# **Comprehensive Report**

# Characterization of Airborne Dust Generated from the Grinding of Natural and Engineered Stone Products

Drew Thompson, PhD

Chaolong Qi, PhD, PE

Commander, U.S. Public Health Service

Division of Field Studies and Engineering Engineering and Physical Hazards Branch EPHB Report No. 2023-DFSE-1489 October 2023



# **Disclaimer**

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC).

In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. All Web addresses referenced in this document were accessible as of the publication date.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of NIOSH, CDC.

# **Table of Contents**

| Abstract                                                         | V   |
|------------------------------------------------------------------|-----|
| Background                                                       | V   |
| Assessment                                                       | V   |
| Results                                                          | V   |
| Conclusions and Recommendations                                  | vi  |
| Introduction                                                     | 1   |
| Background for Control Technology Studies                        | 1   |
| Background for this project                                      | 1   |
| Background for this Study                                        | 3   |
| Materials and Methods                                            | 4   |
| Laboratory Testing System                                        | 4   |
| Stone Product Samples                                            | 4   |
| Test Conditions                                                  | 5   |
| Sampling Methods                                                 | 6   |
| Results                                                          | 8   |
| Crystalline Silica Content in Respirable and Bulk Dust Samples   | 8   |
| Respirable Dust and Crystalline Silica Normalized Generation Rat | es9 |
| Volume Removal Rates                                             | 12  |
| Particle Size Distributions                                      | 14  |
| Discussion                                                       | 17  |
| Comparison of Crystalline Silica Content                         | 17  |
| Comparison of Particle Size Distribution                         | 18  |
| Comparison of Generation Rate                                    | 18  |
| Limitations and Implications of the Experiment Results           | 19  |
| Conclusions and Recommendations                                  | 20  |
| References                                                       | 21  |
| Appendices                                                       | 26  |
| A LI T T L CARC D L                                              |     |
| Appendix I. Treatment of APS Data                                | 26  |
| Appendix II. Ireatment of APS Data                               |     |

| V. Respirable Sample Dataset40 |  |
|--------------------------------|--|
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |

#### **Abstract**

#### **Background**

Workplace exposure to respirable crystalline silica (RCS) can cause silicosis, a progressive lung disease marked by scarring and thickening of the lung tissue. Crystalline silica is found in several materials, such as brick, block, mortar, and concrete. Construction and manufacturing tasks that cut, break, grind, abrade, or drill those materials have been associated with overexposure to dust containing RCS. Stone countertop products can contain various levels of crystalline silica (can be >90 wt%) and working with this material during stone countertop fabrication has been shown to cause excessive RCS exposures. NIOSH scientists are conducting a study to develop a control strategy for workers' RCS exposure during stone countertop fabrication. The laboratory research described in this report is part of that study.

#### **Assessment**

NIOSH scientists systematically characterized the airborne dust generated from grinding engineered and natural stone products using a laboratory testing system designed and operated to collect representative respirable dust samples. The laboratory experiments in this study determined dust and crystalline silica generation rates, dust size distributions, and crystalline silica content during the dry grinding of nine stone countertop products including seven engineered stones containing crystalline silica in a polymer resin matrix from five major manufacturers (labeled Stone A, B, and 1 through 5 throughout), one engineered stone containing recycled glass in a Portland cement matrix (Stone C), and one natural stone, granite.

#### **Results**

For each stone product, the corresponding crystalline silica content in bulk dust samples and respirable dust samples were found to be similar. The crystalline silica content in the respirable dust was within or below the ranges reported in the manufacturers' safety data sheets for each of the respective stone products. It is worth noting that no crystalline silica was detected in Stone C. In addition, Stone B, whose new formulation was advertised by the manufacturer as having a reduced crystalline silica content ( $\leq 50$  wt%) with respect to their previous formulation, had a crystalline silica content comparable to that of the granite evaluated in this study (about 20-30 wt%).

Since sample thickness may influence the rate at which material is removed from the stone product sample during grinding, the normalized generation rate results from differing sample thickness are presented separately. Among the four stone products with samples about 30 mm thick, the mean normalized generation rates of respirable dust ranged from 24 to 43 mg cm<sup>-3</sup> with granite being the highest and Stones A, B, and C being comparable. The mean normalized generation rates of RCS for these samples ranged from 0.0 to 16 mg cm<sup>-3</sup> with Stone A being the highest followed by granite, Stone B, and finally Stone C which generated no

detectable crystalline silica. Among the five engineered stone products with a resin matrix and sample thicknesses of around 20 mm, mean normalized generation rates of respirable dust and RCS both remain in relatively narrow ranges.

The mass-based distributions showed the most prominent modes at  $5.1-8.0~\mu m$  for all the stone products evaluated in this study. This suggests that the mechanical process of the fabrication task, in this case a pneumatic angle grinder equipped with a coarse diamond grinding cup wheel, rather than the type of stone product predominantly determines the shape of the dust size distribution. The results of particle size distribution and RCS generation rate both contributed to the observation published previously that the highest normalized generation rate of RCS consistently occurred at  $3.2-5.6~\mu m$  for all the stones containing crystalline silica.

#### **Conclusions and Recommendations**

Workers are likely to be exposed to lower concentrations of RCS when working with engineered stones containing no crystalline silica (e.g., Stone C), followed by engineered stones specifically designed with lower silica content (e.g., Stone B), then granite similar to the one in this study, and finally engineered stones that contain high silica content (up to about 90 wt% in a resin matrix). Working with the engineered stones from different manufacturers that have similar thicknesses and colors and contain similarly high levels of silica content is likely to lead to similar levels of RCS exposure for workers.

Thus, following the hierarchy of controls, a layered, overall control strategy can incorporate elimination (e.g., products similar to Stone C), substitution (e.g., products similar to Stone B), and engineering controls at the top to minimize workers' RCS exposure during stone countertop fabrication. For developing engineering controls, prioritizing the removal of particles in the range of 3.2 – 5.6  $\mu$ m near the generation sources should help maximize RCS reduction, since the highest normalized generation rate of RCS consistently occurred in this size range for all the stones containing crystalline silica in this study.

#### Introduction

#### **Background for Control Technology Studies**

The National Institute for Occupational Safety and Health (NIOSH) is the primary Federal agency engaged in occupational safety and health research. Located in the Department of Health and Human Services, it was established by the Occupational Safety and Health Act of 1970. This legislation mandated NIOSH to conduct a number of research and education programs separate from the standard setting and enforcement functions carried out by the Occupational Safety and Health Administration (OSHA) in the Department of Labor. An important area of NIOSH research deals with methods for controlling occupational exposure to potential chemical and physical hazards. The Engineering and Physical Hazards Branch (EPHB) of the Division of Field Studies and Engineering has been given the lead within NIOSH to study the engineering aspects of health hazard prevention and control.

Since 1976, EPHB has conducted assessments of health hazard control technologies on the basis of industry, common industrial process, or specific control techniques. Examples of these completed studies include the foundry industry; various chemical manufacturing or processing operations; spray painting; and the recirculation of exhaust air. The objective of each of these studies has been to document and evaluate effective control techniques for potential health hazards in the industry or process of interest, and to create a more general awareness of the need for, or availability of, an effective system of hazard control.

These studies involve a number of steps or phases. Initially, a series of walk-through surveys is conducted to select plants or processes with effective and potentially transferable control concept techniques. Next, in-depth surveys are conducted to determine both the control parameters and the effectiveness of these controls. The reports from these in-depth surveys are then used as a basis for preparing technical reports and journal articles on effective hazard control measures. Ultimately, the information from these research activities builds the data base of publicly available information on hazard control techniques for use by health professionals who are responsible for preventing occupational illness and injury.

## **Background for this Project**

Crystalline silica refers to a group of minerals composed of silicon and oxygen; a crystalline structure is one in which the atoms are arranged in a repeating three-dimensional pattern [Bureau of Mines, 1992]. The three major forms of crystalline silica are quartz, cristobalite, and tridymite; quartz is the most common form [Bureau of Mines, 1992]. Respirable crystalline silica (RCS) refers to that portion of airborne crystalline silica dust that is capable of entering the gas-exchange regions of the lungs if inhaled; this includes particles with aerodynamic diameters less than approximately 10 micrometers ( $\mu$ m) [NIOSH, 2002]. Silicosis, a fibrotic disease of the lungs, is an occupational respiratory disease caused by the inhalation and

deposition of RCS dust [NIOSH, 1986]. Silicosis is irreversible, often progressive (even after exposure has ceased), and potentially fatal. Because no effective treatment exists for silicosis, prevention through exposure control is essential.

Stone countertops became increasingly popular among consumers in recent years. Granite and engineered quartz stone are the two major stone countertop materials, respectively representing an estimated 27% and 8% market share (by sales) in a \$74B global countertop market in 2012. Rose et al. [2019] reported that there were an estimated 8,694 establishments and 96,366 employees in the stone fabrication industry in the United States in 2018 by analyzing data from the Bureau of Labor Statistics.

Unfortunately, a large amount of dust that contains RCS can be produced during stone countertop fabrication and installation. On average, granite naturally contains 72 wt% crystalline silica by weight [Blatt and Tracy, 1997], and engineered quartz stone contains about 90 wt% quartz grains by mass in a polymer matrix [Phillips et al., 2013]. An outbreak of silicosis was reported in Israel [Kramer et al., 2012], where 25 patients were identified who shared an exposure history of having worked with engineered quartz stone countertops without dust control or respiratory protection. In addition, 46 silicosis cases were reported in Spain among men working in the stone countertop cutting, shaping, and finishing industry [Pérez-Alonso et al., 2014]. In 2015, the first silicosis case in the US was reported for a worker who had worked with engineered quartz stone countertops [Friedman et al., , 2015]; and NIOSH and OSHA [2015] released a Hazard Alert on worker exposure to silica during countertop manufacturing, finishing and installation. More recently, Rose et al. [2019] reported 18 silicosis cases, including two fatalities, among workers in the stone fabrication industry in California, Colorado, Texas, and Washington of the US; and Fazio et al. [2023] reported 52 silicosis cases, including 10 fatalities, in the state of California. A systematic evaluation, optimization, and improvement of engineering control measures for processes involved in stone countertop fabrication and installation is needed to give manufacturers, fabricators, and occupational safety and health professionals best-practice recommendations for consistently reducing RCS exposures below the NIOSH Recommended Exposure Limit (REL) of 0.05 mg/m $^3$  (50 µg/m $^3$ ).

A review of workplace inspections conducted by the state of Washington's Department of Labor and Industries found overexposures to RCS (above the OSHA Permissible Exposure Limit (PEL)) and violation of rules on engineering controls in 9 of 18 stone countertop shops inspected [Lofgren, 2008]. Data from the OSHA's Integrated Management Information System (IMIS) reveals that citations issued for exceeding the PEL for RCS jumped from an average of 4 per year during 2000-2002 to an average of 59 per year during 2003-2011 at stone countertop fabrication shops and installation sites. These results indicate that dust control methods did not appear to be well implemented among shops in this industry. OSHA published a new PEL of 0.05 mg/m³ (50  $\mu$ g/m³) as an 8-hr time weighted average (TWA) for RCS [81 Fed. Reg. 16285, 2016], making it critical to address these overexposures.

This project aims at reducing workers' exposures and risks in the stone countertop fabrication and installation industries by evaluating, optimizing, and improving engineering control measures, evaluating their effectiveness through field studies, and disseminating the results through NIOSH field survey reports, articles in professional and trade journals, and a NIOSH Internet topic page. The long-term objective of this study is to provide practical recommendations for effective dust controls that will prevent overexposures to RCS during stone countertop fabrication and installation.

#### **Background for this Study**

In a survey of 47 granite countertop fabrication shops in Oklahoma, 15% of shops reported using dry methods for edge grinding most of the time [Phillips and Johnson, 2012]. This value is similar to the findings of Glass et al. [2022] where 16% of the 324 participants in the engineered stone fabrication industry in Victoria, Australia spent more than 50% of the time doing dry work in their most recent jobs. Field studies by the NIOSH [NIOSH, 2016a; NIOSH, 2016b; NIOSH, 2016c] in relatively large stone countertop fabrication shops found that cutting was mostly performed by machines operated remotely, such as bridge saws or water-jet cutters, but final grinding of the stone edge profiles was exclusively conducted by workers using hand-held grinders. Those grinding tasks led to the highest RCS exposure among workers in these shops. The NIOSH studies reported overexposure to RCS for the workers conducting grinding and some polishing tasks in these shops, even when regular wet methods were employed. A recent NIOSH study [2021] reported that the RCS exposure for workers conducting grinding tasks can be reduced to levels below the OSHA PEL by supplementing the regular wet methods incorporated in the grinders with a sheet-water-wetting method. There is a need for additional or more effective engineering controls to consistently reduce RCS exposures to permissible levels.

When developing effective and feasible engineering controls, dust and crystalline silica generation rates, dust size distribution, and size-dependent crystalline silica content are valuable information [Qi et al., 2016]. This characterization is best done systematically in a well-controlled laboratory test system. Of the four tasks identified by Phillips et al. [2013] as having the highest estimated RCS exposures (dry sweeping, dry cutting, dry grinding, and dry polishing), only the cutting and polishing of engineered stone have been characterized in a laboratory using one or more of the metrics highlighted above. To the best of our knowledge, no prior laboratory study has been conducted to characterize the dust generated from grinding stone countertop products. Therefore, this study was to characterize the dust generated during the dry grinding of engineered and natural stones inside a controlled laboratory testing system by following a standard method to determine dust and crystalline silica generation rates, dust size distributions, and crystalline silica content. The results obtained will serve as the basis to (i) identify stone products currently available that potentially lower or eliminate RCS exposure, (ii) develop potential engineering control measures and, (iii) evaluate engineering control effectiveness by comparing the reduced generation rates obtained from the same standard method.

#### **Materials and Methods**

#### **Laboratory Testing System**

The laboratory testing system used in this study was designed and operated to comply with European Standard EN 1093-3 [CEN, 2006] and is given in Figure 1. The system consisted of an enclosed chamber where the airborne dust was generated, a funnel, and a duct where the airborne dust was sampled. A house ventilation system equipped with a variable-speed blower drew room air into the test system through pre- and HEPA filters at a flow rate of 0.17 m<sup>3</sup> s<sup>-1</sup>. The flow rate was monitored by a micromanometer (Airflow<sup>™</sup> MEDM 500, Airflow Developments LTD., UK) connected to a delta tube (306AM-11-AO, Midwest instruments, USA) which functioned as an averaging pitot tube. Under the operating flow rate used in this study, the average flow velocity in the chamber was 0.11 m s<sup>-1</sup> which meets the standard's requirement that the average flow be larger than or equal to 0.1 m s<sup>-1</sup> for the transport of respirable dust. The Reynolds numbers for the chamber and duct were 9,100 and 46,000, respectfully, indicating that the flow was turbulent. Turbulent flow causes aerosol mixing and allows for the collection of representative samples in the sampling section. After the sampling section, air was passed through the filter cartridges inside an air handling unit (PSKB-1440, ProVent LLC, USA) that was not driving airflow before discharging into the house ventilation duct.

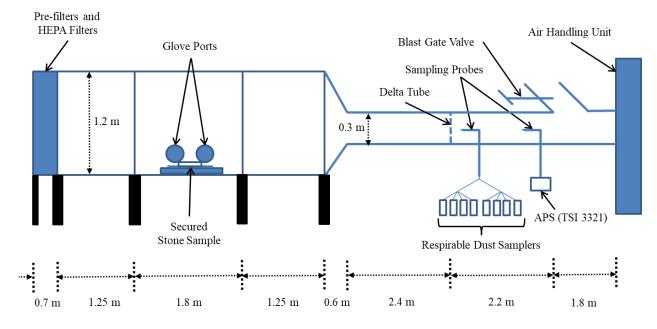



Figure 1. Diagram of the laboratory testing system

#### **Stone Product Samples**

We did a search of media-reports and market data on engineered stone products and identified nine representative stone products to investigate in this study: seven engineered stones containing crystalline silica in a polymer resin matrix from five major manufacturers (labeled Stones A, B, 1 through 5), one engineered stone containing recycled glass in a Portland cement matrix (Stone C), and one natural stone, granite. According to their safety data sheets (SDS), engineered stone products Stone A and Stones 1 through 5 were composed largely of crystalline silica, up to about 90 wt%, in a resin matrix with additives such as pigments and other minerals. Stone B was made using a new formula with a crystalline silica content of less than 50 wt%, per the SDS. For Stone C, with glass being amorphous silica, the crystalline silica should have been limited to the minute amounts present in the cement matrix. The SDS listed a crystalline silica content of less than 0.2 wt%. The importer of the Granite sample listed an estimated crystalline silica content of up to 72 wt% in the SDS. All stone product samples had a white or lightcolored coloring to minimize a potential interference from pigments for different colors. To ensure similar contact surfaces between the stone sample's edge and the grinding cup wheel, we attempted a best effort to maintain the stone sample thickness as constant as possible. In some instances, this required clamping several substrates of the same stone together. The samples for Granite and Stones A through C had a thickness of approximately 30 mm and were studied June 14 -August 2, 2021. Stones 1 through 5 had a thickness of approximately 20 mm and were studied March 7 – 18, 2022. The stone product sample name, manufacturer reported crystalline silica content, sample thickness, number of substrates per sample, and measured material density are summarized in Table 1.

| Stone   | Crystalline silica content (wt%) reported in SDS | Thickness<br>(mm) | Number of substrates per sample | Material density, $\rho_m$ (kg m <sup>-3</sup> ) |
|---------|--------------------------------------------------|-------------------|---------------------------------|--------------------------------------------------|
| Granite | 0 - 72                                           | 29                | 3                               | 2600                                             |
| Α       | 70 – 90                                          | 30                | 7                               | 2100                                             |
| В       | 1 - 50                                           | 32                | 7                               | 2100                                             |
| С       | < 0.2                                            | 32                | 1                               | 2300                                             |
| 1       | 24 - 93                                          | 19                | 1                               | 2200                                             |
| 2       | > 87                                             | 20                | 1                               | 2300                                             |
| 3       | 80 – 95                                          | 20                | 1                               | 2300                                             |
| 4       | 70 – 90                                          | 19                | 1                               | 2100                                             |
| 5       | ≤ 93                                             | 20                | 1                               | 2200                                             |

Table 1. Summary of stone product properties

#### **Test Conditions**

A hand-held pneumatic angle grinder (GPW-216, Gison Machinery Co., Ltd., Taiwan) equipped with a 10 cm diameter, coarse, diamond grinding cup wheel (Model SIS-4SPCW-SC, Stone Industrial Supplies, Inc., USA) was manually operated through the chamber's glove ports. Three experimental runs were completed for each stone product. In the experimental runs for Granite and Stones A through C, two operators alternated grinding the stone samples for 4 min each. All but one run had 8 min of active grinding. The second run for Stone C had 16

min of active grinding. In the experimental runs for Stones 1 through 5, the same two operators alternated grinding the stone samples, with one operator grinding on the first and third runs and the other operator on the second run. Samples were grinded for 4 min in each run, except for the second run for Stone 1 where the sample was grinded for approximately 4.7 min.

Before and after each experimental run, stone samples were weighed on a scale with 2 g certified readability (Model D51XW10WR3, OHAUS Corp., USA) to determine the mass removed during the specific experimental run. A volume removal rate was calculated from the mass removed, material density, and duration of grinding. After the completion of three experimental runs for each stone, we collected bulk dust samples from the dust settled on the floor of the testing chamber for analysis. Then the testing chamber was thoroughly cleaned to prevent sample cross-contamination.

#### **Sampling Methods**

Two isoaxial sampling probes extracted aerosols from the duct of the testing system to (a) up to eight respirable dust samplers operated in parallel and (b) an Aerodynamic Particle Sizer (APS) Spectrometer (Model 3321, TSI Inc., USA). The sampling probes were near-isokinetic and estimated to have less than 10% sampling bias for particles smaller than 11  $\mu m$  by following Brockmann [2011]. Probes were connected to their respective samplers and instrumentation using metallic fittings and Tygon® or conductive silicone tubing to minimize particle losses caused by electrostatic effects. The respirable dust sampler aerosol flow was split by first passing through a wye fitting followed by a 4-way flow splitter (Model 3708, TSI Inc., USA) on both branches. The overall sampling biases of the sampling trains were estimated to be less than 10% for particles with diameters ranging from 5 nm to 9  $\mu m$  [Thompson and Qi, 2023].

GK 4.162 RASCAL Cyclones (Mesa Laboratories, Inc., USA) operated at a flow rate of 9.0 l min<sup>-1</sup> were used to collect respirable dust on 47 mm diameter, 5 µm pore size, polyvinyl chloride (PVC) filters backed by cellulose support pads in three-piece conductive cassettes following NIOSH Methods 0600 and 7500 [NIOSH, 1998; NIOSH, 2003]. The sampling flow rates for the respirable samplers were provided by Leland Legacy Sample Pumps (SKC Inc., USA). The following number of respirable samples were collected in parallel from each experimental run: 6 samples for Stones 1 through 5; 1 sample for the first experimental run of Stone C; and 2 samples for Granite, Stone A, Stone B, and the remaining experimental runs of Stone C. See Figure 7 in Appendix II for a schematic of the differing sampling train configurations for the respirable samplers in each experimental run.

PVC filters were pre-weighed and post-weighed to determine respirable dust mass collected. Crystalline silica analysis of each bulk dust and air sample was performed by x-ray diffraction (XRD) in accordance with NIOSH Method 7500 [NIOSH, 2003] to quantify the amount of quartz, cristobalite, and tridymite forms of crystalline silica present. The PVC filters from all the air samples were processed by muffle furnace ashing for sample preparation to minimize the potential underestimation of

crystalline silica caused by tetrahydrofuran (THF) for sample preparation [Qi et al., 2022]. Depending on analytical instruments, analysts, and XRD interferences from feldspar or between silica polymorphs, limits of detection (LOD) for each analyte were as listed in Table 2. Limits of quantification (LOQ) were calculated as 10/3 times the LOD.

Table 2. Limits of detection (LOD) for the analysis of air and bulk samples

| Analyte         | Air samples (µg sample <sup>-1</sup> ) | Bulk samples (%wt) |
|-----------------|----------------------------------------|--------------------|
| Respirable dust | 20 - 40                                | _                  |
| Cristobalite    | 5 - 100                                | 0.2 – 4            |
| Quartz          | 5 – 10                                 | 0.2 - 0.7          |
| Tridymite       | 10 - 100                               | 0.5 – 3            |

From the mass of the dust and crystalline silica of each sample, we calculated the crystalline silica content and the normalized generation rate. Crystalline silica content was defined as the percent crystalline silica by weight. The normalized generation rate, G, represented the mass of airborne respirable dust or RCS generated per unit of volume removed from the stone sample during grinding and is defined by Equation 1, where  $\rho_m$  is the bulk material density of the stone sample,  $m_{sampl}$  is the mass collected by the respirable sampler,  $m_{remov}$  is the mass removed from the stone sample, and Q and  $Q_{sampl}$  are the nominal flow rates of the test chamber and respirable sampler, respectively.

$$G = \frac{Q\rho_m m_{sampl}}{Q_{sampl} m_{remov}}$$
 Equation 1

Crystalline silica content and normalized generation rate are not measured directly, but instead determined through other quantities via functional relationships. Thus, the combined standard uncertainty for uncorrelated input quantities, as defined in Equation 2, was used to estimate the standard deviation by following the approach of International Organization for Standardization [2008]:

$$u_c(y) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right) u^2(x_i)}$$
 Equation 2

where f is the functional relationship,  $x_i$  is the arithmetic mean of mass measurement i (dust, quartz, cristobalite, or tridymite),  $u(x_i)$  is the standard uncertainty of mass measurement i, N is the number of mass measurements, and  $\partial f/\partial x_i$  is evaluated at  $x_i$ .

The size distributions of particles with aerodynamic diameters ranging from 0.5 to 20  $\mu$ m were measured every 1 s by the APS. A correction was applied in the Aerosol Instrument Manager (AIM) (v10.2.0.11, TSI Inc., USA) software package to improve APS sizing accuracy for particles with densities that aren't close to unit density,  $1000 \pm 100$  kg m<sup>-3</sup> [Wang and John, 1987; TSI Incorporated, 2013]. See Appendix I for more details. Number and mass-based particle size distributions

representative of the stone grinding process were obtained from the APS. To account for transients due to particle transport in the testing system, the periods of active grinding were identified as those having the highest moving average of particle number concentration over the nominal grinding duration. For each engineered stone product, the particle number and mass distributions were calculated from the APS data collected each second during periods of active grinding. Trimodal lognormal size distribution functions were fit to APS-measured particle number distributions following the procedure outlined in Appendix I.

#### Results

#### Crystalline Silica Content in Respirable and Bulk Dust Samples

Respirable and bulk dust samples from Stones A, B, 1, 2, 4, and 5 contained cristobalite and quartz forms of crystalline silica. Only the quartz form was detected in the Granite and Stone 3. No tridymite was detected in any sample. No crystalline silica was detected in Stone C. The crystalline silica content in respirable dust is presented in Figure 2 (see Table 6 in Appendix III for the tabulated data in this figure, in addition to the combined standard uncertainties of cristobalite and quartz content). In general, all engineered stone products containing crystalline silica in a resin matrix, excluding Stone B, had a mean crystalline silica content respirable dust ranging from 57 to 75 wt%. Stone B, whose new formulation was claimed by the manufacturer as having a lower crystalline silica content, was found to have a crystalline silica content comparable to that of the Granite (about 25 wt%).

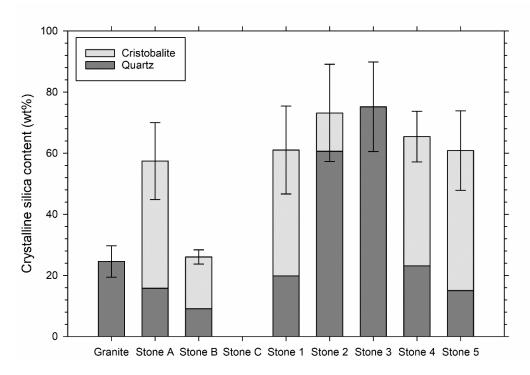



Figure 2. Crystalline silica content of respirable dust. Shadings represent the fraction of cristobalite and quartz forms. Error bars represent the combined standard uncertainty of crystalline silica content.

As seen in Table 3, the crystalline silica content of bulk dust samples was similar to that seen in the respirable dust for each stone product, and they were mostly in agreement with the manufacturers' reported ranges for the respective stone product as listed in Table 1.

| Stone   | Cristobalite (wt%) | Quartz (wt%) | Crystalline silica (wt%) |
|---------|--------------------|--------------|--------------------------|
| Granite | 0.0                | 30           | 30                       |
| Α       | 46                 | 14           | 60                       |
| В       | 12                 | 11           | 23                       |
| С       | 0.0                | 0.0          | 0.0                      |
| 1       | 32                 | 33           | 65                       |
| 2       | 21                 | 60           | 81                       |
| 3       | 0.0                | > 95         | > 95                     |
| 4       | 45                 | 25           | 70                       |
| 5       | 30                 | 38           | 68                       |

Table 3. Crystalline silica content of bulk dust

## **Respirable Dust and Crystalline Silica Normalized Generation Rates**

The mean normalized generation rates of respirable dust and RCS from the grinding of stone products are plotted in Figure 3. As will be elaborated in more detail in the Discussion section, sample thickness, among other factors, may influence the rate

at which material is removed from the stone product sample during grinding. This will in turn affect the normalized generation rates. Because of this, we will present the normalized generation rate results from differing sample thickness separately, and the two groups of data should not be directly compared against each other.

The four stone products studied in the summer of 2021 all had samples that were about 30 mm thick. For these samples, the mean normalized generation rates of respirable dust ranged from 24 to 43 mg cm<sup>-3</sup> with Granite being the highest and Stones A, B, and C being comparable, as seen in Figure 3(a). The mean normalized generation rates of RCS for these samples ranged from 0.0 to 16 mg cm<sup>-3</sup> with Stone A being the highest followed by Granite, Stone B, and finally Stone C which generated no detectable crystalline silica.

The five engineered stone products with a resin matrix studied in the spring of 2022 had sample thicknesses of around 20 mm. Mean normalized generation rates of respirable dust for each engineered stone product ranged from 7.6 to 13 mg cm<sup>-3</sup> and are plotted in Figure 3(b). Stone 4 had the highest mean normalized generation rate of respirable dust, followed by, in decreasing order, Stone 1, 2, 5, and 3. Mean normalized generation rates of RCS from these engineered stone products ranged from 5.6 to 8.4 mg cm<sup>-3</sup> and ranked, in decreasing order, as follows: Stone 4, 1, 2, 3, and 5.

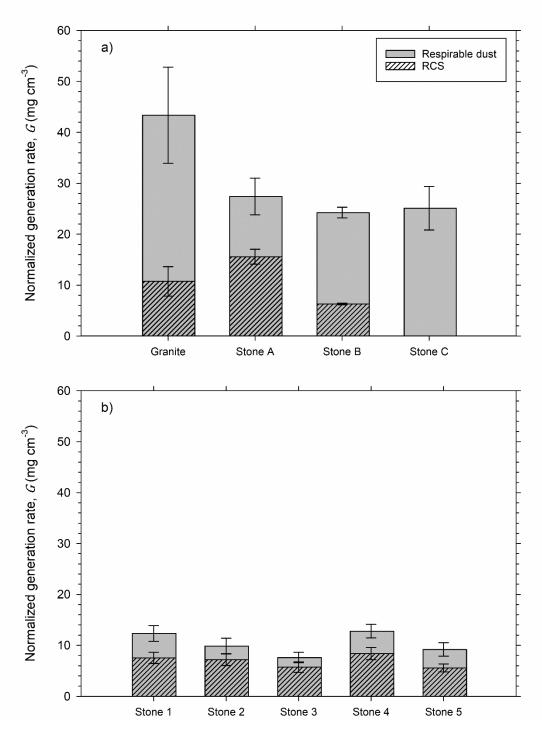



Figure 3. Respirable dust and RCS normalized generation rates for grinding  $\sim 30$  mm thick samples of Granite and Stones A – C in (a) and  $\sim 20$  mm thick samples of Stones 1 – 5 in (b). Each datum represents the mass of dust or crystalline silica (units of mg) normalized by the volume removed from the stone sample during grinding (units of cm³). Error bars represent the combined standard uncertainty of the normalized generation rate.

#### **Volume Removal Rates**

Mean volume removal rates from the grinding of stone products are shown in Figure 4. Like the normalized generation rates, we will present the volume removal rates separately for differing stone product sample thicknesses. For the four stone products with a sample thickness of approximately 30 mm, as shown in Figure 4(a), the mean volume removal rates ranged from 5.2 to 10 cm³ min⁻¹ and were ranked, in decreasing order: Stone C, Stone B, Granite, and Stone A. For the five engineered stone product samples with a thickness of about 20 mm, plotted in Figure 4(b), the mean volume removal rates ranged from 7.9 to 11 cm³ min⁻¹ and were ranked, in decreasing order: Stone 4, 1, 2, 5, and 3.

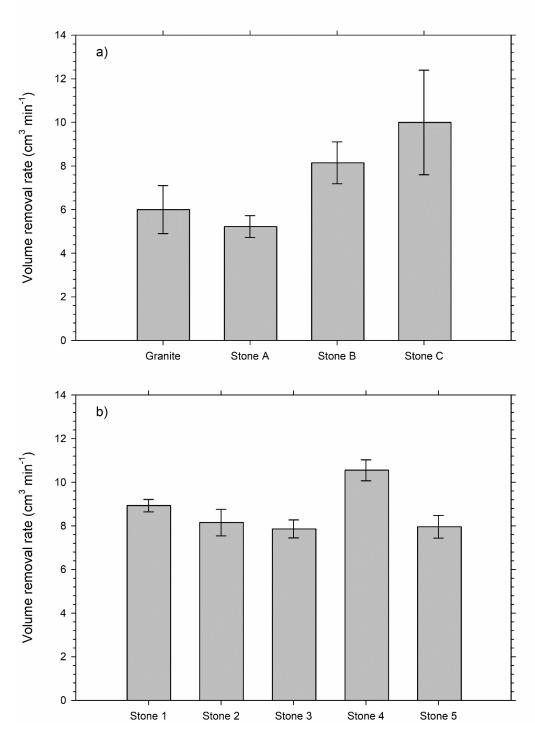
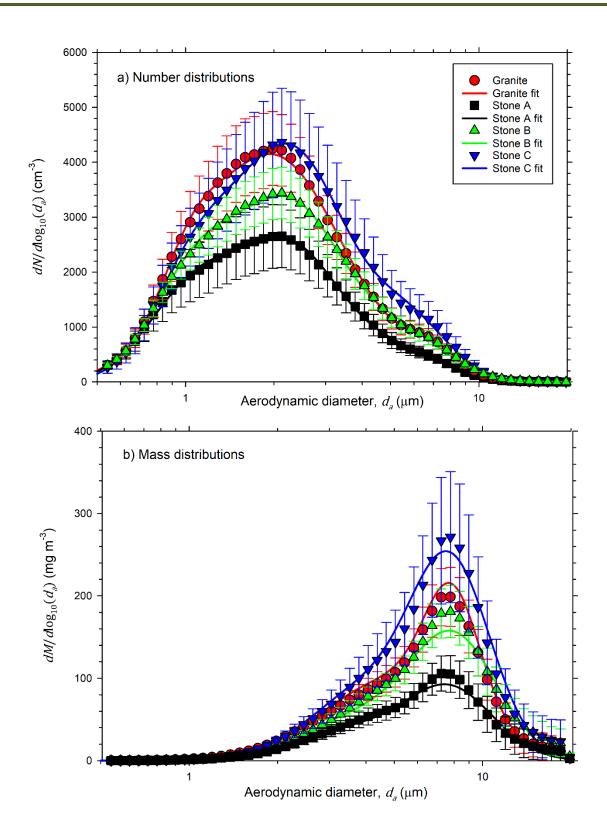




Figure 4. Volume removal rate from three experimental runs of grinding  $\sim 30$  mm thick samples of Granite and Stones A – C in (a) and  $\sim 20$  mm thick samples of Stones 1 – 5 in (b). Error bars represent the standard deviation of three replicates.

#### **Particle Size Distributions**

The number-based and mass-based particle size distributions measured during stone product grinding by the APS, and corrected to account for particle density and shape, are plotted in Figure 5(a) and (b) for Granite and Stones A through C, and Figure 5(c) and (d) for Stones 1 through 5. Plotted along with the APS data are the best fit trimodal lognormal distributions (see Table 4 in Appendix I for the best fit, number-based, trimodal lognormal distribution parameters). The total number concentration was highest during the grinding of Stone C, followed in decreasing order by Granite, Stone B, Stone A, Stone 4, Stone 1, Stone 2, Stone 3, and Stone 5. In the number-based size distributions, all stone products, excluding Stone 5, had their most prominent mode located at an aerodynamic diameter of about 2.0 -2.5 µm, second most prominent mode at 0.93 – 1.1 µm, and least prominent mode at 5.1 - 6.9 µm. While this was also true for Stone 5 when looking at absolute concentrations, when considering the relative contribution of the fitted lognormal distributions the most prominent mode was at 4.0 µm, second most at 1.1 µm, and least at 2.2 µm. The trimodal lognormal distributions exhibited an excellent fit with coefficients of determination,  $R^2$ , greater than 0.99 for all stones. Following the methodology outlined in Appendix I to derive mass-based distributions from the best fit number-based size distributions, we see the most prominent modes at 5.1 -8.0 µm in the mass-based size distributions for all the stone products evaluated in this study, as shown in Figure 5(b) and (d) (see Table 5 in Appendix I for the derived mass-based, trimodal lognormal distribution parameters).



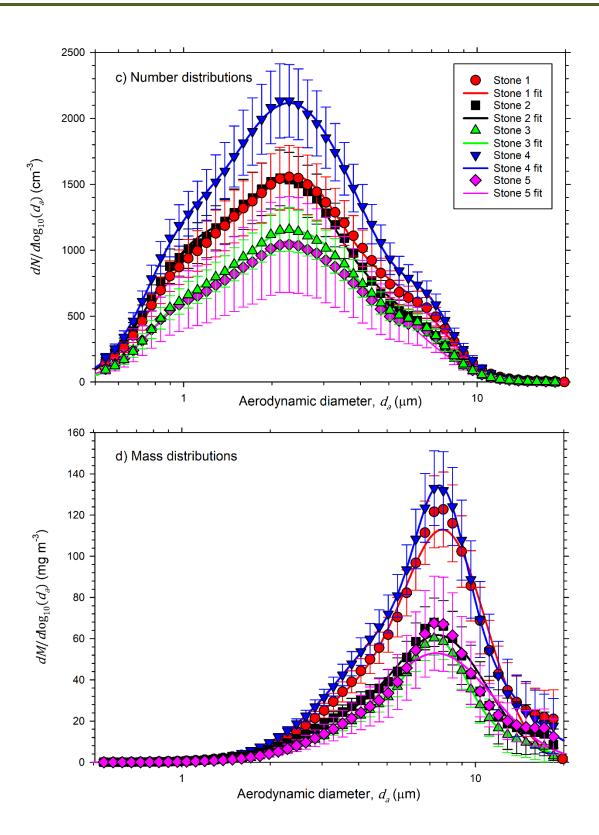



Figure 5. Number-based and mass-based particle size distributions of dust generated during grinding of  $\sim 30$  mm thick samples of Granite and Stones A – C in (a) and (b) and  $\sim 20$  mm thick samples of Stones 1 – 5 in (c) and (d). Error bars represent the standard deviation. Curves are best fit trimodal lognormal distributions.

#### **Discussion**

#### **Comparison of Crystalline Silica Content**

Three recent related studies have characterized the emissions from engineered stone products with a resin matrix and granite, along with sintered artificial stone and other natural stones, in a controlled environment. Carrieri et al. [2020] and Ramkissoon et al. [2022] investigated stone cutting and Hall et al. [2022] investigated stone cutting and polishing. All three previous studies found that the crystalline silica content in dust generated from cutting or polishing of engineered stone products with a resin matrix (37 – 91 wt%) was higher than that for granite (1.9 - 30 wt%). With one exception, the results from the present study were similar. The crystalline silica content of respirable dust generated from the dry grinding of all engineered stone products with a resin matrix surveyed, excluding Stone B, ranged from 57 to 75 wt%. This was markedly higher crystalline silica content than that for the granite stone product (24.5  $\pm$  5.1 wt%). Stone B employed a new formula to lower crystalline silica content and had a crystalline silica content of respirable dust equal to  $26.0 \pm 2.9$  wt%, comparable to that measured for Granite. No crystalline silica was detected in the respirable dust from Stone C which was an engineered stone consisting of recycled glass in a cement matrix. This is lower than the crystalline silica content in respirable dust generated from the grinding, cutting, or polishing of all engineered stone, sintered artificial stone, and natural stone products investigated by Carrieri et al. [2020], Hall et al. [2022], Ramkissoon et al. [2022], and the present study.

Like that seen by Hall et al. [2022] during stone cutting, we observed that the crystalline silica content in respirable dust collected during the grinding of each stone product investigated in this study was equivalent to that in the bulk material/dust samples. In addition, recent studies using cascade impactors have shown that crystalline silica content in the dust generated from stone product fabrication tasks varied little with dust particle size. Hall et al. [2022] reported that the crystalline silica content in dust from the cutting and polishing of engineered stone, sintered artificial stone, and natural stone product collected on each stage of a cascade impactor was consistent with that in the bulk material, except in some cases where the mass collected on the bottom-most stage of the impactor approached the LOQ. Thompson and Qi [2023] found that there was no statistically significant difference in the crystalline silica content in dust from the grinding of engineered stone and granite stone products collected on any cascade impactor stage in comparison with the total dust samples from closed-face cassettes. All of this suggests that crystalline silica content in the bulk dust could be representative of crystalline silica content in the respirable dust generated during grinding.

#### **Comparison of Particle Size Distribution**

For the number-based size distributions measured in this study, all stone products, excluding Stone 5, had their most prominent mode located at an aerodynamic diameter of about 2.3 – 2.5  $\mu$ m, second most prominent mode at 0.93 – 1.1  $\mu$ m, and least prominent mode at  $5.1 - 6.9 \mu m$ . For Stone 5, the most prominent mode was at 4.0 µm, second most at 1.1 µm, and least at 2.2 µm. We should note that the fitting procedure accounts for the standard deviation of the data in the optimization. The fact that the relative standard deviations of size distribution data for Stone 5 were, on average, larger than those for the other stone products may explain the differences in the relative contributions of each mode. The mass-based distributions from the same best fit procedure show the most prominent modes at 5.1 - 8.0 µm for all the stone products evaluated in this study. This suggests that the mechanical process of the fabrication task, in this case a pneumatic angle grinder equipped with a coarse diamond grinding cup wheel, rather than the type of stone product predominantly determines the shape of the dust size distribution. It is plausible that different fabrication tasks (e.g., cutting, grinding, and polishing) can lead to airborne dust with varying size distribution shapes. Qualitatively, the number-based size distributions reported here are comparable to the mode measured by Carrieri et al. [2020] in the supermicrometer particle range. The mass-based size distributions found in this study fell between those observed during cutting by Carrieri et al. [2020], with a mode between 3 and 10 µm, and by Hall et al. [2022], with modes at 6 and 9 µm. The mass-based size distributions measured in this study had larger modes than those measured by Hall et al. [2022] during stone polishing, where the major peak was observed at 0.1 µm and another at 2.5 µm.

#### **Comparison of Generation Rate**

Using the normalized generation rate as a metric for characterizing the emissions from subtractive processes, such as grinding, sanding, and cutting, enables comparison of emissions from different studies on different tasks and provides valuable input parameters for modeling workplace exposure. Nominal values of concentrations will be dependent on the dilution occurring in the testing system used to generate the data. In contrast, a generation rate obtained by following the European Standard EN 1093-3 is independent of system dilution rates and allow for comparisons between studies. The normalized generation rate, defined in Equation 1, is the mass of emissions generated per unit of volume removed from the workpiece. The nominal generation rate, typically represented in mass per unit of time, was normalized to include the effect of material removed from the corresponding grinding activity (see Figure 4 for the material volume removal rates measured in this study). The volume removed from workpieces by grinding might be estimated from geometric measurements and/or countertop design features, such as dimensions of slabs, dimensions of cutouts, radii of corners, edge profiles, etc. With the normalized generation rate, the RCS mass generated by a worker during the full-shift may be derived, which may then be readily incorporated into a model to estimate the worker's RCS exposure after consideration of aerosol dispersion, background concentration, and other modeling factors. Furthermore, by

comparing the normalized generation rate with and without the use of different engineering control measures, the effectiveness of the control measures can be evaluated. Such an approach will allow prompt identification and optimization of feasible control measures in a standard laboratory setting prior to more expensive field validations as was done by a study from NIOSH [2014] on controlling RCS exposures from cutting fiber-cement.

For identical amounts of materials removed from grinding activities within similar time frames, a worker's time-weighted-average RCS exposure is likely to be commensurate with the normalized generation rate of RCS for a given identical stone product obtained at the same workplace setting. Among the four stone products that were studied with samples that were about 30 mm thick, the three engineered stones (Stone A, B and C) had similar dust generation rates and their RCS generation rates were largely affected by the silica content. It is notable that Stone B, which is a new formula with lower silica content, resulted in an RCS generation rate considerably lower than Stone A and even 42% lower than the granite investigated in this study; and Stone C, which has no crystalline silica in its formula, indeed generated no detectable crystalline silica. Among the five engineered stones that were studied with samples of about 20 mm thick, the silica content (Figure 2), dust and RCS generation rates (Figure 3), as well as volume removal rates (Figure 4), all remain in relatively narrow ranges, suggesting that workers are expected to be exposed to similar levels of RCS when grinding these products at the same workplace setting.

In this same study, we used a cascade impactor as the sampler in the place of the respirable dust sampler and obtained the size-dependent normalized generation rates of RCS for the Granite and Stone A to C. By incorporating the respirable fraction criterion at the midpoint aerodynamic diameter of each stage of the cascade impactor, Thompson and Qi [2023] reported the size-dependent normalized generation rates of RCS for the Granite and Stone A to C. The highest normalized generation rate of RCS consistently occurred at 3.2 – 5.6  $\mu$ m for all the stones containing crystalline silica. When developing engineering control measures, removing particles in this size range near the generation sources should be prioritized to maximize RCS reduction.

#### **Limitations and Implications of the Experiment Results**

While we maintain that normalized generation rate is a useful metric for comparing emissions generated by different materials or tasks, care must be taken when designing studies or interpreting results from separate studies. There may be factors associated with the sample or fabrication task that when not held constant could contribute to differences in the normalized generation rate. For instance, Stone A and Stone 4 are both engineered stone products from the same manufacturer and ostensibly with similar compositions. However, the two samples differed in thickness. The sample for Stone A was 30 mm thick and consisted of 7 substrates stacked and clamped together. The sample for Stone 4 was 19 mm thick and was a single, solid substrate. While the dust emissions were comparable for Stone A and Stone 4 (similarly shaped particle size distributions, number

concentration measured by APS was 20% higher for Stone A than Stone 4, the mass concentration measured by respirable sampler was 7% higher for Stone A than Stone 4, and the crystalline silica content of respirable dust was about 10% lower for Stone A than Stone 4), the volume removal rate for Stone A was 50% of that for Stone 4. This resulted in the normalized generation rates of respirable dust and RCS being about twice as high for Stone A than Stone 4. It is possible that differences in the contact surface area of the grinding cup wheel brought about by the differing sample thickness could account for the large disagreement in volume removal rate and the resulting normalized generation rates. A larger contact area could result in a larger torque acting on the angle grinder. For a pneumatic angle grinder, this increased torque would result in a linear decrease in rotational speed [Beater, 2007]. While a mechanistic investigation of the coupling of contact surface area, material removal rates, and respirable dust emission rates is beyond the scope of this study, one might reasonably presume that the contact surface area of the grinding wheel with the workpiece would influence the material removal rate. For this reason, in the results we address the normalized generation rate and volume removal rate results separately for samples of differing thickness. We must also add that although the angle grinder was operated by the same two individuals throughout this study and they tried to maintain similar grinding performance, it is possible that the force applied, the angle of the grinder, and traverse speed of the grinder varied, especially given the fact that the tests for the ~20 cm and ~30 cm stone products were performed nearly one year apart. Despite the limitations described above, the two groups of experimental results provide valuable comparisons.

## **Conclusions and Recommendations**

During grinding, all stones were found to generate similar trimodal lognormal mass-weighted particle size distributions with the most prominent mode located at an aerodynamic diameter of about  $5.1-8.0~\mu m$ , suggesting that the mechanical process of dust formation from grinding different stones is similar and engineering control measures for the grinding task may be consistently applicable to all stone types. The crystalline silica content in bulk dust was found to be equivalent to that of respirable dust for all stones investigated, suggesting that crystalline silica content in the bulk dust could be representative of that in respirable dust generated during grinding.

Controlling exposures to occupational hazards is the fundamental method of protecting workers. Traditionally, a hierarchy of controls has been used as a means of determining how to implement feasible and effective controls. One representation of the hierarchy controls can be summarized as follows:

- Elimination
- Substitution
- Engineering Controls (e.g., ventilation)
- Administrative Controls (e.g., reduced work schedules)
- Personal Protective Equipment (PPE, e.g., respirators)

The idea behind this hierarchy is that the control methods at the top of the list are potentially more effective, protective, and economical (in the long run) than those at the bottom. Following the hierarchy normally leads to the implementation of inherently safer systems, ones where the risk of illness or injury has been substantially reduced.

Based on the normalized RCS generation rates, with the same amount of grinding activities and control effectiveness, workers are likely to be exposed to similar levels of RCS when working with engineered stones from different manufacturers that have similar thicknesses and colors and contain similarly high levels of silica content (up to about 90 wt%) in a resin matrix. Correspondingly, workers are likely to be exposed to lower concentrations of RCS when working with engineered stones containing no crystalline silica (e.g., Stone C), followed by engineered stones specifically designed with lower silica content (e.g., Stone B), then granite similar to the one in this study, and finally engineered stones that contain high silica content. The manufacturing and adoption of engineered stone products with formulations such as Stone B could potentially lower RCS exposure risks to levels comparable to that associated to working with most natural stones, while adoption of products similar to Stone C may eliminate the risks of RCS exposure completely. This would adhere to the top of the hierarchy of controls and could be effectively incorporated in a layered, overall control strategy. For developing engineering controls within the same overall control strategy, prioritizing the removal of particles in the range of 3.2 - 5.6 µm near the generation sources should help maximize RCS reduction, since the highest normalized generation rate of RCS consistently occurred in this size range for all the stones containing crystalline silica in this study.

# References

81 Fed. Reg. 16285 [2016]. Occupational Safety and Health Administration: occupational exposure to respirable crystalline silica, final rule. <a href="https://www.federalregister.gov/documents/2016/03/25/2016-04800/occupational-exposure-to-respirable-crystalline-silica">https://www.federalregister.gov/documents/2016/03/25/2016-04800/occupational-exposure-to-respirable-crystalline-silica</a>

Beater P [2007]. Pneumatic Drives: System Design, Modelling and Control. Berlin, Heidelberg: Springer Berlin Heidelberg.

Blatt H, Tracy R [1997]. Petrology: igneous, sedimentary and metamorphic (2nd ed.). New York, NY: W.H. Freeman and Company. p. 66.

Branch MA, Coleman TF, Li Y [1999]. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM J Sci Comput, 21(1): 1-23.

Brockmann JE [2011]. Aerosol Transport in Sampling Lines and Inlets. *In:* Kulkarni P, Baron PA, Willeke K Eds. Aerosol measurement: principles, techniques, and applications). Hoboken, NJ: John Wiley & Sons, Inc. p. 69.

Bureau of Mines [1992]. Crystalline Silica Primer. Washington, DC: U.S. Department of the Interior, Bureau of Mines, Branch of Industrial Minerals. Special Publication.

Carrieri M, Guzzardo C, Farcas D, Cena LG [2020]. Characterization of Silica Exposure during Manufacturing of Artificial Stone Countertops. Int J Environ Res Public Health, 17(12): 4489.

CEN [2006]. EN 1093-3, Safety of machinery - Evaluation of the emission of airborne hazardous substances - Part 3: Test bench method for the measurement of the emission rate of a given pollutant. Brussels, Belgium: European Committee for Standardization.

Davies CN [1979]. Particle-fluid interaction. J Aerosol Sci, 10(5): 477-513.

Fazio JC, Gandhi SA, Flattery J, Heinzerling A, Kamangar N, Afif N, Cummings KJ, Harrison RJ [2023]. Silicosis Among Immigrant Engineered Stone (Quartz) Countertop Fabrication Workers in California. JAMA Intern Med, 183(9):991-998.

Friedman GK, Harrison R, Bojes H, Worthington K, Filios M [2015]. Notes from the field: silicosis in a countertop fabricator - Texas, 2014. Morb Mortal Wkly Rep, 64(5):129-130.

Glass DC, Dimitriadis C, Hansen J, Hoy RF, Hore-Lacy F, Sim MR [2022]. Silica Exposure Estimates in Artificial Stone Benchtop Fabrication and Adverse Respiratory Outcomes. Ann Work Expo Health, 66(1): 5-13.

Hall S, Stacey P, Pengelly I, Stagg S, Saunders J, Hambling S [2022]. Characterizing and Comparing Emissions of Dust, Respirable Crystalline Silica, and Volatile Organic Compounds from Natural and Artificial Stones. Ann Work Expo Health, 66(2): 139-149.

Hatch T, Choate SP [1929]. Statistical description of the size properties of non uniform particulate substances. J Franklin Inst, 207(3): 369-387.

Hinds WC [1999]. Aerosol technology: properties, behavior, and measurement of airborne particles. New York, NY: John Wiley & Sons, Inc.

International Organization for Standardization [2008]. Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). Switzerland: International Organization for Standardization.

Kramer MR, Blanc PD, Fireman E, Amital A, Guber A, Rhahman NA, Shitrit D [2012]. Artificial Stone Silicosis: Disease Resurgence Among Artificial Stone Workers. Chest, 142(2): 419-424.

Lofgren DJ [2008]. Results of Inspections in Health Hazard Industries in a Region of the State of Washington. J Occup Environ Hyg, 5(6): 367-379.

Marshall IA, Mitchell JP, Griffiths WD [1991]. The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer. J Aerosol Sci, 22(1): 73-89.

NIOSH [1986]. Occupational respiratory diseases. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 86-102.

NIOSH [1998]. Particles not otherwise regulated, respirable. NIOSH Manual of Analytical Methods (NMAM®), 4th ed., 2nd Supplement, Schlecht PC, O'Connor PF Eds. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 98-119.

NIOSH [2002]. NIOSH Hazard Review: Health Effects of Occupational Exposure to Respirable Crystalline Silica. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 98-119.

NIOSH [2003]. SILICA, CRYSTALLINE, by XRD (filter redeposition). NIOSH Manual of Analytical Methods (NMAM®), 4th ed., 3rd Supplement, Schlecht PC, O'Connor PF Eds. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service,, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2003-154.

NIOSH [2014]. Evaluation of the dust generation and engineering control for cutting fiber-cement siding. By Qi C, Echt A, Gressel M, Feng HA. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, EPHB Report No. 358-16a. <a href="https://www.cdc.gov/niosh/surveyreports/pdfs/358-16a.pdf">https://www.cdc.gov/niosh/surveyreports/pdfs/358-16a.pdf</a>

NIOSH [2016a]. Evaluation of Crystalline Silica Exposure during Fabrication of Natural and Engineered Stone Countertops. By Zwack LM, Victory KR, Brueck SE, Qi C. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, HHE Report No. 2014-0215-3250.

https://www.cdc.gov/niosh/hhe/reports/pdfs/2014-0215-3250.pdf

NIOSH [2016b]. Engineering Control of Silica Dust from Stone Countertop Fabrication and Installation, In-depth field survey report for the Houston, TX field survey. By Qi C, Echt A. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, EPHB Report NO. 375-11a. <a href="https://www.cdc.gov/niosh/surveyreports/pdfs/375-11a.pdf">https://www.cdc.gov/niosh/surveyreports/pdfs/375-11a.pdf</a>

NIOSH [2016c]. Engineering Control of Silica Dust from Stone Countertop Fabrication and Installation, In-depth field survey report for the Mendota Heights,

MN field survey. By Qi C, Lo L. Cincinnati, OH: Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, EPHB Report No. 375-12a. https://www.cdc.gov/niosh/surveyreports/pdfs/375-12a.pdf

NIOSH [2021]. Engineering Control of Silica Dust from Stone Countertop Fabrication and Installation – Evaluation of Wetting Methods for Grinding. By Qi C, Echt A. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, EPHB Report NO. 2021-DFSE-710.

https://www.cdc.gov/niosh/surveyreports/pdfs/2021-DFSE-710.pdf

NIOSH, OSHA [2015]. Worker exposure to silica during countertop manufacturing, finishing and installation. National Institute for Occupational Safety and Health, Occupational Safety and Health Administration, DHHS (NIOSH) Publication No. 2015–106, OSHA HA–3768–2015.

https://www.osha.gov/sites/default/files/publications/OSHA3768.pdf

Pérez-Alonso A, Córdoba-Doña JA, Millares-Lorenzo JL, Figueroa-Murillo E, García-Vadillo C, Romero-Morillo J [2014]. Outbreak of silicosis in Spanish quartz conglomerate workers. Int J Occup Environ Health, 20(1): 26-32.

Phillips ML, Johnson AC [2012]. Prevalence of Dry Methods in Granite Countertop Fabrication in Oklahoma. J Occup Environ Hyg, 9(7): 437-442.

Phillips ML, Johnson DL, Johnson AC [2013]. Determinants of Respirable Silica Exposure in Stone Countertop Fabrication: A Preliminary Study. J Occup Environ Hyg, 10(7): 368-373.

- Qi C, Echt A, Gressel MG [2016]. On the Characterization of the Generation Rate and Size-Dependent Crystalline Silica Content of the Dust from Cutting Fiber Cement Siding. Ann Occup Hyg, 60(2): 220-30.
- Qi C, Thompson D, Amy Feng H [2022]. Caution on Using Tetrahydrofuran for Processing Crystalline Silica Samples From Engineered Stone for XRD Analysis. Ann Work Expo Health, 66(9): 1210-1214.

Ramkissoon C, Gaskin S, Thredgold L, Hall T, Rowett S, Gun R [2022]. Characterisation of dust emissions from machined engineered stones to understand the hazard for accelerated silicosis. Sci Rep, 12(1): 4351.

Rose C, Heinzerling A, Patel K, et al [2019]. Severe silicosis in engineered stone fabrication workers - California, Colorado, Texas, and Washington, 2017-2019. Morb Mortal Wkly Rep, 68(38): 813-818.

Seinfeld JH, Pandis SN [2016]. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons. p. 333.

Thompson D, Qi C [2023]. Characterization of the Emissions and Crystalline Silica Content of Airborne Dust Generated from Grinding Natural and Engineered Stones. Ann Work Expo Health, 67(2): 266-280.

TSI Incorporated [2013]. Aerosol Instrument Manager® Software for Aerodynamic Particle Sizer® (APS™) Spectrometers, P/N 1930064, REVISION H.

Vincent JH [2007]. Aerosol sampling: science, standards, instrumentation and applications. Chichester, England: John Wiley & Sons Ltd. p. 273.

Virtanen P, Gommers R, Oliphant TE, et al. [2020]. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 17(3): 261-272.

Wang H-C, John W [1987]. Particle Density Correction for the Aerodynamic Particle Sizer. Aerosol Sci Technol, 6(2): 191-198.

# **Appendices**

#### **Appendix I. Treatment of APS Data**

The particle shape and density correction for the APS outlined by Marshall et al. [1991] is identical to the density correction algorithm that is implemented into AIM [Wang and John, 1987] if the particle density,  $\rho_p$ , is replaced by the particle density divided by the dynamic shape factor,  $\rho_p/\chi$ . In this study, particle density and dynamic shape factor were assumed to be particle size-independent and particle density was assumed to be equal to the bulk material density of the stone samples.

Particle dynamic shape factor was unknown and found in the following manner. The mass in APS channel i at time t,  $m_{i,t}$ , was found using Equation 3 where  $n_{i,t}$  is the particle count in channel i at time t and  $d_{v_i}$  is the particle volume diameter at the midpoint of channel i.

$$m_{i,t} = \frac{\pi}{6} \rho_p n_{i,t} d_{v_i}^3$$
 Equation 3

Particle volume diameter was related to the particle aerodynamic diameter,  $d_a$ , by Equation 4 where  $\rho_0$  is a standard density of 1000 kg m<sup>-3</sup> [Hinds, 1999].

$$d_v = d_a \sqrt{\chi \frac{\rho_0}{\rho_p}}$$
 Equation 4

The respirable mass sampled by the APS,  $m_{APS,respir}$ , was then found by Equation 5 where  $R_i$  is the ACGIH criterion for the respirable fraction [Vincent, 2007] calculated at the midpoint of channel i.

$$m_{APS,respir} = \sum_{t} \sum_{i} R_i m_{i,t}$$
 Equation 5

The sum of the squared residuals, S, was then determined using Equation 6 where  $\overline{m}_{sampl_j}$  is the average respirable mass collected by the respirable samplers in experiment run j,  $Q_{sampl}$  is the flowrate of the respirable sampler (9.0 l min<sup>-1</sup>), and  $Q_{APS}$  is the aerosol sample flowrate in the APS (1.0 l min<sup>-1</sup>).

$$S = \sum_{i=1}^{3} \left( \overline{m}_{sampl_{j}} - \frac{Q_{sampl}}{Q_{APS}} m_{APS,respir_{j}} \right)^{2}$$
 Equation 6

The estimated dynamic shape factor was then identified by minimizing the sum of the squared residuals as demonstrated in Figure 6. The best fit dynamic shape factors are listed in Table 4 and ranged from 1.2 to 1.7. These values were comparable to those found by Davies [1979] for quartz (1.36) and sand (1.57).

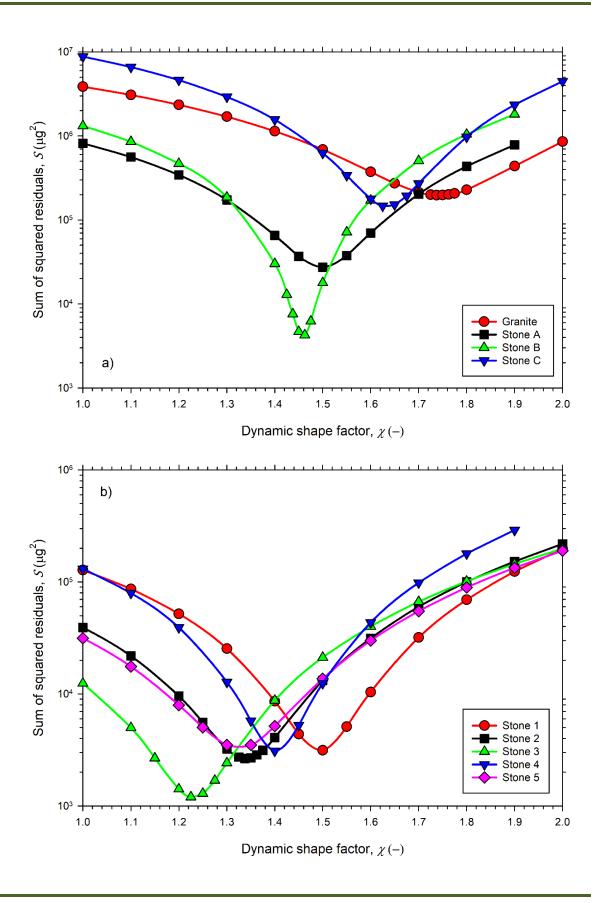



Figure 6. Sum of squared residuals from APS-derived respirable mass as a function of particle dynamic shape factor for a) Granite and Stones A - C and b) Stones 1 - 5. Plotted curves are simple spline curves generated by SigmaPlot (v14.5, Inpixon, USA).

After correcting for particle shape and density, the particle number distribution measurements,  $dN/d\log_{10}(d_a)$ , were averaged over the periods of active grinding from the three experimental runs. Particle size distributions expressed as a function on the common logarithm of the particle diameter were related to size distributions as a function of the natural logarithm of particle diameter by  $dN/d\log_{10}(d_a) = \ln(10)\,dN/d\ln(d_a)$  [Seinfeld and Pandis, 2016]. Number-based, trimodal lognormal size distribution functions, as defined in Equation 7, were then fit to the APS-measured number-based particle size distributions and standard deviations using the Trust Region Reflective minimization algorithm [Branch et al., 1999] implemented in the Python package SciPy [Virtanen et al., 2020]. Here,  $N_i$  is the number concentration of mode i,  $CMD_i$  is the count median aerodynamic diameter of mode i, and  $\sigma_{g_i}$  is the geometric standard deviation of mode i.

$$f_N(\ln d_a) = \sum_{i=1}^3 \frac{N_i}{\sqrt{2\pi} \ln \sigma_{g_i}} \exp \left[ -\frac{(\ln d_a - \ln CMD_i)^2}{2 \left(\ln \sigma_{g_i}\right)^2} \right]$$
 Equation 7

Parameters for the best fit distribution are summarized in Table 4. For convenience, the total number concentration,  $N_T = \sum_{i=1}^3 N_i$ , was factored out of the results to allow for easier comparisons of the weight of each mode,  $w_{N_i} = N_i/N_T$ , when reporting results.

Table 4. Best fit dynamic shape factor and number-based, trimodal lognormal distribution parameters (and resulting coefficient of determination,  $R^2$ ) for particle size distributions measured by APS

| Stone   | χ (-) | <i>N<sub>T</sub></i> (cm <sup>-3</sup> ) | $w_{N_1}$ (-) | <i>CMD</i> ₁ (µm) | $\sigma_{g_1}$ (-) | $w_{N_2}$ (-) | <i>CMD</i> <sub>2</sub> (µm) | $\sigma_{g_2}$ (-) | ) w <sub>N3</sub> (-) | CMD <sub>3</sub><br>(µm) | $\sigma_{g_3}$ (-) | $R^2$ (-) |
|---------|-------|------------------------------------------|---------------|-------------------|--------------------|---------------|------------------------------|--------------------|-----------------------|--------------------------|--------------------|-----------|
| Granite | 1.7   | 2830                                     | 0.0701        | 1.03              | 1.25               | 0.893         | 1.96                         | 1.75               | 0.0373                | 6.88                     | 1.24               | 1.0       |
| Α       | 1.5   | 1860                                     | 0.374         | 1.09              | 1.45               | 0.525         | 2.32                         | 1.47               | 0.101                 | 5.44                     | 1.41               | 1.0       |
| В       | 1.5   | 2420                                     | 0.328         | 1.11              | 1.43               | 0.550         | 2.34                         | 1.49               | 0.122                 | 5.59                     | 1.41               | 1.0       |
| С       | 1.6   | 2990                                     | 0.240         | 1.08              | 1.40               | 0.643         | 2.31                         | 1.53               | 0.117                 | 5.81                     | 1.37               | 1.0       |
| 1       | 1.5   | 1160                                     | 0.279         | 1.08              | 1.45               | 0.571         | 2.48                         | 1.51               | 0.150                 | 5.87                     | 1.38               | 1.0       |
| 2       | 1.3   | 1110                                     | 0.330         | 1.08              | 1.44               | 0.497         | 2.35                         | 1.44               | 0.174                 | 5.08                     | 1.44               | 1.0       |
| 3       | 1.2   | 838                                      | 0.106         | 0.939             | 1.33               | 0.842         | 2.37                         | 1.76               | 0.0524                | 6.64                     | 1.22               | 1.0       |
| 4       | 1.4   | 1550                                     | 0.0942        | 0.926             | 1.32               | 0.867         | 2.30                         | 1.79               | 0.0385                | 6.88                     | 1.21               | 1.0       |
| 5       | 1.3   | 776                                      | 0.341         | 1.14              | 1.47               | 0.269         | 2.22                         | 1.33               | 0.391                 | 4.03                     | 1.56               | 0.99      |

A mass-based, trimodal lognormal size distribution, as shown in Equation 8, was then derived from these best fit parameters. Here,  $M_i$  is the mass concentration of mode i and  $MMD_i$  is the mass median aerodynamic diameter of mode i.

$$f_M(\ln d_a) = \sum_{i=1}^3 \frac{M_i}{\sqrt{2\pi} \ln \sigma_{g_i}} \exp \left[ -\frac{(\ln d_a - \ln MMD_i)^2}{2\left(\ln \sigma_{g_i}\right)^2} \right]$$
 Equation 8

Equation 9 was used to calculate  $M_i$  where  $d_{\bar{m}_i}$  is the particle diameter of average mass of mode i.

$$M_i = \frac{\pi}{6} \rho_p d_{\bar{m}_i}^3 N_i$$
 Equation 9

The diameters of average mass and mass median diameters were found using the Hatch-Choate equations [Hatch and Choate, 1929; Hinds, 1999] in Equation 10 and Equation 11, respectively, where  $\mathit{CMD}_{v_i}$  is the count median volume diameter of mode i. The count median aerodynamic diameter and count median volume diameter were related using Equation 4.

$$d_{\overline{m}_i} = CMD_{v_i} \exp\left[\frac{3}{2} \left(\ln \sigma_{g_i}\right)^2\right]$$
 Equation 10 
$$MMD_i = CMD_i \exp\left[3 \left(\ln \sigma_{g_i}\right)^2\right]$$
 Equation 11

The derived, mass-based, trimodal lognormal distribution parameters are summarized in Table 5. Again, the total mass concentration,  $M_T = \sum_{i=1}^3 M_i$ , was factored out of the results to allow for easier comparisons of the weight of each mode,  $w_{M_i} = M_i/M_T$ , when reporting results.

Table 5. Derived, mass-based, trimodal lognormal distribution parameters (and resulting coefficient of determination,  $\mathbb{R}^2$ ) for particle size distributions measured by APS

| Stone   | $M_T$ (mg m <sup>-3</sup> ) | $w_{M_1}$ (-) | $MMD_1$ (µm) | $w_{M_2}$ (-) | MMD <sub>2</sub> (μm) | $w_{M_3}$ (-) | MMD <sub>3</sub> (μm) | R <sup>2</sup> (-) |
|---------|-----------------------------|---------------|--------------|---------------|-----------------------|---------------|-----------------------|--------------------|
| Granite | 94.3                        | 0.00225       | 1.20         | 0.646         | 5.06                  | 0.351         | 7.91                  | 0.99               |
| Α       | 48.8                        | 0.0218        | 1.64         | 0.309         | 3.59                  | 0.669         | 7.71                  | 0.98               |
| В       | 79.0                        | 0.0155        | 1.64         | 0.280         | 3.74                  | 0.704         | 7.97                  | 0.98               |
| С       | 119                         | 0.00928       | 1.51         | 0.330         | 3.97                  | 0.661         | 7.82                  | 0.99               |
| 1       | 50.9                        | 0.00968       | 1.63         | 0.276         | 4.12                  | 0.714         | 8.00                  | 0.98               |
| 2       | 30.9                        | 0.0142        | 1.62         | 0.215         | 3.48                  | 0.771         | 7.62                  | 0.98               |
| 3       | 25.0                        | 0.00193       | 1.20         | 0.719         | 6.19                  | 0.279         | 7.48                  | 1.0                |
| 4       | 59.1                        | 0.00167       | 1.17         | 0.767         | 6.39                  | 0.232         | 7.67                  | 1.0                |
| 5       | 27.7                        | 0.0144        | 1.77         | 0.0625        | 2.84                  | 0.923         | 7.35                  | 0.95               |

# **Appendix II. Additional Tables and Figures**

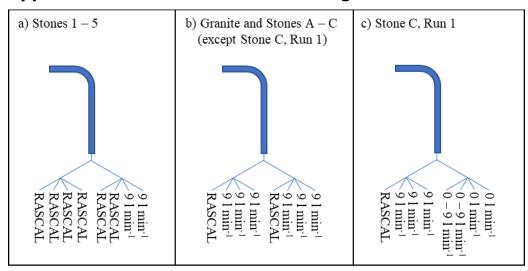



Figure 7. Differing sampling train configurations for respirable samplers (RASCALs) for each stone/experimental run. Note that in (c) two ports of a 4-way flow splitter show flow rates of 0-9 l min<sup>-1</sup>. This is because two pumps collecting samples unrelated to this study malfunctioned and turned off mid-run.

# **Appendix III. Tabulated Data from Figures**

Table 6. Crystalline silica content of respirable dust

|         | Cristobalit | te (wt%)                      | Quartz  | (wt%)                         | Crystalline silica<br>(wt%) |                               |  |
|---------|-------------|-------------------------------|---------|-------------------------------|-----------------------------|-------------------------------|--|
| Stone   | Average     | Combined standard uncertainty | Average | Combined standard uncertainty | Average                     | Combined standard uncertainty |  |
| Granite | 0.0         | 0.0                           | 24.6    | 5.1                           | 24.6                        | 5.1                           |  |
| Α       | 41.6        | 9.6                           | 15.8    | 5.0                           | 57                          | 13                            |  |
| В       | 17.0        | 2.3                           | 9.1     | 1.1                           | 26.0                        | 2.9                           |  |
| С       | 0.0         | 0.0                           | 0.0     | 0.0                           | 0.0                         | 0.0                           |  |
| 1       | 41          | 11                            | 19.8    | 5.3                           | 61                          | 14                            |  |
| 2       | 12.5        | 2.5                           | 61      | 15                            | 73                          | 16                            |  |
| 3       | 0.0         | 0.0                           | 75      | 15                            | 75                          | 15                            |  |
| 4       | 42.3        | 6.5                           | 23.1    | 3.5                           | 65.4                        | 8.3                           |  |
| 5       | 46          | 46 11                         |         | 3.8                           | 61                          | 13                            |  |

Table 7. Normalized generation rates

|         | RCS (r  | ng cm <sup>-3</sup> )               | Respirable dust (mg<br>cm <sup>-3</sup> ) |                                     |  |  |  |
|---------|---------|-------------------------------------|-------------------------------------------|-------------------------------------|--|--|--|
| Stone   | Average | Combined<br>standard<br>uncertainty | Average                                   | Combined<br>standard<br>uncertainty |  |  |  |
| Granite | 10.8    | 2.9                                 | 43.4                                      | 9.4                                 |  |  |  |
| Α       | 15.6    | 1.5                                 | 27.4                                      | 3.6                                 |  |  |  |
| В       | 6.31    | 0.17                                | 24.3                                      | 1                                   |  |  |  |
| С       | 0       | 0                                   | 25.1                                      | 4.3                                 |  |  |  |
| 1       | 7.5     | 1.1                                 | 12.3                                      | 1.5                                 |  |  |  |
| 2       | 7.2     | 1.2                                 | 9.9                                       | 1.6                                 |  |  |  |
| 3       | 5.7     | 1.0                                 | 7.6                                       | 1.0                                 |  |  |  |
| 4       | 8.4     | 1.2                                 | 12.8                                      | 1.4                                 |  |  |  |
| 5       | 5.57    | 0.79                                | 9.2                                       | 1.3                                 |  |  |  |

Table 8. Volume removal rates

| Stone   | Average (cm³ min-1) | Standard deviation (cm <sup>3</sup> min <sup>-1</sup> ) |
|---------|---------------------|---------------------------------------------------------|
| Granite | 6.0                 | 1.1                                                     |
| Α       | 5.22                | 0.50                                                    |
| В       | 8.15                | 0.96                                                    |
| С       | 10.0                | 2.4                                                     |
| 1       | 8.93                | 0.28                                                    |
| 2       | 8.15                | 0.61                                                    |
| 3       | 7.86                | 0.41                                                    |
| 4       | 10.56               | 0.48                                                    |
| 5       | 7.95                | 0.52                                                    |

Table 9. Particle number size distributions from APS

|                                           | $dN/d\log_{10}(d_{\tilde{e}})$ (cm <sup>-3</sup> ) |       |       |       |       |       |       |       |  |  |  |  |  |
|-------------------------------------------|----------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| Midpoint aerodynamic diameter, $d_a$ (µm) | Gran                                               | ite   | Stone | e A   | Stone | В     | Stone | С     |  |  |  |  |  |
|                                           | Avg                                                | StDev | Avg   | StDev | Avg   | StDev | Avg   | StDev |  |  |  |  |  |
| 0.542                                     | 305                                                | 67    | 307   | 75    | 300   | 42    | 270   | 110   |  |  |  |  |  |
| 0.583                                     | 414                                                | 90    | 410   | 100   | 410   | 54    | 370   | 140   |  |  |  |  |  |
| 0.626                                     | 570                                                | 120   | 550   | 130   | 564   | 72    | 530   | 180   |  |  |  |  |  |
| 0.673                                     | 800                                                | 170   | 740   | 180   | 775   | 94    | 750   | 240   |  |  |  |  |  |
| 0.723                                     | 1100                                               | 230   | 970   | 240   | 1030  | 120   | 1040  | 290   |  |  |  |  |  |
| 0.777                                     | 1470                                               | 290   | 1230  | 300   | 1340  | 150   | 1390  | 340   |  |  |  |  |  |
| 0.835                                     | 1870                                               | 370   | 1460  | 360   | 1630  | 180   | 1750  | 380   |  |  |  |  |  |
| 0.898                                     | 2280                                               | 450   | 1670  | 410   | 1920  | 220   | 2100  | 430   |  |  |  |  |  |
| 0.965                                     | 2600                                               | 510   | 1810  | 450   | 2130  | 250   | 2380  | 470   |  |  |  |  |  |
| 1.037                                     | 2910                                               | 560   | 1940  | 480   | 2330  | 290   | 2640  | 530   |  |  |  |  |  |
| 1.114                                     | 3150                                               | 600   | 2040  | 500   | 2490  | 310   | 2860  | 580   |  |  |  |  |  |
| 1.197                                     | 3380                                               | 630   | 2140  | 520   | 2650  | 340   | 3070  | 640   |  |  |  |  |  |
| 1.286                                     | 3630                                               | 670   | 2260  | 540   | 2830  | 370   | 3310  | 700   |  |  |  |  |  |
| 1.382                                     | 3800                                               | 680   | 2340  | 560   | 2970  | 400   | 3490  | 750   |  |  |  |  |  |
| 1.486                                     | 3970                                               | 700   | 2440  | 570   | 3110  | 420   | 3700  | 800   |  |  |  |  |  |
| 1.596                                     | 4090                                               | 700   | 2510  | 580   | 3210  | 440   | 3880  | 850   |  |  |  |  |  |
| 1.715                                     | 4140                                               | 690   | 2560  | 580   | 3280  | 450   | 4030  | 880   |  |  |  |  |  |
| 1.843                                     | 4200                                               | 680   | 2600  | 580   | 3350  | 460   | 4180  | 920   |  |  |  |  |  |
| 1.981                                     | 4250                                               | 670   | 2650  | 580   | 3420  | 470   | 4320  | 960   |  |  |  |  |  |
| 2.129                                     | 4220                                               | 650   | 2650  | 570   | 3440  | 470   | 4370  | 980   |  |  |  |  |  |
| 2.288                                     | 4070                                               | 620   | 2590  | 540   | 3370  | 460   | 4300  | 980   |  |  |  |  |  |
| 2.458                                     | 3870                                               | 580   | 2480  | 510   | 3260  | 450   | 4170  | 960   |  |  |  |  |  |
| 2,642                                     | 3570                                               | 540   | 2310  | 470   | 3070  | 430   | 3960  | 930   |  |  |  |  |  |
| 2.839                                     | 3290                                               | 500   | 2140  | 430   | 2870  | 400   | 3750  | 900   |  |  |  |  |  |
| 3.051                                     | 2950                                               | 450   | 1930  | 380   | 2640  | 370   | 3470  | 840   |  |  |  |  |  |
| 3.278                                     | 2630                                               | 400   | 1740  | 340   | 2410  | 340   | 3200  | 790   |  |  |  |  |  |
| 3.523                                     | 2340                                               | 360   | 1560  | 300   | 2190  | 310   | 2930  | 740   |  |  |  |  |  |
| 3.786                                     | 2050                                               | 320   | 1370  | 260   | 1970  | 280   | 2640  | 680   |  |  |  |  |  |
| 4.068                                     | 1780                                               | 280   | 1200  | 230   | 1750  | 250   | 2360  | 610   |  |  |  |  |  |
| 4.371                                     | 1550                                               | 250   | 1040  | 200   | 1540  | 230   | 2090  | 550   |  |  |  |  |  |
| 4.698                                     | 1330                                               | 220   | 880   | 170   | 1340  | 200   | 1830  | 490   |  |  |  |  |  |
| 5.048                                     | 1160                                               | 190   | 750   | 140   | 1170  | 180   | 1600  | 430   |  |  |  |  |  |
| 5.425                                     | 1030                                               | 170   | 660   | 120   | 1040  | 160   | 1440  | 390   |  |  |  |  |  |
| 5.829                                     | 960                                                | 160   | 600   | 110   | 950   | 150   | 1330  | 370   |  |  |  |  |  |
| 6.264                                     | 900                                                | 150   | 550   | 110   | 890   | 140   | 1240  | 350   |  |  |  |  |  |
| 6.732                                     | 830                                                | 140   | 489   | 96    | 810   | 130   | 1140  | 330   |  |  |  |  |  |
| 7.234                                     | 730                                                | 130   | 420   | 85    | 710   | 120   | 1010  | 290   |  |  |  |  |  |
| 7.774                                     | 590                                                | 110   | 337   | 71    | 580   | 100   | 830   | 240   |  |  |  |  |  |
| 8.354                                     | 445                                                | 84    | 254   | 58    | 447   | 84    | 630   | 190   |  |  |  |  |  |
| 8.977                                     | 313                                                | 62    | 178   | 47    | 324   | 66    | 450   | 140   |  |  |  |  |  |
| 9.647                                     | 203                                                | 44    | 119   | 37    | 223   | 51    | 297   | 98    |  |  |  |  |  |
| 10.37                                     | 122                                                | 31    | 76    | 29    | 146   | 39    | 183   | 65    |  |  |  |  |  |
| 11.14                                     | 72                                                 | 22    | 47    | 22    | 94    | 30    | 109   | 43    |  |  |  |  |  |
| 11.97                                     | 40                                                 | 16    | 29    | 17    | 59    | 22    | 64    | 29    |  |  |  |  |  |
| 12.86                                     | 23                                                 | 12    | 19    | 13    | 37    | 17    | 38    | 20    |  |  |  |  |  |
| 13.82                                     | 14.1                                               | 9.3   | 12.0  | 9.8   | 24    | 12    | 23    | 14    |  |  |  |  |  |
| 14.86                                     | 8.6                                                | 6.7   | 8.0   | 7.2   | 15.8  | 9.1   | 15    | 11    |  |  |  |  |  |
| 15.96                                     | 5.8                                                | 5.7   | 5.4   | 5.0   | 10.5  | 7.1   | 10.2  | 8.9   |  |  |  |  |  |
| 17.15                                     | 3.9                                                | 4.4   | 3.8   | 4.2   | 7.2   | 5.1   | 7.1   | 7.2   |  |  |  |  |  |
| 18.43                                     | 2.5                                                | 3.4   | 2.8   | 3.3   | 5.2   | 4.0   | 5.2   | 6.1   |  |  |  |  |  |

### EPHB Report No. 2023-DFSE-1489

| 19.81 | _ | _ | 0.52 | 0.66 | 0.95 | 0.83 | 0.60 | 0.73 |
|-------|---|---|------|------|------|------|------|------|

|                                                             | $dN/d\log_{10}(d_a)$ (cm <sup>-3</sup> ) |            |              |            |            |            |              |            |            |            |  |  |
|-------------------------------------------------------------|------------------------------------------|------------|--------------|------------|------------|------------|--------------|------------|------------|------------|--|--|
| Midpoint<br>aerodynamic<br>diameter, d <sub>a</sub><br>(µm) | Stone                                    | e 1        | Stone        |            | Ston       |            | Stone        | e 4        | Stone      | e 5        |  |  |
|                                                             | Avg                                      | StDev      | Avg          | StDev      | Avg        | StDev      | Avg          | StDev      | Avg        | StDev      |  |  |
| 0.542                                                       | 148                                      | 24         | 160          | 28         | 90         | 20         | 190          | 27         | 101        | 38         |  |  |
| 0.583                                                       | 198                                      | 30         | 214          | 37         | 124        | 26         | 253          | 36         | 134        | 49         |  |  |
| 0.626                                                       | 265                                      | 39         | 286          | 48         | 168        | 34         | 341          | 47         | 179        | 65         |  |  |
| 0.673                                                       | 354                                      | 52         | 387          | 64         | 233        | 45         | 463          | 63         | 241        | 87         |  |  |
| 0.723                                                       | 462                                      | 68         | 506          | 79         | 310        | 57         | 612          | 81         | 320        | 110        |  |  |
| 0.777                                                       | 583                                      | 84         | 639          | 99         | 398        | 70         | 780          | 100        | 400        | 140        |  |  |
| 0.835                                                       | 700                                      | 100        | 760          | 120        | 483        | 82         | 940          | 120        | 480        | 170        |  |  |
| 0.898                                                       | 800                                      | 120        | 880          | 130        | 563        | 92         | 1090         | 140        | 550        | 190        |  |  |
| 0.965                                                       | 870                                      | 130        | 940          | 140        | 610        | 96         | 1190         | 160        | 590        | 210        |  |  |
| 1.037                                                       | 940                                      | 140        | 1010         | 150        | 660        | 100        | 1280         | 170        | 630        | 220        |  |  |
| 1.114                                                       | 990                                      | 150<br>160 | 1050         | 160        | 700        | 100        | 1340         | 180        | 660        | 230        |  |  |
| 1.197<br>1.286                                              | 1060<br>1130                             | 180        | 1100<br>1170 | 160<br>170 | 740<br>800 | 110<br>110 | 1420<br>1520 | 190<br>210 | 690<br>740 | 240<br>260 |  |  |
|                                                             | 1190                                     | 190        |              | 170        | 840        | 120        | 1600         | 220        | 770        |            |  |  |
| 1.382<br>1.486                                              | 1260                                     | 200        | 1220<br>1280 | 180        | 900        | 130        | 1710         | 230        | 820        | 270<br>280 |  |  |
| 1.596                                                       | 1320                                     | 210        | 1350         | 190        | 950        | 130        | 1820         | 250        | 870        | 300        |  |  |
| 1.715                                                       | 1370                                     | 220        | 1400         | 200        | 990        | 140        | 1900         | 260        | 910        | 320        |  |  |
| 1.843                                                       | 1430                                     | 230        | 1460         | 200        | 1060       | 150        | 1990         | 260        | 960        | 330        |  |  |
| 1.981                                                       | 1500                                     | 230        | 1520         | 210        | 1120       | 150        | 2080         | 280        | 1010       | 350        |  |  |
| 2.129                                                       | 1540                                     | 240        | 1550         | 210        | 1150       | 160        | 2130         | 280        | 1040       | 360        |  |  |
| 2.288                                                       | 1560                                     | 240        | 1530         | 210        | 1160       | 160        | 2130         | 280        | 1040       | 360        |  |  |
| 2.458                                                       | 1550                                     | 240        | 1510         | 210        | 1140       | 160        | 2110         | 270        | 1040       | 360        |  |  |
| 2.642                                                       | 1500                                     | 220        | 1450         | 200        | 1110       | 150        | 2030         | 260        | 1000       | 350        |  |  |
| 2.839                                                       | 1440                                     | 210        | 1390         | 190        | 1070       | 140        | 1960         | 250        | 980        | 340        |  |  |
| 3.051                                                       | 1360                                     | 200        | 1280         | 180        | 1020       | 140        | 1850         | 230        | 920        | 320        |  |  |
| 3.278                                                       | 1290                                     | 180        | 1190         | 170        | 960        | 130        | 1740         | 220        | 870        | 310        |  |  |
| 3.523                                                       | 1210                                     | 170        | 1090         | 150        | 900        | 120        | 1620         | 200        | 820        | 290        |  |  |
| 3.786                                                       | 1110                                     | 150        | 980          | 140        | 820        | 110        | 1470         | 180        | 750        | 260        |  |  |
| 4.068                                                       | 1020                                     | 140        | 870          | 120        | 750        | 100        | 1330         | 170        | 690        | 240        |  |  |
| 4.371                                                       | 920                                      | 130        | 770          | 110        | 673        | 93         | 1200         | 150        | 620        | 220        |  |  |
| 4.698                                                       | 830                                      | 110        | 674          | 97         | 601        | 83         | 1060         | 130        | 550        | 190        |  |  |
| 5.048                                                       | 740                                      | 100        | 594          | 88         | 544        | 75         | 940          | 120        | 500        | 170        |  |  |
| 5.425                                                       | 680                                      | 92         | 540          | 81         | 508        | 70         | 850          | 110        | 470        | 160        |  |  |
| 5.829                                                       | 640                                      | 87         | 502          | 77         | 483        | 66         | 790          | 100        | 440        | 150        |  |  |
| 6.264                                                       | 607                                      | 83         | 466          | 72         | 455        | 61         | 737          | 98         | 420        | 140        |  |  |
| 6.732<br>7.234                                              | 564<br>496                               | 78<br>71   | 416<br>351   | 67         | 413<br>351 | 56         | 676          | 91         | 390        | 130        |  |  |
| 7.234                                                       | 490                                      | 60         | 275          | 61<br>51   | 275        | 48         | 588<br>469   | 80<br>67   | 340<br>272 | 120<br>93  |  |  |
| 8.354                                                       | 307                                      | 49         | 202          | 44         | 200        | 41<br>34   | 356          | 54         | 202        | 68         |  |  |
| 8.977                                                       | 218                                      | 37         | 140          | 38         | 136        | 28         | 249          | 45         | 139        | 48         |  |  |
| 9.647                                                       | 147                                      | 29         | 92           | 31         | 87         | 21         | 165          | 35         | 92         | 32         |  |  |
| 10.37                                                       | 95                                       | 22         | 60           | 26         | 55         | 17         | 103          | 28         | 59         | 21         |  |  |
| 11.14                                                       | 61                                       | 16         | 39           | 20         | 35         | 14         | 65           | 22         | 38         | 14         |  |  |
| 11.97                                                       | 38                                       | 12         | 25           | 15         | 21         | 12         | 41           | 16         | 26         | 10         |  |  |
| 12.86                                                       | 25.3                                     | 9.8        | 17           | 11         | 13.9       | 9.1        | 26           | 13         | 18.0       | 7.9        |  |  |
| 13.82                                                       | 17.0                                     | 7.5        | 12.5         | 9.3        | 9.5        | 6.8        | 17.3         | 9.5        | 13.0       | 5.9        |  |  |
| 14.86                                                       | 11.9                                     | 6.0        | 9.4          | 7.2        | 6.5        | 5.0        | 12.2         | 7.7        | 9.9        | 4.7        |  |  |
| 15.96                                                       | 8.7                                      | 4.9        | 7.0          | 5.1        | 4.4        | 3.8        | 8.6          | 5.8        | 7.9        | 4.1        |  |  |
| 17.15                                                       | 6.7                                      | 4.0        | 5.3          | 4.1        | 3.4        | 3.3        | 6.3          | 4.7        | 6.3        | 3.5        |  |  |
| 18.43                                                       | 5.2                                      | 3.5        | 2.7          | 2.4        | 1.1        | 1.2        | 4.7          | 3.6        | 3.8        | 2.6        |  |  |
| 19.81                                                       | 0.3                                      | 0.2        | _            | _          | _          | _          | _            | _          | _          | _          |  |  |

Table 10. Particle mass size distributions from APS

|                                                             |           | $dM/d\log_{10}(d_a)$ (mg m <sup>-3</sup> ) |          |          |            |          |            |          |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------|--------------------------------------------|----------|----------|------------|----------|------------|----------|--|--|--|--|--|--|
| Midpoint<br>aerodynamic<br>diameter, d <sub>a</sub><br>(μm) | Grani     | ite                                        | Stone    | e A      | Stone      | e B      | Stone      | e C      |  |  |  |  |  |  |
|                                                             | Avg       | StDev                                      | Avg      | StDev    | Avg        | StDev    | Avg        | StDev    |  |  |  |  |  |  |
| 0.542                                                       | 0.0349    | 0.0077                                     | 0.0324   | 0.0079   | 0.0317     | 0.0044   | 0.030      | 0.012    |  |  |  |  |  |  |
| 0.583                                                       | 0.059     | 0.013                                      | 0.054    | 0.013    | 0.0539     | 0.0071   | 0.052      | 0.019    |  |  |  |  |  |  |
| 0.626                                                       | 0.101     | 0.022                                      | 0.090    | 0.022    | 0.092      | 0.012    | 0.090      | 0.031    |  |  |  |  |  |  |
| 0.673                                                       | 0.175     | 0.037                                      | 0.150    | 0.037    | 0.157      | 0.019    | 0.160      | 0.050    |  |  |  |  |  |  |
| 0.723                                                       | 0.298     | 0.061                                      | 0.244    | 0.060    | 0.260      | 0.030    | 0.275      | 0.076    |  |  |  |  |  |  |
| 0.777                                                       | 0.497     | 0.099                                      | 0.383    | 0.094    | 0.417      | 0.046    | 0.46       | 0.11     |  |  |  |  |  |  |
| 0.835                                                       | 0.78      | 0.15                                       | 0.56     | 0.14     | 0.631      | 0.070    | 0.71       | 0.15     |  |  |  |  |  |  |
| 0.898                                                       | 1.19      | 0.23                                       | 0.80     | 0.20     | 0.92       | 0.10     | 1.06       | 0.22     |  |  |  |  |  |  |
| 0.965                                                       | 1.68      | 0.33                                       | 1.08     | 0.27     | 1.27       | 0.15     | 1.49       | 0.30     |  |  |  |  |  |  |
| 1.037                                                       | 2.34      | 0.45                                       | 1.43     | 0.35     | 1.72       | 0.21     | 2.05       | 0.41     |  |  |  |  |  |  |
| 1.114                                                       | 3.14      | 0.60                                       | 1.87     | 0.46     | 2.29       | 0.29     | 2.76       | 0.56     |  |  |  |  |  |  |
| 1.197                                                       | 4.18      | 0.78                                       | 2.44     | 0.59     | 3.02       | 0.39     | 3.68       | 0.76     |  |  |  |  |  |  |
| 1.286                                                       | 5.6       | 1.0                                        | 3.19     | 0.77     | 4.00       | 0.53     | 4.9        | 1.0      |  |  |  |  |  |  |
| 1.382                                                       | 7.2       | 1.3                                        | 4.11     | 0.98     | 5.20       | 0.70     | 6.4        | 1.4      |  |  |  |  |  |  |
| 1.486                                                       | 9.4       | 1.6                                        | 5.3      | 1.2      | 6.77       | 0.92     | 8.5        | 1.8      |  |  |  |  |  |  |
| 1.596                                                       | 12.0      | 2.1                                        | 6.8      | 1.6      | 8.7        | 1.2      | 11.0       | 2.4      |  |  |  |  |  |  |
| 1.715                                                       | 15.0      | 2.5                                        | 8.6      | 2.0      | 11.0       | 1.5      | 14.2       | 3.1      |  |  |  |  |  |  |
| 1.843                                                       | 18.9      | 3.1                                        | 10.8     | 2.4      | 13.9       | 1.9      | 18.3       | 4.0      |  |  |  |  |  |  |
| 1.981                                                       | 23.8      | 3.8                                        | 13.7     | 3.0      | 17.7       | 2.4      | 23.4       | 5.2      |  |  |  |  |  |  |
| 2.129                                                       | 29.3      | 4.5                                        | 17.0     | 3.7      | 22.0       | 3.0      | 29.4       | 6.6      |  |  |  |  |  |  |
| 2.288                                                       | 35.1      | 5.3                                        | 20.6     | 4.3      | 26.8       | 3.7      | 36.0       | 8.2      |  |  |  |  |  |  |
| 2.458                                                       | 41.3      | 6.2                                        | 24.4     | 5.0      | 32.1       | 4.4      | 43         | 10       |  |  |  |  |  |  |
| 2.642                                                       | 47.5      | 7.2                                        | 28.3     | 5.8      | 37.5       | 5.2      | 51         | 12       |  |  |  |  |  |  |
| 2.839                                                       | 54.2      | 8.2                                        | 32.4     | 6.5      | 43.6       | 6.1      | 60         | 14       |  |  |  |  |  |  |
| 3.051                                                       | 60.2      | 9.1                                        | 36.4     | 7.2      | 49.7       | 7.0      | 69         | 17       |  |  |  |  |  |  |
| 3.278                                                       | 67        | 10                                         | 40.7     | 8.0      | 56.4       | 8.0      | 79         | 20       |  |  |  |  |  |  |
| 3.523                                                       | 74        | 11                                         | 45.2     | 8.7      | 63.7       | 9.1      | 89         | 23       |  |  |  |  |  |  |
| 3.786                                                       | 80        | 12                                         | 49.4     | 9.5      | 71         | 10       | 100        | 26       |  |  |  |  |  |  |
| 4.068                                                       | 86        | 14                                         | 54       | 10       | 78         | 11       | 111        | 29       |  |  |  |  |  |  |
| 4.371                                                       | 93        | 15                                         | 57       | 11       | 85         | 13       | 122        | 32       |  |  |  |  |  |  |
| 4.698                                                       | 99        | 16                                         | 61       | 12       | 92         | 14       | 132        | 36       |  |  |  |  |  |  |
| 5.048                                                       | 107       | 18                                         | 64       | 12       | 100        | 15       | 144        | 39       |  |  |  |  |  |  |
| 5.425                                                       | 119       | 20                                         | 70       | 13       | 110        | 17       | 160        | 44       |  |  |  |  |  |  |
| 5.829                                                       | 137       | 23                                         | 79       | 15       | 126        | 19       | 184        | 51       |  |  |  |  |  |  |
| 6.264                                                       | 159       | 27                                         | 89       | 17       | 144        | 23       | 213        | 60       |  |  |  |  |  |  |
| 6.732                                                       | 182       | 32                                         | 99       | 19       | 164        | 27       | 243        | 69       |  |  |  |  |  |  |
| 7.234                                                       | 198       | 35                                         | 106      | 21       | 179        | 30       | 267        | 77       |  |  |  |  |  |  |
| 7.774                                                       | 199       | 36                                         | 105      | 22       | 181        | 32       | 271        | 80       |  |  |  |  |  |  |
| 8.354                                                       | 187       | 35                                         | 98       | 23       | 173        | 32       | 258        | 77       |  |  |  |  |  |  |
| 8.977                                                       | 163       | 32                                         | 86       | 22       | 156        | 32       | 227        | 71       |  |  |  |  |  |  |
| 9.647<br>10.37                                              | 131<br>98 | 28                                         | 71<br>56 | 22<br>22 | 133<br>108 | 30       | 186<br>143 | 62<br>51 |  |  |  |  |  |  |
| 11.14                                                       | 71        | 25<br>22                                   | 43       | 20       |            | 29<br>27 |            | 42       |  |  |  |  |  |  |
| 11.14                                                       | 50        | 20                                         | 33       | 20       | 86<br>67   | 26       | 106<br>77  | 35       |  |  |  |  |  |  |
| 12.86                                                       | 35        | 19                                         | 26       | 18       | 52         | 26       | 57         | 29       |  |  |  |  |  |  |
| 13.82                                                       | 27        | 18                                         | 20       | 17       | 42         | 24       | 43         | 29       |  |  |  |  |  |  |
| 14.86                                                       | 20        | 16                                         | 17       | 16       | 34         | 20       | 34         | 25       |  |  |  |  |  |  |
| 15.96                                                       | 17        | 17                                         | 14       | 13       | 28         | 19       | 29         | 25       |  |  |  |  |  |  |
| 17.15                                                       | 14        | 16                                         | 13       | 14       | 24         | 17       | 25         | 25       |  |  |  |  |  |  |
| 18.43                                                       | 11        | 15                                         | 12       | 14       | 22         | 17       | 23         | 26       |  |  |  |  |  |  |

### EPHB Report No. 2023-DFSE-1489

| 10.01 |   |   |     | - 4 | 4.0 | 4.0 |     | 4.0 |
|-------|---|---|-----|-----|-----|-----|-----|-----|
| 19.81 | - | _ | 2./ | 3.4 | 4.9 | 4.3 | 3.3 | 4.0 |

|                                                    |              | $dM/d\log_{10}(d_{	ext{a}})$ (mg m $^{-3}$ ) |              |            |             |            |              |            |             |        |  |  |  |  |
|----------------------------------------------------|--------------|----------------------------------------------|--------------|------------|-------------|------------|--------------|------------|-------------|--------|--|--|--|--|
| Midpoint aerodynamic diameter, d <sub>a</sub> (µm) | Stone        | e 1                                          | Stone        |            | Stone       | e 3        | Stone        | e 4        | Stone       | e 5    |  |  |  |  |
|                                                    | Avg          | StDev                                        | Avg          | StDev      | Avg         | StDev      | Avg          | StDev      | Avg         | StDev  |  |  |  |  |
| 0.542                                              | 0.0153       | 0.0025                                       | 0.0130       | 0.0023     | 0.0065      | 0.0014     | 0.0181       | 0.0026     | 0.0084      | 0.0032 |  |  |  |  |
| 0.583                                              | 0.0254       | 0.0039                                       | 0.0217       | 0.0037     | 0.0111      | 0.0024     | 0.0301       | 0.0042     | 0.0139      | 0.0051 |  |  |  |  |
| 0.626                                              | 0.0421       | 0.0063                                       | 0.0360       | 0.0060     | 0.0187      | 0.0038     | 0.0500       | 0.0069     | 0.0230      | 0.0084 |  |  |  |  |
| 0.673                                              | 0.070        | 0.010                                        | 0.0605       | 0.0099     | 0.0322      | 0.0062     | 0.085        | 0.011      | 0.038       | 0.014  |  |  |  |  |
| 0.723                                              | 0.113        | 0.017                                        | 0.098        | 0.015      | 0.0531      | 0.0098     | 0.138        | 0.018      | 0.062       | 0.022  |  |  |  |  |
| 0.777                                              | 0.177        | 0.026                                        | 0.153        | 0.024      | 0.085       | 0.015      | 0.220        | 0.029      | 0.098       | 0.035  |  |  |  |  |
| 0.835                                              | 0.263        | 0.038                                        | 0.227        | 0.035      | 0.127       | 0.022      | 0.329        | 0.042      | 0.145       | 0.051  |  |  |  |  |
| 0.898                                              | 0.377        | 0.055                                        | 0.326        | 0.049      | 0.185       | 0.030      | 0.474        | 0.061      | 0.207       | 0.073  |  |  |  |  |
| 0.965                                              | 0.508        | 0.076                                        | 0.434        | 0.064      | 0.249       | 0.039      | 0.639        | 0.084      | 0.277       | 0.097  |  |  |  |  |
| 1.037                                              | 0.68         | 0.10                                         | 0.577        | 0.085      | 0.335       | 0.051      | 0.85         | 0.11       | 0.37        | 0.13   |  |  |  |  |
| 1.114                                              | 0.89         | 0.14                                         | 0.75         | 0.11       | 0.438       | 0.065      | 1.11         | 0.15       | 0.47        | 0.16   |  |  |  |  |
| 1.197                                              | 1.17         | 0.18                                         | 0.97         | 0.14       | 0.578       | 0.084      | 1.46         | 0.20       | 0.62        | 0.22   |  |  |  |  |
| 1.286                                              | 1.55         | 0.24                                         | 1.27         | 0.18       | 0.77        | 0.11       | 1.93         | 0.26       | 0.82        | 0.29   |  |  |  |  |
| 1.382                                              | 2.03         | 0.32                                         | 1.65         | 0.23       | 1.00        | 0.14       | 2.53         | 0.34       | 1.07        | 0.37   |  |  |  |  |
| 1.486                                              | 2.67         | 0.43                                         | 2.16         | 0.30       | 1.33        | 0.19       | 3.36         | 0.45       | 1.41        | 0.49   |  |  |  |  |
| 1.596                                              | 3.48         | 0.55                                         | 2.81         | 0.39       | 1.75        | 0.24       | 4.42         | 0.60       | 1.85        | 0.64   |  |  |  |  |
| 1.715                                              | 4.49         | 0.71                                         | 3.61         | 0.50       | 2.27        | 0.31       | 5.74         | 0.77       | 2.40        | 0.84   |  |  |  |  |
| 1.843                                              | 5.82         | 0.91                                         | 4.69         | 0.64       | 3.00        | 0.42       | 7.47         | 0.99       | 3.1         | 1.1    |  |  |  |  |
| 1.981                                              | 7.6          | 1.2                                          | 6.06         | 0.83       | 3.95        | 0.54       | 9.7          | 1.3        | 4.1         | 1.4    |  |  |  |  |
| 2.129                                              | 9.6          | 1.5                                          | 7.6          | 1.0        | 5.04        | 0.70       | 12.3         | 1.6        | 5.3         | 1.8    |  |  |  |  |
| 2.288                                              | 12.1         | 1.9                                          | 9.4          | 1.3<br>1.6 | 6.29        | 0.90       | 15.3         | 2.0        | 6.5         | 2.3    |  |  |  |  |
| 2.458<br>2.642                                     | 14.9<br>17.9 | 2.3                                          | 11.5         |            | 7.7         | 1.1        | 18.7         | 2.4        | 8.1         | 3.4    |  |  |  |  |
| 2.839                                              | 21.4         | 2.7<br>3.2                                   | 13.6<br>16.3 | 1.9<br>2.2 | 9.3<br>11.2 | 1.3<br>1.5 | 22.5<br>26.9 | 2.8<br>3.4 | 9.7<br>11.7 | 4.1    |  |  |  |  |
| 3.051                                              | 25.1         | 3.6                                          | 18.6         | 2.6        | 13.1        | 1.8        | 31.5         | 3.4        | 13.7        | 4.1    |  |  |  |  |
| 3.278                                              | 29.4         | 4.2                                          | 21.5         | 3.0        | 15.3        | 2.1        | 36.8         | 4.6        | 16.1        | 5.6    |  |  |  |  |
| 3.523                                              | 34.2         | 4.8                                          | 24.4         | 3.4        | 17.8        | 2.5        | 42.4         | 5.2        | 18.7        | 6.5    |  |  |  |  |
| 3.786                                              | 39.0         | 5.4                                          | 27.2         | 3.8        | 20.2        | 2.7        | 47.8         | 5.9        | 21.3        | 7.4    |  |  |  |  |
| 4.068                                              | 44.3         | 6.0                                          | 30.0         | 4.2        | 22.8        | 3.1        | 53.7         | 6.7        | 24.2        | 8.4    |  |  |  |  |
| 4.371                                              | 49.9         | 6.8                                          | 32.9         | 4.7        | 25.5        | 3.5        | 59.9         | 7.5        | 27.1        | 9.5    |  |  |  |  |
| 4.698                                              | 55.6         | 7.6                                          | 35.8         | 5.1        | 28.3        | 3.9        | 65.7         | 8.3        | 30          | 10     |  |  |  |  |
| 5.048                                              | 61.9         | 8.5                                          | 39.1         | 5.8        | 31.8        | 4.4        | 72.0         | 9.2        | 34          | 12     |  |  |  |  |
| 5.425                                              | 70.4         | 9.6                                          | 44.1         | 6.6        | 36.8        | 5.1        | 81           | 10         | 39          | 13     |  |  |  |  |
| 5.829                                              | 82           | 11                                           | 50.9         | 7.8        | 43.4        | 5.9        | 93           | 12         | 46          | 16     |  |  |  |  |
| 6.264                                              | 97           | 13                                           | 58.6         | 9.1        | 50.8        | 6.8        | 108          | 14         | 54          | 19     |  |  |  |  |
| 6.732                                              | 111          | 15                                           | 65           | 10         | 57.2        | 7.8        | 124          | 17         | 62          | 21     |  |  |  |  |
| 7.234                                              | 122          | 17                                           | 68           | 12         | 60.3        | 8.3        | 133          | 18         | 68          | 23     |  |  |  |  |
| 7.774                                              | 123          | 18                                           | 66           | 12         | 58.5        | 8.7        | 132          | 19         | 67          | 23     |  |  |  |  |
| 8.354                                              | 116          | 19                                           | 60           | 13         | 52.9        | 8.9        | 124          | 19         | 62          | 21     |  |  |  |  |
| 8.977                                              | 102          | 17                                           | 52           | 14         | 44.6        | 9.1        | 108          | 19         | 53          | 18     |  |  |  |  |
| 9.647                                              | 86           | 17                                           | 42           | 14         | 35.5        | 8.7        | 89           | 19         | 43          | 15     |  |  |  |  |
| 10.37                                              | 69           | 16                                           | 34           | 15         | 27.8        | 8.8        | 69           | 18         | 34          | 12     |  |  |  |  |
| 11.14                                              | 54           | 15                                           | 28           | 14         | 21.7        | 9.1        | 54           | 18         | 28          | 10     |  |  |  |  |
| 11.97                                              | 43           | 14                                           | 22           | 13         | 16.6        | 9.0        | 42           | 17         | 22.9        | 9.4    |  |  |  |  |
| 12.86                                              | 35           | 13                                           | 19           | 12         | 13.5        | 8.8        | 33           | 17         | 20.0        | 8.8    |  |  |  |  |
| 13.82                                              | 29           | 13                                           | 17           | 13         | 11.3        | 8.2        | 27           | 15         | 18.0        | 8.1    |  |  |  |  |
| 14.86                                              | 25           | 13                                           | 16           | 12         | 9.7         | 7.4        | 24           | 15         | 17.0        | 8.1    |  |  |  |  |
| 15.96                                              | 23           | 13                                           | 15           | 11         | 8.2         | 6.9        | 21           | 14         | 16.7        | 8.8    |  |  |  |  |
| 17.15                                              | 22           | 13                                           | 14           | 11         | 7.8         | 7.5        | 19           | 14         | 16.7        | 9.2    |  |  |  |  |
| 18.43                                              | 21           | 14                                           | 8.6          | 7.6        | 3.1         | 3.5        | 18           | 13         | 12.4        | 8.6    |  |  |  |  |
| 19.81                                              | 1.6          | 1.1                                          | -            | -          | -           | -          | -            | -          | -           | -      |  |  |  |  |

Table 11. Sum of squared residuals from APS-derived respirable mass as a function of particle dynamic shape factor

| Gra    | nite         | Stor | ne A         | Stor   | пе В         | Sto   | ne C    |
|--------|--------------|------|--------------|--------|--------------|-------|---------|
| χ(-)   | $S(\mu g^2)$ | χ(-) | $S(\mu g^2)$ | χ(-)   | $S(\mu g^2)$ | χ(-)  | S (μg²) |
| 1      | 3860000      | 1    | 817000       | 1      | 1320000      | 1     | 8810000 |
| 1.1    | 3080000      | 1.1  | 561000       | 1.1    | 854000       | 1.1   | 6610000 |
| 1.2    | 2350000      | 1.2  | 343000       | 1.2    | 469000       | 1.2   | 4630000 |
| 1.3    | 1700000      | 1.3  | 174000       | 1.3    | 186000       | 1.3   | 2920000 |
| 1.4    | 1140000      | 1.4  | 65500        | 1.4    | 30100        | 1.4   | 1570000 |
| 1.5    | 689000       | 1.45 | 36800        | 1.425  | 12900        | 1.5   | 626000  |
| 1.6    | 374000       | 1.5  | 27300        | 1.4375 | 7600         | 1.55  | 339000  |
| 1.65   | 274000       | 1.55 | 37600        | 1.45   | 4680         | 1.6   | 178000  |
| 1.7    | 213000       | 1.6  | 70000        | 1.4625 | 4270         | 1.625 | 147000  |
| 1.725  | 200000       | 1.7  | 203000       | 1.475  | 6220         | 1.65  | 152000  |
| 1.7375 | 198000       | 1.8  | 435000       | 1.5    | 17800        | 1.675 | 194000  |
| 1.75   | 198000       | 1.9  | 784000       | 1.55   | 71700        | 1.7   | 272000  |
| 1.7625 | 201000       |      |              | 1.6    | 171000       | 1.8   | 973000  |
| 1.775  | 207000       |      |              | 1.7    | 508000       | 1.9   | 2340000 |
| 1.8    | 229000       |      |              | 1.8    | 1040000      | 2     | 4480000 |
| 1.9    | 438000       |      |              | 1.9    | 1820000      |       |         |
| 2      | 858000       |      |              |        |              |       |         |

| Stor  | ne 1         | Stone  | e 2          | Ston  | e 3          | Stor | ne 4         | Stor | ne 5    |
|-------|--------------|--------|--------------|-------|--------------|------|--------------|------|---------|
| χ (-) | $S(\mu g^2)$ | χ(-)   | $S(\mu g^2)$ | χ(-)  | $S(\mu g^2)$ | χ(-) | $S(\mu g^2)$ | χ(-) | S (μg²) |
| 1     | 128000       | 1      | 39200        | 1     | 12400        | 1    | 131000       | 1    | 31500   |
| 1.1   | 86600        | 1.1    | 21900        | 1.1   | 4990         | 1.1  | 79500        | 1.1  | 17600   |
| 1.2   | 52000        | 1.2    | 9560         | 1.15  | 2670         | 1.2  | 39200        | 1.2  | 7940    |
| 1.3   | 25400        | 1.25   | 5570         | 1.2   | 1410         | 1.3  | 12800        | 1.25 | 5030    |
| 1.4   | 8600         | 1.3    | 3230         | 1.225 | 1200         | 1.35 | 5750         | 1.3  | 3500    |
| 1.45  | 4380         | 1.325  | 2730         | 1.25  | 1290         | 1.4  | 3100         | 1.35 | 3500    |
| 1.5   | 3140         | 1.3375 | 2650         | 1.275 | 1690         | 1.45 | 5260         | 1.4  | 5170    |
| 1.55  | 5100         | 1.35   | 2690         | 1.3   | 2420         | 1.5  | 12400        | 1.5  | 13700   |
| 1.6   | 10400        | 1.3625 | 2860         | 1.4   | 8750         | 1.6  | 43500        | 1.6  | 30000   |
| 1.7   | 31900        | 1.375  | 3130         | 1.5   | 21200        | 1.7  | 98400        | 1.7  | 54900   |
| 1.8   | 69400        | 1.4    | 4080         | 1.6   | 40100        | 1.8  | 179000       | 1.8  | 89400   |
| 1.9   | 124000       | 1.5    | 13200        | 1.7   | 66800        | 1.9  | 291000       | 1.9  | 134000  |
| 2     | 198000       | 1.6    | 31400        | 1.8   | 101000       |      |              | 2    | 190000  |
|       |              | 1.7    | 60200        | 1.9   | 145000       |      |              |      | _       |
|       |              | 1.8    | 100000       | 2     | 198000       | _    |              |      |         |
|       |              | 1.9    | 152000       |       |              | =    |              |      |         |
|       |              | 2      | 219000       |       |              |      |              |      |         |

### **Appendix IV. Respirable Sample Dataset**

Table 12. Complete dataset of respirable samples with corresponding stone mass removed during grinding and grinding time

| Stone   | Run # | Sample # | Stone mass removed (g) | Grinding time (min) | Dust mass (μg sample <sup>-1</sup> ) | Dust LOD (µg sample <sup>-1</sup> ) | Dust LOQ (µg sample <sup>-1</sup> ) | Cristobalite mass (µg sample <sup>-1</sup> ) | Cristobalite LOD (µg sample-¹) | Cristobalite LOQ (µg sample <sup>-1</sup> ) | Quartz mass (µg sample <sup>-1</sup> ) | Quartz LOD (µg sample <sup>-1</sup> ) | Quartz LOQ (µg sample <sup>-1</sup> ) | Tridymite mass (µg sample <sup>-1</sup> ) | Tridymite LOD (µg sample <sup>-1</sup> ) | Tridymite LOQ (µg sample-¹) |
|---------|-------|----------|------------------------|---------------------|--------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------|
| Granite | 1     | S35      | 150                    | 8                   | 1700                                 | 40                                  | 130                                 | 0                                            | 90                             | 300                                         | 380                                    | 5                                     | 17                                    | 0                                         | 10                                       | 33                          |
| Granite | 1     | S37      | 150                    | 8                   | 1600                                 | 40                                  | 130                                 | 0                                            | 80                             | 300                                         | 360                                    | 5                                     | 17                                    | 0                                         | 10                                       | 33                          |
| Granite | 2     | S39      | 106                    | 8                   | 1800                                 | 40                                  | 130                                 | 0                                            | 90                             | 300                                         | 480                                    | 5                                     | 17                                    | 0                                         | 10                                       | 33                          |
| Granite | 2     | S41      | 106                    | 8                   | 1700                                 | 40                                  | 130                                 | 0                                            | 90                             | 300                                         | 450                                    | 5                                     | 17                                    | 0                                         | 10                                       | 33                          |
| Granite | 3     | S43      | 120                    | 8                   | 2200                                 | 40                                  | 130                                 | 0                                            | 100                            | 330                                         | 550                                    | 10                                    | 34                                    | 0                                         | 10                                       | 33                          |
| Granite | 3     | S45      | 120                    | 8                   | 2100                                 | 40                                  | 130                                 | 0                                            | 100                            | 330                                         | 510                                    | 10                                    | 34                                    | 0                                         | 10                                       | 33                          |
| Stone A | 1     | S23      | 85                     | 8                   | 1200                                 | 40                                  | 130                                 | 450                                          | 60                             | 200                                         | 120                                    | 5                                     | 17                                    | 0                                         | 100                                      | 330                         |
| Stone A | 1     | S25      | 85                     | 8                   | 1000                                 | 40                                  | 130                                 | 430                                          | 60                             | 200                                         | 110                                    | 5                                     | 17                                    | 0                                         | 100                                      | 330                         |

| Stone A | 2 | S27 | 97  | 8   | 1200 | 40 | 130 | 510 | 60 | 200 | 210 | 5 | 17 | 0 | 100 | 330 |
|---------|---|-----|-----|-----|------|----|-----|-----|----|-----|-----|---|----|---|-----|-----|
| Stone A | 2 | S29 | 97  | 8   | 1200 | 40 | 130 | 470 | 60 | 200 | 210 | 5 | 17 | 0 | 100 | 330 |
| Stone A | 3 | S31 | 81  | 8   | 890  | 40 | 130 | 410 | 30 | 100 | 170 | 5 | 17 | 0 | 60  | 200 |
| Stone A | 3 | S33 | 81  | 8   | 770  | 40 | 130 | 320 | 30 | 100 | 150 | 5 | 17 | 0 | 60  | 200 |
| Stone B | 1 | S11 | 122 | 8   | 1300 | 40 | 130 | 210 | 20 | 66  | 120 | 5 | 17 | 0 | 10  | 33  |
| Stone B | 1 | S13 | 122 | 8   | 1300 | 40 | 130 | 220 | 20 | 66  | 120 | 5 | 17 | 0 | 10  | 33  |
| Stone B | 2 | S15 | 135 | 8   | 1500 | 40 | 130 | 240 | 20 | 66  | 140 | 5 | 17 | 0 | 10  | 33  |
| Stone B | 2 | S17 | 135 | 8   | 1400 | 40 | 130 | 250 | 20 | 66  | 120 | 5 | 17 | 0 | 10  | 33  |
| Stone B | 3 | S19 | 154 | 8   | 1600 | 40 | 130 | 270 | 20 | 66  | 140 | 5 | 17 | 0 | 10  | 33  |
| Stone B | 3 | S21 | 154 | 8   | 1500 | 40 | 130 | 270 | 20 | 66  | 140 | 5 | 17 | 0 | 10  | 33  |
| Stone C | 1 | S1  | 150 | 8   | 1300 | 40 | 130 | 0   | 5  | 17  | 0   | 5 | 17 | 0 | 10  | 33  |
| Stone C | 2 | S3  | 472 | 16  | 5200 | 40 | 130 | 0   | 5  | 17  | 0   | 5 | 17 | 0 | 10  | 33  |
| Stone C | 2 | S5  | 472 | 16  | 3800 | 40 | 130 | 0   | 5  | 17  | 11ª | 5 | 17 | 0 | 10  | 33  |
| Stone C | 3 | S7  | 238 | 8   | 2900 | 40 | 130 | 0   | 5  | 17  | 0   | 5 | 17 | 0 | 10  | 33  |
| Stone C | 3 | S9  | 238 | 8   | 2300 | 40 | 130 | 0   | 5  | 17  | 0   | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 48  | 76  | 4   | 350  | 20 | 67  | 140 | 5  | 17  | 68  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 51  | 76  | 4   | 380  | 20 | 67  | 140 | 5  | 17  | 67  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 53  | 76  | 4   | 380  | 20 | 67  | 150 | 5  | 17  | 77  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 55  | 76  | 4   | 380  | 20 | 67  | 150 | 5  | 17  | 75  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 57  | 76  | 4   | 340  | 20 | 67  | 130 | 5  | 17  | 64  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 1 | 59  | 76  | 4   | 290  | 20 | 67  | 120 | 5  | 17  | 55  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 47  | 92  | 4.7 | 450  | 20 | 67  | 190 | 5  | 17  | 92  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 50  | 92  | 4.7 | 520  | 20 | 67  | 220 | 5  | 17  | 100 | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 61  | 92  | 4.7 | 540  | 20 | 67  | 240 | 5  | 17  | 110 | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 63  | 92  | 4.7 | 520  | 20 | 67  | 240 | 5  | 17  | 110 | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 67  | 92  | 4.7 | 390  | 20 | 67  | 170 | 5  | 17  | 80  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 2 | 72  | 92  | 4.7 | 540  | 20 | 67  | 210 | 5  | 17  | 110 | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 49  | 81  | 4   | 390  | 20 | 67  | 150 | 5  | 17  | 76  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 54  | 81  | 4   | 450  | 20 | 67  | 190 | 5  | 17  | 90  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 58  | 81  | 4   | 480  | 20 | 67  | 190 | 5  | 17  | 89  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 60  | 81  | 4   | 410  | 20 | 67  | 180 | 5  | 17  | 88  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 64  | 81  | 4   | 470  | 20 | 67  | 200 | 5  | 17  | 98  | 5 | 17 | 0 | 10  | 33  |
| Stone 1 | 3 | 69  | 81  | 4   | 360  | 20 | 67  | 150 | 5  | 17  | 72  | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 68  | 74  | 4   | 240  | 20 | 67  | 35  | 5  | 17  | 150 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 79  | 74  | 4   | 230  | 20 | 67  | 36  | 5  | 17  | 150 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 84  | 74  | 4   | 260  | 20 | 67  | 34  | 5  | 17  | 140 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 85  | 74  | 4   | 230  | 20 | 67  | 31  | 5  | 17  | 120 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 93  | 74  | 4   | 250  | 20 | 67  | 40  | 5  | 17  | 150 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 1 | 96  | 74  | 4   | 260  | 20 | 67  | 38  | 5  | 17  | 160 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 2 | 80  | 81  | 4   | 320  | 20 | 67  | 38  | 5  | 17  | 200 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 2 | 86  | 81  | 4   | 400  | 20 | 67  | 47  | 5  | 17  | 240 | 5 | 17 | 0 | 10  | 33  |
| Stone 2 | 2 | 88  | 81  | 4   | 320  | 20 | 67  | 35  | 5  | 17  | 200 | 5 | 17 | 0 | 10  | 33  |

| Stone 2 | 2 | 91 | 81 | 4 | 300 | 20 | 67 | 34  | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
|---------|---|----|----|---|-----|----|----|-----|---|----|-----|---|----|---|----|----|
| Stone 2 | 2 | 94 | 81 | 4 | 300 | 20 | 67 | 39  | 5 | 17 | 200 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 2 | 95 | 81 | 4 | 280 | 20 | 67 | 33  | 5 | 17 | 170 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 1  | 70 | 4 | 370 | 20 | 67 | 43  | 5 | 17 | 230 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 3  | 70 | 4 | 320 | 20 | 67 | 38  | 5 | 17 | 210 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 6  | 70 | 4 | 290 | 20 | 67 | 36  | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 8  | 70 | 4 | 280 | 20 | 67 | 29  | 5 | 17 | 150 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 89 | 70 | 4 | 290 | 20 | 67 | 31  | 5 | 17 | 170 | 5 | 17 | 0 | 10 | 33 |
| Stone 2 | 3 | 90 | 70 | 4 | 310 | 20 | 67 | 33  | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 2  | 75 | 4 | 200 | 20 | 67 | 0   | 5 | 17 | 140 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 4  | 75 | 4 | 200 | 20 | 67 | 0   | 5 | 17 | 130 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 5  | 75 | 4 | 190 | 20 | 67 | 0   | 5 | 17 | 130 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 9  | 75 | 4 | 200 | 20 | 67 | 0   | 5 | 17 | 140 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 10 | 75 | 4 | 200 | 20 | 67 | 0   | 5 | 17 | 140 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 1 | 16 | 75 | 4 | 170 | 20 | 67 | 0   | 5 | 17 | 120 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 7  | 74 | 4 | 250 | 20 | 67 | 0   | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 11 | 74 | 4 | 190 | 20 | 67 | 0   | 5 | 17 | 150 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 12 | 74 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 14 | 74 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 17 | 74 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 2 | 24 | 74 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 13 | 68 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 15 | 68 | 4 | 210 | 20 | 67 | 0   | 5 | 17 | 170 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 19 | 68 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 20 | 68 | 4 | 240 | 20 | 67 | 0   | 5 | 17 | 190 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 21 | 68 | 4 | 180 | 20 | 67 | 0   | 5 | 17 | 150 | 5 | 17 | 0 | 10 | 33 |
| Stone 3 | 3 | 22 | 68 | 4 | 230 | 20 | 67 | 0   | 5 | 17 | 180 | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 1 | 18 | 93 | 4 | 530 | 20 | 67 | 230 | 5 | 17 | 130 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 1 | 27 | 93 | 4 | 480 | 20 | 67 | 200 | 5 | 17 | 110 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 1 | 28 | 93 | 4 | 420 | 20 | 67 | 180 | 5 | 17 | 100 | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 1 | 32 | 93 | 4 | 460 | 20 | 67 | 200 | 5 | 17 | 110 | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 1 | 40 | 93 | 4 | 470 | 20 | 67 | 180 | 5 | 17 | 100 | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 1 | 42 | 93 | 4 | 410 | 20 | 67 | 190 | 5 | 17 | 100 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 2 | 25 | 88 | 4 | 540 | 20 | 67 | 230 | 5 | 17 | 120 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 2 | 26 | 88 | 4 | 500 | 20 | 67 | 190 | 5 | 17 | 110 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 2 | 29 | 88 | 4 | 480 | 20 | 67 | 200 | 5 | 17 | 110 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 2 | 31 | 88 | 4 | 560 | 20 | 67 | 230 | 5 | 17 | 130 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 2 | 34 | 88 | 4 | 500 | 20 | 67 | 220 | 5 | 17 | 120 | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 2 | 39 | 88 | 4 | 480 | 20 | 67 | 150 | 5 | 17 | 86  | 5 | 17 | 0 | 10 | 33 |
| Stone 4 | 3 | 23 | 85 | 4 | 530 | 20 | 67 | 240 | 5 | 17 | 130 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 3 | 30 | 85 | 4 | 500 | 20 | 67 | 220 | 5 | 17 | 120 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 3 | 37 | 85 | 4 | 440 | 20 | 67 | 200 | 5 | 17 | 100 | 5 | 17 | 0 | 10 | 33 |

### EPHB Report No. 2023-DFSE-1489

| Stone 4 | 3 | 41 | 85 | 4 | 470 | 20 | 67 | 190 | 5 | 17 | 100 | 5 | 17 | 0 | 20 | 67 |
|---------|---|----|----|---|-----|----|----|-----|---|----|-----|---|----|---|----|----|
| Stone 4 | 3 | 44 | 85 | 4 | 490 | 20 | 67 | 220 | 5 | 17 | 120 | 5 | 17 | 0 | 20 | 67 |
| Stone 4 | 3 | 46 | 85 | 4 | 550 | 20 | 67 | 260 | 5 | 17 | 140 | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 65 | 66 | 4 | 240 | 20 | 67 | 110 | 5 | 17 | 40  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 73 | 66 | 4 | 210 | 20 | 67 | 100 | 5 | 17 | 31  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 74 | 66 | 4 | 190 | 20 | 67 | 79  | 5 | 17 | 28  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 75 | 66 | 4 | 200 | 20 | 67 | 110 | 5 | 17 | 33  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 77 | 66 | 4 | 220 | 20 | 67 | 110 | 5 | 17 | 38  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 1 | 83 | 66 | 4 | 270 | 20 | 67 | 110 | 5 | 17 | 35  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 52 | 75 | 4 | 290 | 20 | 67 | 130 | 5 | 17 | 47  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 56 | 75 | 4 | 270 | 20 | 67 | 130 | 5 | 17 | 42  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 62 | 75 | 4 | 310 | 20 | 67 | 150 | 5 | 17 | 52  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 66 | 75 | 4 | 260 | 20 | 67 | 130 | 5 | 17 | 43  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 76 | 75 | 4 | 320 | 20 | 67 | 160 | 5 | 17 | 53  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 2 | 81 | 75 | 4 | 310 | 20 | 67 | 130 | 5 | 17 | 42  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 70 | 69 | 4 | 310 | 20 | 67 | 120 | 5 | 17 | 40  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 71 | 69 | 4 | 280 | 20 | 67 | 130 | 5 | 17 | 43  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 78 | 69 | 4 | 230 | 20 | 67 | 110 | 5 | 17 | 32  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 82 | 69 | 4 | 340 | 20 | 67 | 160 | 5 | 17 | 52  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 87 | 69 | 4 | 260 | 20 | 67 | 110 | 5 | 17 | 35  | 5 | 17 | 0 | 10 | 33 |
| Stone 5 | 3 | 92 | 69 | 4 | 290 | 20 | 67 | 110 | 5 | 17 | 34  | 5 | 17 | 0 | 10 | 33 |

<sup>&</sup>lt;sup>a</sup>Mass identified as an outlier as this was below the LOQ and the only sample from Stone C (including bulk material, bulk dust, respirable dust, total dust, and size-classified dust samples) with detectable crystalline silica

# Delivering on the Nation's promise: Promoting productive workplaces through safety and health research

## **Get More Information**

Find NIOSH products and get answers to workplace safety and health questions:

1-800-CDC-INFO (1-800-232-4636) | TTY: 1-888-232-6348

CDC/NIOSH INFO: <a href="mailto:cdc.gov/niosh">cdc.gov/niosh</a> | <a href="mailto:cdc.gov/niosh/eNews">cdc.gov/niosh/eNews</a> | <a href="mailto:cdc.gov/niosh/eNews">cdc.gov/niosh/eNews</a>