	32	236	410	-	0	0	-	1	-	0	0	-	-
E.S. Central	-	4	28	17	783	-	0	7	-	1	-	0	9	-	6
Alabamal	-	4	28	16	775	-	0	3	-	-	-	0	2	-	1
Kentucky	N	0	0	N	N	-	0	1	-	-	-	0	0	-	,
Mississippi	-	0	1	1	8	-	0	4	-	1	-	0	8	-	3
Tennessee ${ }^{\text {l }}$	N	0	0	N	N	-	0	2	-	-	-	0	3	-	2
W.S. Central	-	56	308	489	5,532	-	0	8	-	6	-	0	7	-	7
Arkansas¹	-	3	47	19	408	-	0	1	-	2	-	0	1	-	-
Louisiana	-	1	4	35	47	-	0	3	-	-	-	0	5	-	-
Oklahoma	N	0	0	N	N	-	0	1	-	2	-	0	1	-	3
Texas"	-	47	282	435	5,077	-	0	6	-	2	-	0	4	-	4
Mountain	5	24	83	605	1,340	-	0	12	-	2	-	0	22	-	6
Arizona	5	0	0	-	-	-	0	10	-	1	-	0	8	-	-
Colorado	5	11	44	297	545	-	0	4	-	-	-	0	10	-	4
Idaho ${ }^{\text {a }}$	N	0	0	N	N	-	0	1	-	1	-	0	6	-	1
Montana ${ }^{\text {a }}$	-	2	27	70	180	-	0	0	-	-	-	0	2	-	-
Nevadal	N	0	0	N	N	-	0	2	-	-	-	0	3	-	-
New Mexicol	-	2	10	67	135	-	0	1	-	-	-	0	1	-	-
Utah	-	10	31	171	471	-	0	2	-	-	-	0	5	-	-
Wyoming ${ }^{\text {I }}$	-	0	1	-	9	-	0	0	-	-	-	0	2	-	1
Pacific	1	3	7	60	60	-	0	38	-	-	-	0	23	-	3
Alaska	1	2	6	40	23	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	-	-	0	37	-	-	-	0	20	-	3
Hawaii	-	1	4	20	37	-	0	0	-	-	-	0	0	-	-
Oregon ${ }^{\text {n }}$	N	0	0	N	N	-	0	2	-	-	-	0	4	-	-
Washington	N	0	0	N	N	-	0	1	-	-	-	0	1	-	-
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	3	-	55	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	7	17	114	326	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not reportable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 and 2009 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.
\dagger Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance)
Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
§ Not reportable in all states. Data from states where the condition is not reportable are excluded from this table, except starting in 2007 for the domestic arboviral diseases and
influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
${ }^{1}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending June 20, 2009 (24th week)

Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total	Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total
	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
New England	501	329	122	35	9	6	53	S. Atlantic	1,237	715	346	85	47	44	75
Boston, MA	148	82	51	10	3	2	12	Atlanta, GA	174	97	45	14	6	12	1
Bridgeport, CT	27	21	3	2	1	-	4	Baltimore, MD	167	91	46	18	5	7	16
Cambridge, MA	14	12	1	1	-	-	4	Charlotte, NC	109	70	24	8	4	3	9
Fall River, MA	24	18	5	1	-	-	1	Jacksonville, FL	162	84	57	11	5	5	9
Hartford, CT	45	29	8	7	1	-	7	Miami, FL	110	67	30	8	5	-	6
Lowell, MA	17	13	2	2	-	-	1	Norfolk, VA	55	34	15	2	-	4	2
Lynn, MA	7	4	1	-	2	-	-	Richmond, VA	61	27	18	3	8	5	7
New Bedford, MA	21	16	4	1	-	-	1	Savannah, GA	39	27	8	2	1	1	2
New Haven, CT	25	17	6	-	-	2	8	St. Petersburg, FL	58	33	18	3	2	2	2
Providence, RI	56	36	15	2	1	2	2	Tampa, FL	188	119	52	10	5	2	16
Somerville, MA	2	1	1	-	-	-	-	Washington, D.C.	103	57	32	5	6	3	3
Springfield, MA	28	21	5	1	1	-	3	Wilmington, DE	11	9	1	1	-	-	2
Waterbury, CT	28	19	5	4	-	-	4	E.S. Central	857	523	233	56	24	21	66
Worcester, MA	59	40	15	4	-	-	6	Birmingham, AL	155	89	43	16	5	2	13
Mid. Atlantic	2,178	1,468	479	144	39	47	93	Chattanooga, TN	90	70	16	1	1	2	4
Albany, NY	41	27	10	3	1	-	-	Knoxville, TN	108	63	33	7	4	1	16
Allentown, PA	26	21	3	1	1	-	1	Lexington, KY	59	36	15	4	-	4	3
Buffalo, NY	45	32	8	3	1	1	7	Memphis, TN	182	103	57	12	6	4	15
Camden, NJ	U	U	U	U	U	U	U	Mobile, AL	92	56	28	6	2	-	2
Elizabeth, NJ	21	14	5	2	-	-	-	Montgomery, AL	37	27	6	4	-	-	3
Erie, PA	43	37	3	2	-	1	3	Nashville, TN	134	79	35	6	6	8	10
Jersey City, NJ	9	6	1	1	1	-	-	W.S. Central	1,331	830	305	114	38	44	67
New York City, NY	1,142	771	264	78	15	13	46	Austin, TX	99	61	20	12	2	4	11
Newark, NJ	34	12	11	6	3	2	-	Baton Rouge, LA	56	49	3	3	1	-	-
Paterson, NJ	10	7	1	1	-	1	-	Corpus Christi, TX	73	43	17	5	4	4	3
Philadelphia, PA	461	284	108	32	14	23	15	Dallas, TX	170	102	42	10	7	9	14
Pittsburgh, PA§	35	17	15	2	-	1	2	El Paso, TX	67	42	14	9	1	1	2
Reading, PA	29	25	4	-	-	-	2	Fort Worth, TX	U	U	U	U	U	U	U
Rochester, NY	123	90	22	6	1	4	8	Houston, TX	359	208	96	30	12	13	12
Schenectady, NY	22	16	6	-	-	-	1	Little Rock, AR	69	41	12	9	2	5	1
Scranton, PA	27	22	4	1	-	-	3	New Orleans, LA	U	U	U	U	U	U	U
Syracuse, NY	55	44	8	3	-	-	4	San Antonio, TX	247	150	69	16	7	5	14
Trenton, NJ	24	20	1	1	2	-	-	Shreveport, LA	63	46	11	4	-	2	5
Utica, NY	11	9	2	-	-	-	1	Tulsa, OK	128	88	21	16	2	1	5
Yonkers, NY	20	14	3	2	-	1	-	Mountain	875	576	197	66	24	10	63
E.N. Central	1,832	1,215	420	103	45	46	121	Albuquerque, NM	U	U	U	U	U	U	U
Akron, OH	44	29	13	1	-	1	-	Boise, ID	47	33	9	4	-	1	2
Canton, OH	36	25	6	1	2	2	3	Colorado Springs, CO	69	52	13	4	-	-	1
Chicago, IL	309	171	93	28	7	7	27	Denver, CO	88	57	18	8	3	2	8
Cincinnati, OH	80	53	14	5	5	3	9	Las Vegas, NV	237	159	47	21	10	-	20
Cleveland, OH	205	145	45	4	6	5	9	Ogden, UT	30	21	7	2	-	-	2
Columbus, OH	189	122	48	12	4	3	11	Phoenix, AZ	149	75	46	16	4	6	11
Dayton, OH	123	86	26	5	4	2	6	Pueblo, CO	24	15	8	-	-	1	-
Detroit, MI	156	84	43	11	6	12	16	Salt Lake City, UT	119	86	19	9	5	-	13
Evansville, IN	46	37	9	-	-	-	2	Tucson, AZ	112	78	30	2	2	-	6
Fort Wayne, IN	73	58	11	1	2	1	3	Pacific	1,567	1,074	347	90	35	21	148
Gary, IN	12	6	5	1	1	-	-	Berkeley, CA	13	11	2	-	-	-	3
Grand Rapids, MI	42	35	5	1	1	-	6	Fresno, CA	U	U	U	U	U	U	U
Indianapolis, IN	167	101	45	14	2	5	13	Glendale, CA	30	19	9	1	-	1	4
Lansing, MI	21	17	4	-	-	-	1	Honolulu, HI	84	60	18	3	2	1	8
Milwaukee, WI	68	46	11	6	2	3	5	Long Beach, CA	59	35	20	2	1	1	9
Peoria, IL	U	U	U	U	U	U	U	Los Angeles, CA	228	144	57	17	6	4	25
Rockford, IL	63	48	9	4	2	-	3	Pasadena, CA	24	16	4	1	2	1	2
South Bend, IN	47	37	6	1	2	1	2	Portland, OR	124	81	28	12	2	1	5
Toledo, OH	86	57	22	7	-	-	2	Sacramento, CA	206	139	46	12	7	2	27
Youngstown, OH	65	58	5	1	-	1	3	San Diego, CA	192	127	40	18	3	4	15
W.N. Central	609	389	133	44	27	16	46	San Francisco, CA	129	87	32	5	3	2	15
Des Moines, IA	73	51	15	4	2	1	5	San Jose, CA	182	139	32	8	1	2	18
Duluth, MN	34	26	6	1	1	-	5	Santa Cruz, CA	35	28	6	1	-	-	5
Kansas City, KS	19	11	2	4	1	1	-	Seattle, WA	91	69	14	7	-	1	5
Kansas City, MO	97	59	27	6	4	1	10	Spokane, WA	63	45	13	1	3	1	5
Lincoln, NE	38	30	3	4	-	1	-	Tacoma, WA	107	74	26	2	5	-	2
Minneapolis, MN	72	51	10	3	6	2	6	Total ${ }^{1}$	10,987	7,119	2,582	737	288	255	732
Omaha, NE	U	U	U	U	U	U	U								
St. Louis, MO	116	63	25	12	10	6	9								
St. Paul, MN	59	36	14	5	2	2	4								
Wichita, KS	101	62	31	5	1	2	7								

U: Unavailable. -:No reported cases.

* Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $>100,000$. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
† Pneumonia and influenza.
Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
${ }^{9}$ Total includes unknown ages.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, visit $M M W R$'s free subscription page at http://www.cdc.gov/mmwr/mmwrsubscribe.btml. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov.
All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: *Objective 13-15. Available at http://www.healthypeople.gov/data/midcourse/ pdf/fa13.pdf.
 ${ }^{\dagger}$ Alabama, Alaska, Arizona, Arkansas, Colorado, Florida, Georgia, Idaho, Indiana, Iowa, Kansas, Louisiana, Michigan, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, West Virginia, Wisconsin, and Wyoming

[^1]: ${ }^{\$}$ Additional information available at http://www.cdc.gov/hiv/topics/surveillance/ resources/reports/2007report/technicalnotes.htm.
 ${ }^{9}$ HIV transmission categories: 1) male-to-male sexual contact (e.g., men who have sex with men), 2) injection-drug use, 3) both male-to-male sexual contact and injection-drug use, 4) high-risk heterosexual contact (i.e., with a person known to have HIV or an HIV risk factor [e.g., male-to-male sexual contact or injection-drug use], and 5) other modes of infection (e.g., receipt of blood transfusion or tissue transplant).

[^2]: ** Includes 1) injection-drug users and their sex partners, 2) persons who exchange sex for money or drugs, 3) sex partners of HIV-infected persons, and 4) men who have sex with men or heterosexual persons who have had more than one sex partner since their most recent HIV test or whose sex partners have had more than one sex partner since their most recent HIV test.

[^3]: ${ }^{\dagger \dagger}$ Available at http://www.aidsinfo.nih.gov/contentfiles/adultandadolescentgl.pdf.

[^4]: *Additional information available at http://www.cdc.gov/yrbss.

[^5]: ${ }^{\dagger}$ Determined by response to the question, "Have you ever been tested for HIV, the virus that causes AIDS [acquired immunodeficiency syndrome]? (Do not count tests done if you donated blood.)."
 $\$$ Overall response rate $=$ (number of participating schools / number of eligible sampled schools) \times (number of useable questionnaires / number of eligible students sampled).
 s Determined by response to the question, "Have you ever been taught about AIDS or HIV infection in school?"
 ** Determined by response to the question, "Have you ever had sexual intercourse?"
 ${ }^{\dagger} \dagger$ Determined by response to the question, "How old were you when you had sexual intercourse for the first time?"

[^6]: $\$ \$$ The Kaiser survey asked, "Have you ever been tested for HIV?" Of those tested overall, approximately 90% were tested at a clinic or doctor's office and 1% were tested as part of a blood drive or donation.

[^7]: \＄National HIV and STD testing resources，including locations of testing sites， are available at http：／／www．hivtest．org，and information about youth－friendly HIV testing，counseling，and care is available at http：／／www．adolescent aids．org．
 ＊＊＊Some examples are available at http：／／www．cdc．gov／healthyyouth／sexual behaviors／pdf／hivtesting＿adolescents．pdf．

[^8]: *Measles elimination is defined as the absence of endemic measles virus transmission.
 ${ }^{\dagger}$ SIAs generally are carried out in two stages: 1) an initial nationwide catch-up SIA usually targets all children aged 9 months -14 years, followed by 2) periodic follow-up SIAs targeting all children born since the last SIA.
 ${ }^{\S}$ Data collected and reported on individual cases rather than in aggregate form.

 - The WPR includes 37 countries and areas: Australia, Brunei Darussalam, Cambodia, China, Hong Kong (China, Special Administrative Region [SAR]), Macau (China, SAR), Japan, Malaysia, Mongolia, New Zealand, Lao People's Democratic Republic, Papua New Guinea, Philippines, Republic of Korea, Singapore, Vietnam, and 21 Pacific island countries and areas including American Samoa, Commonwealth of the Northern Marianas Islands, Cook Islands, Federated States of Micronesia, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, New Caledonia, Niue, Nauru, Pitcairn Islands, Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu, and Wallis and Futuna.

[^9]: ${ }^{* *}$ Measles control aims to reduce the number of measles cases and deaths by 1) high ($\geq 90 \%$) coverage with a single dose of measles vaccine; 2) measles surveillance in every district with aggregate data reporting; and 3) case management with vitamin A and treatment for measles complications. Accelerated measles control aims to prevent measles outbreaks by providing a second dose of measles vaccine, often through campaigns, and conducting active measles surveillance with laboratory confirmation of suspected outbreaks. Measles elimination aims to interrupt transmission of measles by 1) very high (295%) coverage with 2 doses of measles vaccine through routine vaccination systems or SIAs; 2) high-quality case-based surveillance; and 3) access to an accredited measles laboratory network for confirmation of suspected measles cases and identification of measles genotypes.
 ${ }^{\dagger \dagger}$ Papua New Guinea also provides a supplementary dose of MCV at age 6 months.

[^10]: $\$ \$$ The WHO-recommended clinical case definition of measles is illness in a person of any age with fever, rash, and at least one of the following: cough, coryza, or conjunctivitis.

[^11]: *Measles.
 † Measles and rubella
 § Not available.
 ${ }^{1}$ Estimated number vaccinated.
 ** Measles, mumps, and rubella.

[^12]: Is Additional information available at http://www.un.org/millenniumgoals.
 *** Current partners providing financial and technical support for measles elimination in the WPR include American Red Cross, Australian Agency for International Development, Government of Korea, Government of Japan, New Zealand Agency for International Development, CDC (United States), UNICEF, United Nations Foundation, and WHO.

[^13]: *Additional information available at http://www.cdc.gov/vaccines/vac-gen/ shortages/downloads/eo-hib-hepb-cov.pdf.

[^14]: * Ratio of current 4-week total to mean of 154-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

[^15]: C．N．M．I．：Commonwealth of Northern Mariana Islands．

